FORTRAN M: A Language for
Modular Parallel Programming

Ian T. Foster
K. Mani Chandy

CRPC-TR92249
October 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

computers, networks of workstations, and other parallel computer architectures. Its pop-
ularity stems from its simplicity, flexibility, and ease of implementation.

A disadvantage of the message-passing model, particularly for scientific and engineer-
ing applications, is that it does not enforce deterministic execution [22]. Henc.e, the
programmer has no a priori guarantee that a program will give the same result if exe-
cuted more than once with the same input. This nondeterminism is antithetical to both
the scientist’s need for reproducibility and ease of debugging. In addition, most message
passing systems do not enforce information hiding and provide a global name space of
processes. This makes it difficult to develop modular programs and reusable libraries [10].

In this paper, we describe message-passing extensions to sequential programming lan-
guages that enforce both deterministic execution and information hiding, while retaining
much of the flexibility of traditional message-passing. We describe these extensions in
the context of FORTRAN 77, and call the resulting language FORTRAN M. However,
equivalent extensions can be defined for any sequential programming language. The ex-
tensions include constructs for defining program modules called processes, for specifying
that processes are to execute concurrently, for establishing typed, one-to-one communi-
cation channels between processes, and for sending and receiving messages on channels.

. The resulting programming model is dynamic: processes and channels can be created and

deleted dynamically, and references to channels can be included in messages.

FORTRAN M enforces determinancy by means of syntactic and semantic restrictions.
In addition, a FORTRAN M compiler can use type information provided by the programmer
to verify correct usage. The price of this safety is that the programmer must explicitly
declare and create the communication channels that will be used in a program. However,
this requirement appears no more onerous than variable type declarations, which serve
a similar purpose. FORTRAN M also provides nondeterministic constructs for programs
that operate in nondeterministic environments. The use of these constructs is typically
isolated to a small number of modules.

FORTRAN M enforces information hiding, and hence facilitates a modular or object-
oriented approach to parallel program design. In particular, it permits the definition of
reusable program components. A channel is only accessible to a process that possesses
a reference to it. Common data is only supported on a per-process basis. Hence, a
process’s interface to its environment is defined by the channels passed to it as arguments.
All other details of its implementation, which can include common data, subprocesses,
process placement, and internal communication channels, are hidden.

FORTRAN M is supported by a theory of parallel and sequential composition of com-
municating processes. Key characteristics of this theory, described in a separate paper [3],
include (1) proofs that a FORTRAN M program is deterministic even though processes and
channels are created and deleted and channels are reconnected; (2) extension of sequential
programming proof techniques to parallel programs; and (3) a compositional proof theory
in which the specification of the whole is derived from the specifications (and not the
texts) of the part.

The basic paradigm underlying FORTRAN M is task parallelism: the parallel execution
of (possibly dissimilar) tasks. Hence, FORTRAN M complements data-parallel languages
such as FORTRAN D [14] and High Performance FORTRAN (HPF). In particular, FOR-
TRAN M can be used to coordinate multiple data-parallel computations. Our goal is to

integrate HPF with FORTRAN M, thus combining the data-parallel and task-parallel pro-
gramming paradigms in a single system. This integration is facilitated by support for data
distribution statements as in HPF, which allow distributed arrays to be declared within
FORTRAN M and then operated on in parallel by either HPF or FORTRAN M procedures.

In the rest of this paper, we define FORTRAN M and illustrate its application to
programming problems. In Sections 2 and 3, we present the constructs used to define
and compose processes. In Sections 4-8, we discuss dynamic process and communication
structures, nondeterministic constructs, argument passing, process placement, and data
distribution. Sections 9 and 10 discuss compilation and related work. We conclude in
Section 11.

A prototype FORTRAN M compiler for sequential and parallel computers is available
by anonymous ftp from Argonne National Laboratory, in directory pub/pcn on machine
info.mcs.anl.gov [12].

2 Defining Modules

In modular program design, we develop components of a program separately, as inde-
pendent modules, and then combine modules to obtain a complete program [24, 7]. In-
teractions between modules are restricted to well-defined interfaces. Hence, module im-
plementations can be changed without modifying other components, and the properties
of a program can be determined from the specifications for its modules and the code
that plugs these modules together. When successfully applied, modular design reduces
program complexity and facilitates code reuse.

In FORTRAN M, a module is implemented as a process. A process, like a FORTRAN
program, defines common data (labeled PROCESS COMMON to emphasize that it is local to
the process) and the subroutines that operate on that data. It also defines the interface
by which it communicates with its environment. A process has the same syntax as a
subroutine, except that the keyword PROCESS is used in place of SUBROUTINE.

2.1 Interfaces

A process’s dummy arguments (formal parameters) are a set of port variables. These
define the process’s interface to its environment. (For convenience, conventional argument
passing is also permitted between a process and its parent. This nonessential feature is
discussed in Section 6.) A port variable declaration has the general form

port_type (data_type_list) name_list

The port_type is OUTPORT or INPORT and specifies whether the port is to be used to
send or receive data, respectively. The data_type_list is a comma-separated list of type
declarations. It specifies the format of the messages that will be sent on the port, much as
a subroutine’s dummy argument declarations defines the arguments that will be passed
to the subroutine.

For example, the following process declares in-ports capable of receiv.ing messages
consisting of single integers (p1), arrays of MSGSIZE reals (p2), and a single integer and a

real array with size specified by the integer (p3). In the third declaration, the names m
and x have scope local to the port declaration.

process example(pil,p2,p3)
parameter (MSGSIZE=20)

inport (integer) pi

inport (real x(MSGSIZE)) p2
inport (integer m, real x(m)) p3

We illustrate the use of ports with a simple example. A program that simulates the
atmospheric circulation (an atmosphere model) is to be coupled with an ocean model. The
two models are to execute concurrently and must exchange information periodically: The
ocean model provides the atmosphere model with an array of sea surface temperatures
(SST), and the atmosphere model provides the ocean model with two arrays containing
components of horizontal momentum, U and V. We implement both models as processes,
and define an interface that allows for the exchange of SST, U, and V values.

