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Overloading Point and Interval Taylor Operators*

George F. Corlisst

Abstract. This volume includes papers on a variety of implementation techniques for
automatic differentiation, and papers on a variety of applications. For each, the user must
write a program, in some sense, for the function to be differentiated. This paper outlines
the use of overloaded operators to make the necessary programming as user-friendly as
possible. Most implementations of either the forward or the reverse mode of automatic
differentiation generate all requested derivatives in the same pass through the computational
graph. We describe an efficient implementation strategy when it is required to generate
Taylor coefficients one order at a time. We then address trade-offs of memory space, time,
and ease of use in the implementation of overloaded operators for use in applications which
require that derivatives be generated one at a time, rather than all in the same call.

1 Introduction. The goal of this paper is to present a programmer-friendly way of
expressing automatic differentiation operators. Many of the systems for automatic differen-
tiation reported in this volume require a programmer to write code. Here, we consider the
use of operator overloading to make the programming required as routine as possible. As
an example, the programming style of Listing 1 is strongly preferred to that of Listing 2.

A, B, C : AD_Type;

C := B + sin (A4);
Listing 1. Convenient user interface to automatic differentiation operators.

INTEGER LENSER

PARAMETER (LENSER = 30)

INTEGER LA, MA, LB, MB, LC, MC, LT, MT

REAL AL(LENSER), AR(LENSER), BL(LENSER), BR(LENSER),
+ CL(LENSER), CR(LENSER), TL(LENSER), TR(LENSER)

*This work was supported in part by IBM Germany and by the National Science Foundation under grant
No. CCR-8802429.
tDept. of Mathematics, Marquette University, Milwaukee, WI 53233 USA
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2 Part IV. Using Higher Order Derivatives

C C =B + SIN (a)
CALL IT_SIN (LA, MA, AL, AR, LT, MT, TL, TR, IER)
CALL IT_ADD (LB, MB, BL, BR, LT, MT, TL, TR,
+ LC, MC, TL, TR, IER)

Listing 2. Awkward user interface to automatic differentiation operators.

Listing 1 is the style of the Ada-based operators reported in [Corl91b]; Listing 2 is the style
of the Fortran-based SVALAQ system [Corl87a)].

The presentation of this paper is intended to be generic; the AD_Type in Listing 1
could represent any appropriate type such as Taylor series, gradient, Jacobian, Hessian,
etc. for real, complex, interval, or complex interval objects. In Section 4, we discuss some
implementation strategies which apply more specifically to Taylor series generation than to
the generation of partial derivatives. ~

Christianson [Chri91a] computes Hessians by reverse accumulation (see [Irim84a)) using
overloaded Ada operators. Second derivatives have previously been obtained using two
(apparently different) algorithms, which Christianson shows to be identical. He calculates
a single row (or an arbitrary linear combination of rows) of the Hessian of a function f in
less than twice the time required to calculate {f, Vf} by reverse accumulation.

The techniques of operator overloading reported here require language support. ACRITH-
XSC [IBM90a], Ada [AdaLRM], C++ [Stro86a], Maple [Char88a], Pascal-XSC [Klat91a],and
S [Beck88a] all support user defined data types and overloading of operators for those types.
Many of the preprocessors used for automatic differentiation have the effect of operator
overloading. Examples include Kedem [Kede80a], ADOL-C [Grie92a], ATOMFT [Corl82a],
Augment [Crar79a], DAPRE [Step90a), JAKEF [Hill85a], GRESS [Horw88a), and PADRE2
[Irim84a], [Irim88a]. The examples in this paper are presented in Ada. Interval versions of
the Ada programs were also used to compute guaranteed global bounds for the defect in
the solution to ordinary differential equations [Corl91b].

As a further example of natural use of overloaded operators, consider the problem of
coding the evaluation of the Taylor series or the Jacobian of the right hand side of the
system of differential equations

yi = U3
yﬁ = WU
y:'s = cayn/d

3/2
y; = c¢y2/d, where d = (yf + y%) .

As an aside, we remark that it is usually better to solve a higher order system of ODE’s in
their original form as in [Corl82a], [Chan91a], rather than transforming to a system of first
order equations as we have done for the purposes of this example. With appropriate type
declarations, the code is

function Dist (Y1, Y2 : AD_Type) return AD_Type is
begin

return Sqrt ((Y1 #* 2 + Y2 ** 2) ** 3);
end Dist;

function RHS (T : AD_Type;
Y : AD_Vector_Type) return AD_Vector_Type is
-- T is not used in this example.
D : AD_Type;
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Y_Prime : AD_Vector_Type;

begin
D := Dist (Y[1], Y[2]);
Y_Prime[1] := Y[3];
Y_Prime[2] := Y[4];
Y_Prime[3] := c_1 * Y[1] / D;
Y_Prime(4] := c_4 * Y[2] / D;
return Y_Prime;

end RHS;

Listing 3. Overloaded operator code for satellite orbit problem.

