A Test Suite Approach for
Fortran 90D Compilers on MIMD
Distributed Memory Parallel Computers

Min-You Wu
Geoffrey C. Fox

CRPC-TR92254
1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

To appear in Proceedings of Scalable High Performance

Computing Conference '92.

A Test Suite Approach for Fortran90D Compilers
on MIMD Distributed Memory Parallel Computers

Min-You Wu

Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260

Abstract

This paper describes a test suite approach for a For-
tran90D compiler, a source-to-source parallel compiler
for distributed memory systems. Different from For-
tran77 parallelizing compilers, a Fortran90D compiler
does not parallelize sequential constructs. Only par-
allelism ezpressed by Fortran90D parallel constructs
is ezploited. We discuss compiler directives and the
methodology of parallelizing Fortran programs. An in-
troductory ezample of Gaussian elimination is used,
among other programs in our test suite, to ezplain the
compilation techniques.

1 Introduction

Current commercial parallel supercomputers are
clearly the next generation of high performance ma-
chines. Although parallel computers have been com-
mercially available for some time, their use has been
mostly limited to academic and research institutions.
This is mainly due to the lack of software tools to
convert old sequential programs and to develop new
parallel programs.

Fortran has been used as the language for develop-
ing most of the industrial (and practical) software in
the past few decades. There has been significant re-
search in developing parallelizing compilers. Most no-
table examples include Parafrase at the University of
Illinois [1] and PFC at Rice university [2]. In this ap-
proach, the compiler takes a sequential Fortran77 pro-
gram as input, applies a set of transformation rules,
and produces a parallelized code for the target ma-
chine. However, it is not clear if this type of automatic
parallelization will work in general, especially for large
codes.

A sequential language, such as Fortran77, hides the
parallelism of a problem in sequential loops and other

Geoffrey C. Fox

Syracuse Center for Computational Science
Syracuse University
Syracuse, NY 13244-4100

sequential constructs. A program is written without
any parallel constructs provided, even if the user is
willing to express parallelism explicitly. Compiling a
sequential program into a parallel program is not a
natural approach. An alternative approach is to use
a programming language that can naturally represent
an application without losing the application’s orig-
inal parallelism. Fortran90 (with some extensions)
is such a language. The extensions may include the
forall statement and compiler directives for data par-
titioning, such as decomposition, alignment, and dis-
tribution. Fortran90 with these extensions is what we
called “Fortran90D”, a Fortran90 version of the For-
tranD language [3]. A Fortran90D parallel compiler
exploits only the parallelism expressed in these paral-
lel constructs. We do not attempt to parallelize other
constructs, such as do loops and while loops, since they
are naturally sequential. Developing a compiler under
this assumption becomes much easier. Also users can
reliably understand what parallelism will be exploited.

Different approaches to parallelizing Fortran pro-
grams are shown in Figure 1. First, the user who wants
to write new programs can use Fortran90 with For-
tranD extensions. A parallel compiler then translates
the Fortran90D program into Fortran plus Message-
Passing (Fortran+MP) code. Secondly, the old For-
tran77 codes can be rewritten into Fortran90D with
the help of a migration tool. The migration step
from Fortran77 to Fortran90 may be important for
migrating existing codes to this portable standard.
Note that Fortran+MP has been shown to work for
a large set of applications on MIMD machines, but is
not fully portable. Finally, parallelizing compilers can
also convert some Fortran77 programs directly into
Fortran+MP codes.

Tremendous effort in the last decade has been de-
voted to the goal of running existing Fortran programs
on new parallel machines. Restructuring compilers for

Tortran77

ortran77D

Fortran90 ways: data partitioning or computation partilioning.

The former partitions data, and consequently, assigns
related computations to PEs. The latter partitions

User computations and allocates the corresponding data to

Migration

Fortran90
Compiler

Fortran77
Compiler

Fortran+MP

Figure 1: Approaches to parallelizing Fortran pro-
grams.