We assume initially that the atmosphere model is a sequential program. (A parallel
version is presented in the next section.) Hence, we define an interface consisting of two
ports, sstin and uvout. The in-port sstin can be used to receive arrays of real values
representing sea surface temperatures, while the out-port uvout can be used to send two
such arrays representing U and V values.

process atmosphere(sstin,uvout)

parameter (NLAT=128,NLON=256)

inport (real x(NLAT,NLON)) sstin

outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvout

2.2 Communication

As each process has its own address space, the only mechanism by which a process can
interact with its environment is via the ports passed to it as arguments. A process uses the
SEND, ENDCHANNEL, and RECEIVE statements to send and receive messages on these ports.
These statements are similar in syntax and semantics to FORTRAN’s WRITE, ENDFILE, and
READ statements, and can include END=, ERR=, and IOSTAT= specifiers to indicate how to
recover from various exceptional conditions.

A process sends a message by applying the SEND statement to an out-port. The out-
port declaration specifies the message format. A process sends a sequence of messages
by repeated calls to SEND; it can also call ENDCHANNEL to send an end-of-channel (EOC)
message. The SEND and ENDCHANNEL statements are nonblocking (asynchronous): they
complete immediately. A process receives a value by applying the RECEIVE statement to
an in-port. A RECEIVE statement is blocking (synchronous): it does not complete until
data is available.

For example, the following code repeatedly sends U and V data on the port uvout and
receives SST data from the port sstin. After doing this TMAX times, it signals the end of
the communication by sending an EOC message on uvout. For illustrative purposes, we
use process common to hold the sst, u, and v arrays.

4

process atmosphere(sstin,uvout)
parameter (NLAT=128, NLON=256, TMAX=100)
C The ports are the external interface.
inport (real x(NLAT,NLON)) sstin
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvout
C Process common variables.
process common /state/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
call init
C Repeat TMAX times: send U & V, recv SST, update U & V.
do 10 i=1,TMAX
send (uvout) u,v
receive(sstin) sst
call atm_compute
10 continue
C Signal end of communication.
endchannel (uvout)
end

The ocean model can be defined in a similar fashion, with an out-port sstout for SST
data and an in-port uvin for U and V data. This process repeatedly sends SST data on
sstout and receives U and V data on uvin, until EOC is detected on uvin.

3 Composing Modules

A FORTRAN M program is constructed by using process blocks and process do-loops to
plug together (compose) processes. A program creates channels to establish one-to-one
communication streams between processes. In this way, processes with more complex
behaviors are defined. These can themselves be composed with other processes, in a
hierarchical fashion.

3.1 Composition of Processes
A process block is a form of parbegin/parend [8], with the general form

processes
statement_1

statement_n
endprocesses

where n > 0, and the statements are process calls (distinguished by the keyword PROCE.SSCALL),
process do-loops (defined below), and/or at most one subroutine call. Sta:tements in a
process block execute concurrently. For example, the following block specifies that the
processes atmosphere and ocean are to execute concurrently.

processes
processcall atmosphere(...)
processcall ocean(...)
endprocesses

A process block terminates, allowing execution to proceed to the next executable
statement, when all of its constituent statements terminate.

3.2 Channels

Recall that a process communicates with its environment by sending and receiving mes-
sages on ports. When composing processes, we use the CHANNEL statement to define these
ports to be references to first-in/first-out message queues called channels. This statement
has the general form

CHANNEL (out=out-port, in=in-port)

and both creates a channel and defines out-port and in-port to be references to this channel.
These ports are to be used for sending and receiving messages, respectively, and can be
passed as arguments to the composed processes.

In the ocean/atmosphere model, we require two channels, one for communicating SST
values and the other for communicating U and V values. This structure is illustrated in
Figure 1 and is created by the following program. Note that this code defines a process;
if ports are added to define an interface, it can be combined with other processes to form
a more complex program. The process creates two channels, spawns the atmosphere and
ocean processes, blocks until the process block terminates, and then terminates itself.

process coupled.model
parameter (NLAT=128, NLON=256)
C Local port variables.
inport (real x(NLAT,NLON)) sstin
outport (real x(NLAT,NLON)) sstout
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uvin
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvout
C Create channels and define ports.
channel (out=ssto, in=sstin)
channel (out=uvout, in=uvin)
C Call two models with ports as arguments.
processes
processcall atmosphere(sstin,uvout)
processcall ocean(uvin,sstout)
endprocesses
end

The value of the four port variables declared in this code fragment is initially unde-
fined. The CHANNEL statements each create a channel and define their two port variable

channel(uvi, uvo))
U}of' \‘VI

‘ channel(ssti, ssto) @

ssti ssto

Figure 1: Coupled Ocean/Atmosphere Model

arguments to be references to this channel. These port variables are passed as argu-
ments to the concurrently executing atmosphere and ocean processes, establishing the
connections shown in Figure 1.

We now have a complete parallel program which can be executed on a sequential or
parallel computer. We shall see that this program can be executed on one processor or two
without any change to its component modules. The execution order of the concurrently
executing atmosphere and ocean processes is determined only by availability of messages
on channels. Nevertheless, the computed result does not depend on the order in which
the processes execute. That is, the program is deterministic.

3.3 Replicating Processes

A process do-loop creates multiple instances of the same process. It is frequently used to
define single program, multiple data (SPMD) computation structures, in which multiple
copies of a process are connected in a regular communication structure. The process
do-loop is identical in form to the do-loop, except that the keyword PROCESSDO is used
in place of DO and the body can include only a process do-loop or a process call. For
example:

processdo 10 i = 1,n
processcall myprocess
10 continue

Process do-loops can be nested inside both process do-loops and process blocks.