We find it convenient to distinguish bewteen three possible strategies for implementing
overloaded operators:

1. “In-one-call” operators which generate all requested derivatives in one pass through
the computational graph. Intermediate results are discarded. This alternative is
convenient to use, but it is inefficient for applications which need to compute the
derivatives one order at a time.

2. Sequenced procedure calls (code lists, factorable functions, etc.) which use variables
for intermediate results. This alternative is awkward to program, but it can be
used to generate additional derivatives efficiently because the intermediate results
are saved.

3. Operator overloading with memory management as described in this paper provides
the convenience of 1) with the flexibility and speed of 2)

We do not address precompilation, parsing, or methods which otherwise process the function
code before automatic differentiation.

2 Specification - Interface. Listing 4 gives a portion of the specification of the user
interface for a set of routines comprising a library for automatic differentiation for interval
valued Taylor series. An alternative specification appears in [Davi88a).

with Interval_Types_Pkg;
use Interval_Types_Pkg;
package Interval_Taylor_Pkg is
-- Declarations --
type Taylor_Type is private;
type Taylor_Vector_Type
is array (Integer range <>) of Taylor_Type;

Max_Index : constant := 100;
subtype Taylor_Index_Type is Integer range O .. Max_Index;

-- Operators --

function "+" (U, V : Taylor_Type) return Taylor_Type;

function "-" (U, V : Taylor_Type) return Taylor_Type;
function "*" (U, V : Taylor_Type) return Taylor_Type;
function Sqr (U : Taylor_Type) return Taylor_Type;
function "/" (U, V : Taylor_Type) return Taylor_Type;
function Exp (U : Taylor_Type) return Taylor_Type;

-- Other elementary functions
-- Constants --

function Minus_One return Taylor_Type;



4 Part IV. Using Higher Order Derivatives

function Zero return Taylor_Type;

function One return Taylor_Type;

function E return Taylor_Type;

function Pi return Taylor_Type;
-- Utilities —-

function Taylor (A : Interval_Type) return Taylor_Type;
-- Convert Interval_Type into series for a constant.
function Taylor (A : Interval_Type;
Len : Taylor_Index_Type) return Taylor_Type;
-~ Build the series for an independent variable expanded at A
function Taylor (A_O : Interval_Vector_Type) return Taylor_Type;
-- Build the i-term series for an dependent variable.
function Deriv (A : Taylor_Type;
N : Taylor_Index_Type) return Interval_Type;
-- Returns the n-th derivative of a series which has
-- been computed previously.

-- Exception --
Series_Error : exception;
private

end Interval_Taylor_Pkg;
Listing 4. Partial specifications for an automatic differentiation package.

3 Implementation issues. Arithmetic on Taylor series uses a declaration of the
form

type Series_Type is record
Number_of_Known_Terms : Taylor_Index_Type;
Number_of_Significant_Terms : Taylor_Index_Type;
Series : array (Taylor_Index_Type) of Coefficient_Type;
end;

Listing 5. Series_Type

In Listing 5, Coefficient_Type may be real, complex, or interval. Alternatively, an object
of Series_Type may be a pointer to an object of the type declared above. In either case,
each operator has the general form shown in Listing 6.

function "“*" (U, V : Taylor_Type) return Taylor_Type is
Result : Taylor_Type;
begin
-- Use recurrence relations to compute Result.
-- Forward mode is easy.
-- Reverse mode requires more effort.
-- Operators may employ fancy memory conservation strategies.
return Result;
end "*";
Listing 6. General form of an overloaded AD operator.

We remark in passing that there are ample opportunities to exploit parallelism:
e Within operators. Most operators include scalar products and other operations
which can be parallelized.
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¢ Between operators. Separate nodes of the computational graph can be scheduled
in parallel [Bisc91a).

¢ Course grained operators. Instead of scheduling individual arithmetic operations,
schedule parallel execution at the granularity of matrix and vector operations or
quadrature. This is related to Speelpenning’s concept of funnel nodes [SpeeS0a]
and Bischof’s concept of hoisting nodes [Bisc91a).