Fortran77 programs have been researched extensively
for shared memory systems [4]. The compilation tech-
nique of Fortran77 for distributed memory systems has
been addressed by Callahan and Kennedy [5]. Cur-
rently, a Fortran77D compiler is being developed at
Rice [6]. Hatcher and Quinn provide a working ver-
sion of a C* compiler. This work converts C* — an
extension of C that incorporates features of a data par-
allel SIMD programming model — into C plus message
passing for MIMD distributed memory parallel com-
puters [7]. A Fortran90D compiler can share many
techniques used in the C* compiler. The ADAPT sys-
tem compiles Fortran90 for execution on MIMD dis-
tributed memory architectures [8]. It does not com-

pile the forall statement but does translate sequential

do loops into parallel loops. SUPERB is an interac-
tive source-to-source parallelizer. It compiles a For-
tran77 program into a semantically equivalent parallel
SUPRENUM Fortran program for the SUPRENUM
machine [9]. Koelbel extended the features of BLAZE
into the Kali language and compiled it for nonshared
memory machines [10].

2 Data Partitioning
A problem to be solved on a parallel computer

must be partitioned into many parallel actions. Par-
titioning for data parallelism can be performed in two

PEs [11]. Although computation partitioning could
be better suited for problems with irregular struc-

—> Fortran90Dtures, it may require more complex analysis and result

in larger communication overhead. The data parti-
tioning is suitable for many scientific computations in
which the computation density associated with data
is evenly distributed.

Data partitioning can be done in two steps which
separate machine independent problem parallelism
from machine dependent details. The first step is
to determine the best alignment among different ar-
rays. To reduce unnecessary data movement, dis-
tributed arrays should be aligned with each other in
a fashion that is usually determined by the underly-
ing computation structure. The alignment of arrays
depends on the program itself and is usually machine-
independent. The second step is to determine how
arrays should be distributed to the underlying com-
puter structures and is therefore machine dependent.
The objective of array distribution is to balance the
computation load for each PE and to minimize the
communication between PEs. Array distribution is
largely dependent on machine structures, such as the
number of PEs, communication mechanisms, and in-
terconnection topologies.

We provide users with some annotation facilities for
data partitioning. The annotation takes the form of
compiler directives.

Decomposition directives

A decomposition directive is used to declare a prob-
lem domain. It declares the name, dimensionality, and
size of a decomposition. The decomposition directive
defines arrays as data parallel and is machine indepen-
dent. Examples of decomposition are shown below:

DECOMPOSITION A(N)
DECOMPOSITION B(N,N)
where A is declared as an one-dimensional decompo-
sition of size N, and B is a two-dimensional N by N
decomposition.
Alignment directives

An alignment directive aligns one array to another.
Arrays aligned with each other will share a common
“data parallelism”. The alignment directive specifies
which elements of two arrays are to be allocated to
the same place by aligning each axis of a source ar-
ray with a given target array. The following examples
of the alignment directive specifies different alignment
patterns:

1. Alignment offsets:
ALIGN A(1,J) with X(I-1,J+1)
2. Alignment strides:
ALIGN B(I,J) with X(I*2,J2)
3. Embedding;:
ALIGN C(I) with X(1,2)
4. Permutation:
ALIGN D(1,J) with X(J,I)
Alignment is usually machine independent. A com-
plete specification of the alignment directive is de-
scribed in [3].
Distribution directives

A distribution directive provides some control over
the distribution of an array. Specifications are block
distribution, scattered distribution, block-scattered
distribution, or no distribution. The relative weight of
distribution along each axis indicates the distribution
ratio among axes. The distribution ratio is defined as
the ratio of the number of partitions along different
axes. Examples of distribution are shown below:

DISTRIBUTION A(BLOCK,:)
DISTRIBUTION B(CYCLIC,BLOCK)

These compiler directives are inserted by the user to
specify a partitioning pattern. Moreover, they could
be generated by an automatic partitioner in future ver-
sion of the compiler. According to distribution direc-
tives, data are either distributed or replicated. Data
that are partitioned by directives will be distributed,
and others will be replicated. A copy of replicated
data resides in each PE. Some comments could be
used to allow the user to print out the actual data
distribution at runtime.

3 Compiler System Diagram

The system diagram of the Fortran90D compiler is
shown in Figure 2. Given a syntactically correct For-
tran90D program, the first step of compilation is to
generate a parse tree. The partitioning module divides
the program into tasks and allocates the tasks to pro-
cessor elements (PEs) according to compiler directives
— decomposition directives, alignment directives, and
distribution directives. There are three ways to gen-
erate the directives: 1) users can insert them, 2) pro-
gramming tools can help users to insert them, or 3)
automatic compilers can generate them. In the first
approach, users write programs with explicit distri-
bution and alignment directives. A programming tool
can generate useful analysis to help users decide parti-
tioning styles, and measure performance to help users
improve program partitioning interactively.