We illustrate the use of the process do-loop in Program 1, which implements a parallel
version of the atmosphere model. The parallel code partitions the model’s data domain
into NP subdomains of size (NLAT) x (PLON=NLON/NP) and uses 2NP channels to connect
these processes in a ring. Figure 2 shows the original grid, the decomposition, and the
process structure, with NLAT=6, NLON=12 and NP=2.

Two arrays of ports, NIn and NOut, are declared and then defined to be references to
the 2NP channels. Each subdomain process is passed four of these ports; these provide in
and out connections to its two neighbors.

It is desirable to provide a parallel interface to a parallel model, so that components
of the model can communicate with corresponding components of other parallel models

PLON

NLON

TSk

=Hy>z

Figure 2: Parallel Atmosphere Model

without introducing a central bottleneck. Hence, the interface to the parallel model is also
decomposed, giving two arrays of ports, SstIn and UvOut, each of size NP. Each port in
these arrays is used to communicate arrays of size NLAT X PLON. Each subdomain process
is passed one element of SstIn and one element of UvOut as arguments.

The code used to compose the atmosphere and ocean models must be modified as fol-
lows to allow for the parallel interface. The two channels sstout/sstin and uvout/uvin
are replaced with arrays of NP channels, and the calls to the sequential processes are
replaced with calls to the parallel processes.

program coupled._model

parameter (NLAT=128,NLON=256 ,NP=16 ,PLON=NLON/NP)

inport (real x(NLAT,PLON)) SstIn(NP)

outport (real x(NLAT,PLON)) SstOut(NP)

inport (real x(NLAT,PLON), real y(NLAT,PLON)) UvIn(NP)
outport (real x(NLAT,PLON), real y(NLAT,PLON)) UvOut(NP)

(o Create NP channels.
do 10 i=1,NP .
channel (out=SstOut (i), in=SstIn(i))
channel (out=UvOut(i), in=UvIn(i))
10 continue

C Pass port arrays to parallel models.
processes
processcall par_atmosphere(SstIn,UvOut)
processcall par_ocean(SstOut,UvIn)
endprocesses
end

10

20

process par_atmosphere(SstIn,UvOut)
parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP)
These two port arrays define ezternal interface.
inport (real x(NLAT,PLON)) SstIn(NP)
outport (real x(NLAT,PLON), real y(NLAT,PLON)) UvOut(NP)
Ports for communication with W and E neighbors.
inport (real x(NLAT)) FromNbr(2,NP)
outport (real x(NLAT)) ToNbr(2,NP)
Create channels used for internal communication.
do 10 i = {,NP
channel (in=FromNbr(2,i), out=ToNbr(i,mod(i,NP)+1))
channel (out=ToNbr(2,i), in=FromNbr(1,mod(i,NP)+1))
continue
Create NP processes, with ezternal and internal ports.
processdo 20 i = {,NP
processcall subdomain(SstIn(i), UvOut(i), ToNbr(1,i),
ToNbr(2,i), FromNbr(1,i), FromNbr(2,i))
continue
end

Code ezecuted in a single subdomain.

process subdomain(sstin,uvout,ToW,ToE,FromW,FromE)
parameter (NLAT=128,NLON=256 ,NP=16 ,PLON=NLON/NP)
FEzternal interface ports: for sending SST and receiving U & V.
inport (real x(NLAT,PLON)) sstin

outport (real x(NLAT,PLON), real y(NLAT,PLON)) uvout
Ports to and from W and E neighbors.

inport (real x(NLAT)) FromW, FromE

outport (real x(NLAT)) ToW, ToE

Program 1: Parallel Atmosphere Model

Figure 3: A Dynamic Process and Communication Structure

4 Dynamic Structures

The process and communication structures in the ocean/atmosphere model are essentially
static: after an initial startup phase, the number of processes and channels does not
change. FORTRAN M can also be used to specify dynamic structures in which processes
and channels are created and deleted, and channels are reconnected, during the course of
a computation.

This is illustrated in the following example. Consider a process network consisting of a
tasks and a database process, as illustrated in Figure 3(A). The tasks process receives
a sequence of integers representing tasks on its in-port. Each time it receives an integer, it
creates three new channels and sends ports referencing two of these channels to database.
It then establishes the process structure illustrated in Figure 3(B), by creating a proci
and a proc2 process and passing the appropriate ports to these processes as arguments.
The proci, proc2, and database processes communicate among themselves until proci
and proc2 terminate. Then, the network reverts to that shown in Figure 3(A), and tasks
handles the next incoming message.

This structure is specified as follows. Note the declaration of the out-port po, which
specifies that the port is used to transmit messages consisting of an integer, an integer
out-port, and an integer in-port. Each time a task is received, three channels are created
and qi/qo, ri/ro, and si/so are defined to be references to these channels. Two of these
ports, qi and so, are sent to the database process; the remaining ports are passed as
arguments to proci and proc2.

process tasks(mi,po)
c Ports defining external interface.
inport (integer) mi
outport (integer, outport (integer), inport(integer)) po

10

o Ports for local communication.
inport (integer) qi, ri, si
outport (integer) qo, ro, so

o Repeat: receive a task, create 9 channels, send ports on po.
do while(.true.)

receive(mi) task
channel (out=qo, in=qi)
channel (out=ro, in=ri)
channel (out=so, in=si)
send(po) task,qi,so
processes
processcall proci(si,ro)
processcall proc2(ri,qo)
endprocesses
enddo
end

The ability to transfer a channel reference from one process to another is useful but
potentially dangerous. If not controlled, it could compromise determinism by permitting
multiple out-ports to reference the same channel. Hence, FORTRAN M semantics ensure
that only a single copy of a channel reference can exist at any one time. When the contents
of a port variable are communicated in a message, the value of that port variable becomes
undefined. Similarly, assignment of one port variable to another is not permitted; the
MOVEPORT statement must be used to copy a port, and this makes the copied port variable
undefined. Hence, execution of the following code fragment, which stores the value of
mi in ri and sends the value of qi on the port po, causes both mi and qi to become
undefined.

inport (integer) qi, mi, ri
outport (inport (integer)) po
moveport (from=mi, to=ri)
send(po) qi

5 Nondeterminism

The determinism enforced by the use of channels removes a major source of complexity
in concurrent programming. However, nondeterminism can be useful in nondeterministic
environments. For example, a load-balancing algorithm may need to execute either a local
or remote task, depending on which is the first to become available. Similarly, we may
wish to process requests to access a shared data structure, or input from several external
devices, in the order in which they become available. These behaviors can be specified by
using the MERGE and PROBE statements.