This concludes our discussion of the principles of using overloaded operators for auto-
matic differentiation. Next, we turn our attention to issues which become important for
time-efficient generation of Taylor series one term at a time. The same issues arise when
one generates a function value, and subsequently returns to compute partial derivatives.
The reverse mode for generating partial derivatives can address the same issues by using a
“tape” [Grie92a), [Grie91f].

4 Efficient one-at-a-time series generation. In some applications such as opti-
mization, rootfinding, or quadrature, we are able to compute the entire truncated Taylor
series with one call as shown in Listing 7.

function £ (T : Taylor_Type) return Taylor_Type is
Result : Taylor_Type;

begin
Result := some expression in +, sin, ...
return Result;

end f;

X,

=

: Tayloxr_Type;

Taylor (A => X_0, Len => 20); =-- Taylor series for X
1(X);

x .
A

Listing 7. Generate an entire Taylor series with one call.
In contrast to this “in-one-call” style, many applications require that the Taylor series
(or other AD_Type) be generated one term at a time:

¢ Ordinary differential equations [Corl82a], [Moor66a}, [Moor79a], [Stet86a]

¢ Order adaptive quadrature [Gray75a], [Corl87a)

¢ Computing a function value followed by the computation of its gradient or Jacobian
¢ Computing some partials followed by others.

For example, given the function RHS from Listing 3, the series for the solution to the system
of ODE’s is computed as shown in Listing 8.

T : Taylor_Type;
X, X_Prime : Taylor_Vector_Type;

T := Taylor (T_O0, 1); -- One term series for t

X := Taylor (X_0); -- Vector of initial conditioms
for i in 1 .. Max_Index loop
X_Prime := RHS (T, X);
X := Integrate (X_O, X_Prime);
end loop;
Extract_Order_and_Location_of_Singularities (X, ...);

Listing 8. Taylor series solution for ODE’s.
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The reason why the generation of a solution to an ODE must be done one term at a time
is that the solution to an ODE is given by

z(t) = 2o + /t t z'(t)dt,

which is not a factorable function.
The function Integrate (X0, X_Prime) called in Listing 8 computes the series for

2(t) = zo + /t "(0) dt

by term-by-term integration of the series for z'(t).

As an aside, we remark on the procedure Extract_Order_and Location_of_Singularities
in Listing 8. One of the attractive features of Taylor series methods for solving ODE’s is
their ability to provide analytic information about the solution such as the order and loca-
tion of singularities [Chan67a], [Corl82a], [Chan81a], information which is often physically
significant. Chang [Chan91a] has also used analytic information to enable ATOMFT, his
ODE solver, to take integration steps which are nearly as large as the radius of convergence
of the solution of the differential equation.

If the automatic differentiation arithmetic operators are programmed as outlined in the
preceding sections, then the cost of generating n terms of the series for z(t) by Listing 8 is
O(n®), instead of the O(n?) achieved by the in-one-call generation. To achieve a complexity
of O(n?) requires

¢ Avoid recomputing previously computed results

¢ Saving all temporary results

¢ Comparing Result.Number of Known Terms with U and

V.Number_of Known_Terms

¢ That each operator function must know its result

e That each operator be a ternary, not a binary, operator.
Hence, overloaded binary operators as outlined above are not sufficient. Our operators must
provide memory management.

All intermediate results must be saved. For example, suppose function RHS contains
the code

for i in O .. N loop
A := A %X+ B(i);
end loop;
Then each instance of A must be stored in a different location in order that the next time
through the code, the original partial results are available. Hence, in order to implement
O(n?) operators, we must perform run-time loop unrolling in space, as well as the run-time
loop unrolling to form the computational graph.

Key insight:
In computing each of z(t),z'(t),z"(t),..., the order of operations is the same.

That is, the computational graph is traversed in the same order for each derivative, although
the path may differ at different points t. Hence, the order in which memory locations are
allocated for storing results is the same. In computing z(t), we allocate space for the results
of each operation. When we compute z'(t), z"(t), ... at the same point, we repeat the same
allocations.