A MERGE statement defines a first-in/first-out message queue, just like a CHANNEL state-
ment. However, it allows multiple out-ports to reference this queue and hence defines a
many-to-one communication structure. Messages sent on any out-port are appended to

11

the queue, with the order of messages sent on each out-port being preserved and any
message sent on an out-port eventually appearing in the queue.

For example, consider the following problem, proposed to us by Burton Smith. NP
monte_carlo processes execute independently and generate integer “gcores” at irregular
intervals. We wish to generate a histogram of these values. One possible solution is to
create a single histo process and use MERGE to link the out-ports of the monte_carlo
processes and the in-port of the histo process. This solution can be implemented as
follows.

program histogram
parameter (NP=128)

inport (integer) pi
outport (integer) Po(NP)

C The merger links all out-ports with the in-port.
merge(out=(Po(i),i=1,NP),in=pi)
processes

processcall histo(pi)
processdo 10 i = 1,NP
processcall monte_carlo(Po(i))

10 continue
endprocesses
end

An alternative, less centralized solution to the problem can also be specified in a
straightforward manner. The histogram is distributed among many histo processes,
and mergers are used to connect each histo process with all monte_carlo processes. A
quadratic number of ports must be declared if messages are to be routed in constant time.
If NP is large, the program can be modified to utilize a communication network of lower
dimension, at the cost of additional communication steps.

A process can apply the PROBE statement to an in-port to determine whether messages
are pending on a channel. It sets a logical variable, specified in an EAPTY=variable specifier,
to true if the channel is empty and to false otherwise.

6 Argument Passing

In preceding programming examples, all communication between processes has occurred
via ports. For programming convenience, FORTRAN M also allows conventional argument
passing between a process and the processes that it calls (its children). The values of
these arguments are passed to a child processes when they are created, and copied back
to the parent process when the children terminate. Copying is performed in textual and
iteration-count order in order to ensure deterministic execution. A child process can
also specify, by INTENT declarations, that particular arguments are to be copied on call
or return only. For example, the following process has three input arguments and one
output argument. It computes an approximation to the integral of a function F(x) over
the range a.h < z < b.h using the rectangle rule and interval h. That is, it computes

Si=at1F((j = 0.5)).

12

process integrate(idx_a,idx_b,h,sum)
intent(in) idx_a, idx_b, h
intent (out) sum
sum = 0.0
do 10 i=idx_a+1,idx_b
sum = sum + F((i-0.5)*h)
10 continue
end

A dummy argument declared INTENT (IN) is copied only when the process is called. If
no intent declaration is provided for a dummy argument, or it is declared INTENT (INOUT) ,
then the corresponding actual argument, which must be a variable, is updated after the
process terminates. For a dummy argument declared INTENT(OUT), the corresponding
actual argument must also be a variable, and its value is again updated upon process
termination. However, in this case the variable is set to some arbitrary value upon entry
to the process.

This process is used in the following program, which computes an approximation to the
integral of F'(X) over the interval (0,1). (For comparison, solutions to the same problem
in several other parallel FORTRAN dialects are presented in [17].) The process creates NP
integrate processes, each of which evaluates the integral over a specified subinterval and
stores its result in an element of the array results. Upon termination of the processdo
statement, elements of this array are summed by the main program.

program integration
parameter (NP=128)
real results(NP)
read(*,*) intvls
icomps = intvls/NP
if (icomps*NP .ne. intvls) stop(99)
processdo 10 i=1,NP
processcall integrate((i-1)*icomps,i*icomps,1.0/intvls,results(i))
10 continue
sum = 0.0
do 20 i = {,NP
sum = sum + results(i)
20 continue
print *,’Sum is ’,sum/intvls
end

7 Process Placement

Process blocks and do-loops define concurrent processes; channels and mergers define
how these processes communicate and synchronize. A parallel program defined in terms
of these constructs can be executed on both uniprocessor and multiprocessor computers.
In the latter case, processes must be mapped to processors.

13

The techniques used to map processes to processors depends in part on the architecture
of the parallel computer in question. If a small number of processors share access to a
common memory, then automatic mechanisms — based, for example, on a centralized
scheduler — may be effective. However, the importance of the memory hierarchy in
larger parallel computers means that process placement (mapping) can be an important
aspect of algorithm design. For this reason, FORTRAN M incorporates constructs that
allow mapping to be specified by the programmer. These constructs influence performance
but not correctness. Hence, we can develop a program on a uniprocessor and then tune
performance on a parallel computer by changing mapping constructs.

7.1 Process Placement Constructs

The FORTRAN M process placement constructs are based on the concept of a virtual
computer: a collection of virtual processors, which may or may not have the same topol-
ogy as the physical computer on which a program executes [20, 30]. For consistency
with FORTRAN concepts, a FORTRAN M virtual computer is an /N-dimensional array,
and the mapping constructs are modeled on FORTRAN 77’s array manipulation con-
structs. The PROCESSORS declaration specifies the shape and dimension of a processor
array, the LOCATION annotation maps processes to specified elements of this array, and
the SUBMACHINE annotation specifies that a process should execute in a subset of the
array [10].

The PROCESSORS declaration is similar in form and function to the array DIMENSION
statement. It has the general form PROCESSORS (I, ...,I,) where n > 0 and the I; have
the same form as the arguments to a DIMENSION statement. It specifies the shape and size
of the (implicit) processor array on which a process is executing. This processor array
cannot be larger than that declared in the parent, but it can be smaller or of a different
shape.

The LOCATION annotation is similar in form and function to an array reference. It has
the general form LOCATION(I,, ..., I,), where n > 0 and the I; have the same form
as the indices in an array reference, and specifies the processor on which the annotated
process is to execute. The indices must not reference a processor array element that is
outside the bounds specified by the PROCESSORS declaration provided in the process or
subroutine in which the annotation occurs.

A SUBMACHINE annotation is similar in form and function to an array reference passed
as an argument to a subroutine. It has the general form SUBMACHINE(I,, ...,I,), where
n 2> 0 and the I; have the same form as the indices in an array reference. It specifies that
the annotated process is to execute in a virtual computer comprising the processors taken
from the current virtual computer, starting with the specified processor and proceeding
in array element order. The size and shape of the new virtual computer is as specified by
the PROCESSORS declaration in the process definition.

7.2 Mapping Examples

We specify mapping in Program 1 by providing a PROCESSORS declaration at the top of
the program and a LOCATION annotation on the call to subdomain:

14

CoCeCele
CeCeCelo
CeCeCeCe
CeCeCele

(B)

Ol0|0|O
O|0|0|O
O|0|10|O
O|0|0|O
- 000e
0000
000
9000

(A
Figure 4: Alternative Mapping Strategies

processors(NP)

processdo 10 i = 1,NP
processcall subdomain(SstIn(i), UvOut(i), NOut(1,i),
NOut(2,i), NIn(1,i), NIn(2,i)) 1location(i)
10 continue

The SUBMACHINE annotation can be used to create several disjoint virtual computers,
each comprising a subset of available processors. For example, in the ocean/atmosphere
model, it may be desirable to execute the two models in parallel, on different parts of
the same computer. This organization is illustrated in Figure 4(A) and can be specified
as follows. The atmosphere model is executed in one half of a computer, and the ocean
model in the other half.

parameter (NP=4)
processors(2*NP)
processes
processcall par_atmosphere(SstIn,UvOut) submachine(1)

processcall par_ocean(SstOut,UvIn) submachine (NP+1)
endprocesses

Alternatively, it may be more efficient to map both models to the same set of pro-
cessors, as illustrated in Figure 4(B). This can be achieved by changing the PROCESSORS
declaration to PROCESSORS(NP) and omitting the SUBMACHINE annotations. No change to

the component programs is required.

8 Data Parallelism

The basic paradigm underlying FORTRAN M is task parallelism: the parallel execution of
(possibly dissimilar) tasks. However, FORTRAN M also provides some support for data-
parallel computation. Programs can use data distribution statements to create distributed

15

arrays. Semantically, distributed arrays are indistinguishable from nondistributed arrays.
That is, they are accessible only to the process in which they are declared and are copied
when passed as arguments to subprocesses. Operationally, elements of a distributed array
are distributed over the nodes of the virtual computer in which the process is executing.
Hence, operations on a distributed array may cause communication.

We utilize High Performance FORTRAN-style data distribution statements to create
distributed arrays in FORTRAN M. These statements allow FORTRAN M to specify certain
classes of data-parallel computations. For example, in the following code fragment, the
same computation is performed on each column of a distributed array. The PROCESSORS
statement indicates that the program is to be compiled for an array of N (virtual) proces-
sors; the LOCATION annotation on the call to computesum specifies that the process is to
execute on the ith processor.

processors(N)
real A(N,N), sum(N)
distribute A(*,CYCLIC), sum(CYCLIC)
processdo i=1,N
processcall computesum(N, A(1,i), sum(i)) location(i)
enddo
end

process computesum(N, B, sum)
real B(N), sum
intent(in) N, B
intent (out) sum
sum = 0.0
doi=1,N
sum = sum + B(i)
enddo
end

9 Compilation

A prototype FORTRAN M compiler has been developed for sequential, parallel, and net-
worked computers [12]. This compiler supports all language constructs except those con-
cerned with data distribution, and has been used to develop parallel programs in coupled
climate modeling, multidisciplinary design, computational biology, and air quality mod-
eling, among other areas.

The FORTRAN subset of FORTRAN M is compiled with conventional compilers and
thus achieves the same performance as pure FORTRAN. Hence, the primary difficulty
that arises when constructing a FORTRAN M compiler is achieving efficient implementa-
tions of communication and process management mechanisms. We first consider commu-
nication. FORTRAN M’s SEND and RECEIVE operations can be translated into memory-

16

S5e+06 ey ——r—r—r—rrry v
4.5e+06 |- TCP —o— \ |

dex06 [TMVOIE

3.5e+06 F PYM v2.4 -x—
3e+06 |
2.5e+06
2e+06 [
1.5e+06
1e+06
500000

=

o

Bandwidth (bytes/sec)

-

AW | 2 PEEEE S S S A W

100 1000 10000 100000
Message size (bytes)