A memory Allocator maintains a sequential array

type Taylor_Type is range O .. Memory_Size;
Memory : array (Taylor_Type) of Series_Type;
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where Series_Type is defined in Listing 5. Hence, an object of Taylor_Type is actually an
integer index giving the array location at which the series is stored. The memory Allocator
function returns the index of the next available location in the array Memory. That is why
Listings 7 and 8 use the identifier Taylor_Type rather than Series_Type defined in Listing
5. The form of each operator is then shown in Listing 9.

function "*" (U, V : AD_Type) return AD_Type is
Result : AD_Type;
begin
Result := Allocator;
-= Previous result, if any, should still be in Memory(Result).

for Term_Index in Memory(Result).Number_of_Known_Terms .
minimum (Memory(U).Number_of_Known_Terms,
Memory(V) .Number_of_Known_Terms) loop

-- Use recurrence relations to compute
--  Memory(Result).Series(Term_Index)

end loop;

return Result;

end "x" :

Listing 9. General form of an overloaded AD operator with memory management.

With operators of the form given in Listing 9, n terms of the series for the solution
can be generated one term at a time as shown in Listing 8 with a cost O(n?). In order to
support the O(n?) operators, we need to add two additional procedures to the specifications
given in Listing 4.

procedure Start_New_F;
-- No terms are known. Initialize automatic differentiation
-- memory structure before each new function is evaluated.
-— Set the memory allocation pointer to the top of the
== internally managed memory array.

procedure Start_Same_F;
-- We want to traverse the dependency graph again in the
-- same way. Initialize automatic differentiation memory
-- structure before each evaluation of the same function.
-- Set the memory allocation pointer to the top of the
-- internally managed memory array, but leave the partial
-- results already stored there unchanged.

Listing 10. Additional procedures for memory management.

With the procedures specified in Listing 10, the program for computing the series terms
from Listing 8 becomes

T : Taylor_Type;
X, X_Prime : Taylor_Vector_Type;

T := Taylor (T_O, 1); -- One term series for t

X := Taylor (X_0); -- Vector of initial conditioms
Start_New_F;
for i in 1 .. Max_Terms loop
X_Prime := RHS (T, X);
Integrate (X_0, X_Prime, X);
Start;Same_F;
end loop;
Extract_Order_and_Location_of_Singularities (X, ...);

Listing 11. Taylor series solution for ODE’s with cost O(n?).
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The memory management described in this section cannot be done using dynamic mem-
ory allocation provided by the programming language because it is essential that the same
sequence of allocation calls return exactly the same sequence of memory locations. It would
be possible to use a dynamically allocated linked list structure to store the Taylor series for
the intermediate results as they are initially generated. The difficulty lies in using informa-
tion stored in one or two operands to locate the area where the corresponding intermediate
result is stored during subsequent passes through the computational graph. For example
in the expression (A - B ) + (A * B), the operators - and * both are passed the same
operands A and B, but their intermediate results must be stored in different locations. It
would be possible to address this concern by storing the computational graph in some form.
However, it is much simpler and faster to observe that each pass through the computational
graph to generate each additional derivative must visit the intermediate results in the same
order. Hence, sequential initial allocation and sequential re-visiting works. The principle is
the same as in Griewank’s “tape” (see the next section).

5 Relationship to Griewank’s “tape”. Griewank [Grie91f], [Grie92a] has used
the concept of a tape for out of core storage of the code list and partial results. A tape is
essential for large problems whose storage requirements for both the computational graph
and the derivatives being computed exceed the storage capacity of any computer. The tape
is created by overloaded operators as a byproduct of the evaluation of f. Subsequently,
higher order ordinary or partial derivatives are evaluated by a sequential processing of the
tape. Christianson [Chri91a] uses overloaded operators in a similar way.

The memory management reported here stores in core partial results in a manner
equivalent to the tape. In this design, subsequent derivatives are evaluated by repeated
execution of the same program which created the tape, rather than by a second program
whose function is to process the tape.

6 Trade-offs. The framework presented here for automatic differentiation operators
represents a classical space vs. time vs. ease of use trade-off.
1. Space efficient operators:
e Overloaded operators are easy to use.
¢ Relatively simple to program operators.
o Storage proportional to largest “live set” size [Grie91f].
¢ Run time for generating series in one call is O(n2).
e Run time for generating series one term at a time is O(n?).
2. Time efficient operators:
e Overloaded operators are easy to use.
¢ Relatively complicated to program operators.
e Storage proportional to run time to evaluate RHS.
e Run time for generating series is always O(n?)
3. Three operand operators: procedure Add (A, B, C)
Infix notation is replaced by procedure calls.
Awkward to use.
Provision of storage for all results becomes the users’ problem.
Procedures are relatively simple to program.
Run time for generating series may be O(n?) or O(n®), depending on how the
user assigns variables.

7 Code availability. I have suppressed some important implementation details for
the sake of clarity of exposition. An automatic differentiation package for interval valued
Taylor series written in the Ada programming language is available from the author.
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