Figure 5: Interprocessor Communication Bandwidth on IBM SP1

to-memory transfers in shared-memory computers and uniprocessors and into low-level
message-passing operations on distributed-memory computers. As the origin and desti-
nation of the data to be communicated are stated explicitly in send and receive calls,
messages can be assembled without an intermediate packing step, if this is permitted by
the underlying communication system. Message handling code at the receiver can also
be simplified. Hence, we would expect the communication performance of a FORTRAN M
compiler to at least equal that of a good message-passing library. We evaluate commu-
nication performance using a simple test program that creates two processes connected
by channels, which then exchange a large number of fixed-size messages. Execution time
is measured for different message sizes and achieved bandwidth is computed. Figure 5
presents performance results for a network environment in which processes exchange mes-
sages by using the TCP/IP sockets protocol. The results were obtained on the IBM
SP1, a multicomputer based on the RIOS 1 microprocessor. Results are given for equiva-
lent programs written in FORTRAN M; raw TCP/IP protocol; P4 [1], a highly-optimized
message-passing library; and PVM v2.4 [29]. The P4 and PVM programs were provided
by the P4 developers and by PVM users, respectively. We see that FORTRAN M is 20%
faster than P4 for small messages and significantly faster than PVM for all message sizes.
The low-level protocol is faster than FORTRAN M, but only by a small factor; this is pri-
marily because it does not incorporate logic to decode messages on receipt. These results
suggest that FORTRAN M semantics allow generation of efficient communication code.

17

700000 ' -]
b
Processes —o—
p meads e]
PVMv24 -&---
~~
[3) / |
8 500000 = / G - ‘%
} /, 0 4 ‘\‘\\
Q P N /) y
-) 4 o .
S] T Tt 1
's ()00 ”’*’” 'nu»
E 3mm i 4””’ "." -
% E.,..
g 200 i | g -
; 0000() Roj
B...Er
1 B ""ng -
¥ et a..-
0 - . e | |
> 1000
Message size (bytes)

Figure 6: Intraprocessor Communication Bandwidth on Sun-4 Workstation

The performance of programs that generate multiple processes per processor depends
also on the cost of process scheduling operations. Our second performance study uses the
same test program as the first, but executes it on a single Sun-4 workstation. Figure 6
shows achieved intraprocessor communication bandwidth as a function of message size
using two versions of the FORTRAN M compiler that target (a) Sun lightweight processes
(threads) and shared memory, and (a) Unix processes and sockets. Intraprocessor re-
sults for PVM v2.4 are also shown for comparison. The thread numbers are significantly
higher for smaller messages, partly because of lower process switching overheads (send-
ing an empty message takes 0.37 msec in the thread version but 1.8 msec in the process
version) and partly because shared memory rather than sockets are used for communi-
cation. Clearly, there are substantial benefits to the former, lower-level mechanisms. In
the future, we plan to explore active message libraries [32], specialized thread libraries,
and compile-time scheduling techniques. These developments complicate compilation: for
example, we must generate reentrant code in a thread-based implementation, and spe-
cialized message handlers in an active message implementation. However, these are issues
which, while difficult to handle in a message-passing library, can reasonably be addressed
in a compiler. .

In summary, preliminary work on FORTRAN M compilation shows that it is possible
to generate code that is competitive in performance with conventional message-passing
libraries. We have also demonstrated that it is possible to enhance performance in specific

18

situations (e.g., intraprocessor communication) by exploiting lower-level mechanisms. The
goal of future work will be to exploit compiler analyses and transformations to improve
both communication and process management performance.

10 Related Work

Programming notations for parallel scientific programming fall into three principal classes:
coordination languages, message-passing libraries, and data parallel extensions. Here, we
discuss how FORTRAN M differs from each of these approaches, focusing in particular on
the issues of modularity and safety. We do not consider systems based on shared-memory
models [17], as these are not easily adapted to distributed-memory machines.

In coordination language approaches, a specialized language is used to specify con-
currency, communication, and synchronization; FORTRAN routines are called to perform
computation. This approach has the advantage of clearly separating parallel and sequen-
tial computation, but requires the programmer to learn a new language. Coordination
languages include occam [16], Strand [13], PCN [5, 11], and Delerium [19]. Delerium is
purely a coordination language, while the others can be used to specify both coordina-
tion and computation. occam, derived from Hoare’s Communicating Sequential Processes
(CSP) [15], can specify only static computation and communication structures, does not
enforce determinism, and employs synchronous communication. Strand and PCN can
specify dynamic structures. Communication and synchronization are specified in terms of
read and write operations on single-assignment variables, and a form of guarded command
is used to specify choice between alternatives. A compiler cannot in general assert that a
Strand or PCN program is deterministic, because it cannot always prove that choices in
guarded commands are mutually exclusive. In contrast, a compiler need only verify that
a program uses neither MERGE nor PROBE. Strand and PCN do not address the problem of
FORTRAN common data. '

In message-passing library approaches, programmers call subroutines to communicate
data between processes. The number of processes is often fixed at one per physical
processor. Systems such as P4 [1], Express [23], PVM [29], and Zipcode [28] provide,
as primitives, an asynchronous send to a named process and a synchronous receive. The
Mach operating system provides, in addition, a virtual channel construct (the port); ports
can be transferred between processes in messages [33]. Mach does not restrict copying of
ports, so determinism is not enforced. Libraries have the advantage of simplicity: they are
language independent and do not require compiler modifications. This simplicity comes
at a price, however. Compile-time checking for correct usage is not performed. As library
writers know nothing about how routines will be used, they must program defensively and
incorporate logic that can, in principle, be avoided in code generated by a FORTRAN M
compiler. In contrast to FORTRAN M, message-passing libraries are nondeterministic and,
as the name space of processes is global, do not enforce information hiding.

Related to both coordination languages and message-passing libraries is Linda, which
provides read and write operations on a shared tuple space [2]. Tuple space operations
can emulate both message-passing communication protocols and shared data structures.
Tuple space operations, like message passing, are nondeterministic and do not enforce

19

information hiding. Actor-based message passing systems such as CE/RK [27] have some
points of similarity with FORTRAN M, but are fundamentally different in that they are
nondeterministic. CC++ is a shared virtual memory extension of C++ [4]. It differs from
FORTRAN M in many respects, in particular its use of a shared-memory programming
model.

In data parallel approaches, sequential languages are extended with directives that
specify how arrays are to be decomposed and distributed over processors [31, 14, 6]. A
compiler then partitions the computation using the “owner computes” rule, with each
operation in the sequential program allocated to the processor containing the data that is
to be operated on. This approach permits succinct specifications of parallel algorithms for
regular problems and guarantees deterministic execution. When extended with support
for irregular data distributions, data parallel languages can also handle some irregular
problems [18, 26]. However, there are broad classes of problems for which the approach
has not yet been shown to be tractable. These include highly dynamic adaptive grid prob-
lems, multidisciplinary optimization problems, and reactive systems in which a program
interacts with an external environment in a nondeterministic manner. These problems
can all be implemented in a straightforward manner with FORTRAN M.

11 Conclusions

High-level languages such as FORTRAN and C have been adopted almost universally in
sequential programming, and for good reasons: compared with machine languages, they
permit more concise specifications, more compile-time checking, and greater portability
and modularity. In addition, modern compilers generate better object code than do most
programmers.

For a variety of reasons, parallel computers are still programmed primarily in parallel
“machine languages”: locks and semaphores on shared-memory computers, and primitive
send and receive operations on distributed-memory computers. Our goal in defining
FORTRAN M is to make the advantages of high-level languages available to programmers
developing programs for parallel machines. In particular, we are concerned with ensuring
safety. This is achieved in two ways. First, we define language extensions that allow
deterministic execution to be guaranteed. This means that programmers can be confident
that their programs will produce the same output for all executions with a given input.
Second, we require that the user provide type information, which a compiler can use to
detect erroneous programs at compile time.

FORTRAN M’s extensions to FORTRAN 77 (summarized in Figure 7) can be described
in a few minutes and mastered in a few hours. The extensions have a FORTRAN 77 “look
and feel”. For instance, the CHANNEL, SEND, RECEIVE, and ENDCHANNEL statements are
similar to OPEN, WRITE, READ, and ENDFILE. Likewise, the process placement statements
are modeled on FORTRAN 77 array manipulation constructs. The extensions allow pro-
grammers to develop parallel programs by plugging together modules that encapsulate
both code and data. This object-oriented approach to program design supports the imple-
mentation of reusable parallel libraries and multidisciplinary applications. Furthermore,
because the extensions can be implemented efficiently on a wide variety of parallel com-

20

Process: PROCESS
PROCESS COMMON

PROCESSCALL

Interface: INPORT
OUTPORT

Control: PROCESSES/ENDPROCESSES
PROCESSDO

Communication: = CHANNEL
MERGER
SEND
RECEIVE
ENDCHANNEL
MOVEPORT
PROBE

Performance: PROCESSORS
LOCATION
SUBMACHINE
TEMPLATE
ALIGN
DISTRIBUTE

Figure 7: FORTRAN M’s Extensions to FORTRAN 77

puters, application portability is achieved with little or no performance penalty. We have
demonstrated performance parity with message-passing libraries in a prototype compiler,
and are currently investigating compiler analyses and transformations with the goal of
realizing further performance improvements.

The definition of FORTRAN M opens several avenues for future research. The inte-
gration of data-parallel notations such as High Performance FORTRAN (HPY) with For-
TRAN M allows the implementation of heterogeneous applications, in which a FORTRAN M
program coordinates multiple data-parallel computations. Data-parallel subroutines can
be invoked in a specified processor array, with ports used for communication with FOR-
TRAN M computations. Also of interest are more general models of process interaction,
that nevertheless preserve determinism and modularity [12].

21

Acknowledgments

We are grateful to Robert Olson and Steven Tuecke for their splendid efforts developing the
prototype FORTRAN M compiler, to Andrew Lavery and John Thayer for preparing test
and benchmark programs, and to Ming Xu for performance results. Ken Kennedy, John
Mellor-Crummey, and others at Rice University provided valuable comments on earlier
versions of this material. This research was supported by the Applied Mathematical
Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38, and by the National Science Foundation’s Center for Research
in Parallel Computation, under Contract CCR-8809615.

References

[1] Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,
J., and Stevens, R., Portable Programs for Parallel Processors, Holt, Rinehart, and
Winston, 1987. '

[2] Carriero, N., and Gelernter, D., How to Write Parallel Programs, MIT Press, 1990.

[3] Chandy, K. M., and Foster, I., A deterministic notation for cooperating processes,
Preprint MCS-P346-0193, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IIl., 1993.

[4] Chandy, K. M., and Kesselman, C., Compositional parallel programming in CC++,
Technical Report, Caltech, 1992.

[5] Chandy, K. M. and Taylor, S., An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

[6] Chapman, B., Mehrotra, P., and Zima, H., Vienna FORTRAN — A FORTRAN lan-
guage extension for distributed memory systems, Languages, Compilers, and Run-
time Environments for Distributed Memory Machines, Elsevier Press, 1992.

[7] Cox, B., and Novobilski, A., Object-Oriented Programming: An Evolutionary Ap-
proach, Addison-Wesley, 1991.

[8] Dijkstra, E.W., Cooperating sequential processes, Programming Languages, Aca-
demic Press, 1968.

[9] Dongarra, J., van de Geijn, R., and Walker, D., A look at scalable dense linear algebra
libraries, Proc. 1992 Scalable High Performance Computers Conf., IEEE Press, 992.

[10] Foster, I., Information hiding in parallel programs, Preprint MCS-P290-0292, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1992.

[11] Foster, I., Olson, R., and Tuecke, S., Productive parallel programming: The PCN
approach, Scientific Programming, 1(1), 51-66, 1992.

22

[12] Foster, I., Olson, R., and Tuecke, S., Programming in FORTRAN M, Technical Report
ANL-93/26, Argonne National Laboratory, 1993.

[13] Foster, I. and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-
Hall, 1989.

[14] Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu,
M., FORTRAN D language specification, Technical Report TR90-141, Department of
Computer Science, Rice University, Houston, Texas, 1990.

[15] Hoare, C., Communicating Sequential Processes, CACM, 21(8), 666-677, 1978.
[16] Inmos, Ltd, occam Programming Manual, Prentice Hall, 1984.

[17] Karp, A., and Babb, R., A comparison of 12 parallel FORTRAN dialects, IEEE Soft-
ware, 5(5), 52-67, 1988.

(18] Koelbel, C., Mehrotra, P., and Van Rosendale, J., Supporting shared data structures
on distributed memory machines, Proc. 2nd ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, ACM, 1990.

[19] Lucco, S., and Sharp, O., Parallel programming with coordination structures, Proc.
18th ACM POPL, ACM, 1991.

[20] Martin, A., The torus: An exercise in constructing a processing surface, Proc. Conf.
on VLSI, Caltech, 52-57, 1979.

[21] Metcalf, M., and Reid, J., FORTRAN 90 Ezplained, Oxford Science Publications,
1990.

[22] Pancake, C., and Bergmark, D., Do parallel languages respond to the needs of scien-
tific programmers?, Computer 23(12), 13-23, 1990.

[23] Parasoft Corporation, Express user manual, 1989.

[24] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM,
15(12), 1053-1058, 1972.

[25] Programming Language FORTRAN, American National Standard X3.9-1978, Ameri-
can National Standards Institute, 1978.

[26] Saltz, J., Berryman, H., and Wu, J., Multiprocessors and run-time compilation,
ICASE Report 90-59, Institute for Computer Applications in Science and Engineer-
ing, Hampton, Virginia, 1990.

[27] Seitz, C. L., Multicomputers, Developments in Concurrency and Communication,

Addison-Wesley, 1991.

[28] Skjellum, A., and Leung, A., Zipcode: A portable multicomputer communication
library atop the Reactive Kernel, Proc. 5th Distributed Memory Computer Conf.,
IEEE Press, 767-776, 1990.

23

[29] Sunderam, V., PVM: A framework for parallel distributed computing, Concurrency:
Practice and Ezperience, 2, 315-339, 1990.

[30] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, Englewood Cliffs,
N.J., 1989.

[31] Thinking Machines Corporation, CM FORTRAN Reference Manual, Cambridge,
Mass., 1989.

[32] von Eicken, T., Culler, D., Goldstein, S., and Schauser, K., Active messages: A
mechanism for integrating communication and computation, Proc. 19th Intl Symp.
Computer Architecture, ACM, 1992.

[33] Young, M., et al., The duality of memory and communication in Mach, Proc. 11th
Symp. on Operating System Principles, ACM, 63-76, 1987.

24

Mathematics and Computer Science Division
Building 221

Argonne National Laboratory

Argonne, Illinois 60439-4844

Recent Preprints:
James V. Burke and Jorge J. Moré, “Exposing Constraints,” MCS-P308-0592.

J. N. Hagstrom, R. Hagstrom, R. Overbeek, M. Price, and L. Schrage, “Maximum Likelihood Genetic Sequence
Reconstruction from Oligo Content,” MCS-P309-0592.

Richard S. Varga and Armos J. Carpenter, “Some Numerical Results on Best Uniform Rational Approximation of x* on
[0,1],” MCS-P310-0592.

George Corliss, Tom Robey, Christian Bischof, Andreas Griewank, and Steve Wright, *“Automatic Differentiation for
PDEs -- Unsaturated Flow Case Study,” MCS-P311-0692.

Christian H. Bischof and Xiaobai Sun, “A Framework for Symmetric Band Reduction and Tridiagonalization,” MCS-
P312-0692.

Mark T. Jones and Paul E. Plassmann, *“Solution of Large, Sparse Systems of Linear Equations in Massively Parallel
Applications,” MCS-P313-0692.

Mark T. Jones and Paul E. Plassmann, “The Efficient Parallel Iterative Solution of Large Sparse Linear Systems,”
MCS-P314-0692.

Larry Wos, *Automated Reasoning Answers Open Questions,” MCS-P315-0792.

R. D. C. Monteior and S. J. Wright, “A Globally and Superlinearly Convergent Potential Reduction Interior Point
Method for Convex Programming,” MCS-P316-0792.

Christian Bischof and Andreas Griewank, “ADIFOR: A FORTRAN System for Portable Automatic Differentiation,”
MCS-P317-0792.

Kevin W. Hopkins, “An Informal Introduction to Program Transformation and Parallel Processors,” MCS-P318-0892.
Kevin W. Hopkins, “An Informal Introduction to Program Transformation,” MCS-P319-0892.
Kevin W. Hopkins, *An Informal Introduction to Parallel Processors,” MCS-P320-0892.

gisan Kam Kwong, “Domain Decomposition: A Blowup Problem and the Ginzburg-Landau Equations,” MCS-P321-
92.

William D. Gropp and David E. Keyes, “Domain Decomposition as a Mechanism for Using Asymptotic Methods, "
MCS-P322-0892.

R. M. M. Mattheij and S. J. Wright, “Parallel Stable Compactification for ODE with Parameters and Multipoint condi-
tions,” MCS-P323-0992.

Ian Foster and John Michalakes, “Massively Parallel Implementation of the Penn State/NCAR Mesoscale Model,”
MCS-P324-0992.

R. Hagstrom, G. S. Michaels, R. Overbeek, M. Price, and R. Taylor, *‘Overview of the Integrated Genomic Data Sys-
tem (IGD),"” MCS-P325-0992.

R. G. Carter, “Fast Numerical Determination of Symmetric Sparsity Patterns,” MCS-P326-0992.

A. Cherry, M. W. Henderson, W. K. Nickless, R. Olson, and G. Rackow, *Pass or Fail: A New Test for Password
Legitimacy, MCS-P328-1092.