Fortran90D
Code

Lexer & Parser

y

Partitioning
Dependency Analysis

y

Sequentialization
and Optimization

y

Communication Insertion
and Optimization

v

Code Generation

Fortran+MP
Code

Figure 2: Diagram of the compiler.

Dependency analysis is carried out to obtain de-
pendency information for use in sequentialization and
insertion of communication primitives. Standard tech-
niques of data dependency analysis for Fortran pro-
grams can be applied here [12]. Fortunately, the de-
pendency analysis technique for Fortran90D is much
simpler than the one for Fortran77 since we do not
parallelize sequential constructs.

After partitioning, a program becomes a set of
tasks. Each task must be sequentialized since it will be
executed on a single processor. This is performed by
the sequentialization module. Array operations and
forall statements in the original program will be trans-
ferred into loops or nested loops. This module also
performs computation optimization such as invariant
expression floating and reordering.

The dependencies between tasks introduce inter-
processor communication. Whenever the data re-
quired for executing a statement are not in the lo-
cal memory, communication primitives are to be in-
serted. Optimization is applied to minimize syn-
chronization, eliminate unnecessary or redundant data
transfers, and to combine communication wherever
possible. One important optimization is overlapping
computation and communication to overcome commu-
nication latency. Optimization may be performed at
compile time if the problem is statically defined, and
all required information is available at that time. Oth-
erwise, based on partial information, we do compile
time analysis to generate runtime tests. At runtime,
based on the test results, communication can be opti-
mized. Library routines are used to translate certain
parallel constructs, such as reduction, broadcasting,
etc. Finally, the code generator produces the For-
tran+MP code for target message-passing systems.

4 An Introductory Example: Gaussian
Elimination

We use Gaussian elimination as an example for
translating a Fortran90D program into a Fortran+MP
program. The Fortran90D code is shown in Figure 3,
and the hand-compiled Fortran+MP code is shown in
Figure 4. We hand-compiled the code by applying
rules stated in the previous sections. Note that the
size of the Fortran90D code is much smaller than that
of the Fortran+MP code. The former has 20 lines,
and the latter has 66 lines.

Arrays a and row are partitioned by compiler direc-
tives. The second dimension of a is block-partitioned,
while the first dimension is not partitioned. Array row

integer, array(0:§-1) :: indx
integer, array(1) :: iTmp
real, array(0:¥-1,0:NH-1) :: a
real, array(0:¥-1) :: fac
real, array(O0:NE-1) :: row
real :: maxNum

Cc$ DECOMPOSITION a(XN,NN)
Cc$ ALIGE row(J) WITH a(0,))
C$ DISTRIBUTE a(:,BLOCK)

indx = -1
do k =0, F-1
iTmp = MAXLOC(ABS(a(:,k)), MASK=indx .EQ. -1)
indxRow = iTmp(1)
maxBum = a(indxRow,k)
indx(indxRow) = k
fac = a(:,k) / maxNum

row = a(indxRow,:)
forall(i=0:N-1, j=k:NE-1, indx(i) .EQ. -1)
3 a(i,j) = a(i,j) - fac(i) = row(j)
end do

Figure 3: Fortran90D code for Gaussian elimination.

is block-partitioned too. Each partition may include
many array elements. Since they execute on a single
PE, the parallel constructs must be sequentialized. An
array operation in the Fortran90D program is sequen-
tialized into a do loop. Loop boundaries are defined
by the array declaration. When a replicated array is
computed from replicated data, the operation is per-
formed on each PE. For example, the array operation

indx = -1
is translated into

do i =0, N-1
indx(i) = -1
end do

This is executed on each PE. If the replicated array
is computed from distributed data, the operation is
performed on one PE, and the result may be broadcast
to other PEs later. A test is inserted to determine
which PE will execute the statement. For example,
the statement

tmp = ABS(a(:,k))
is translated into

if (k/B .EQ. thisPE) then
do i =0, N-1

aaoaaoaaaa

thisPE = mynode()
numNode = numnodes()
B = NN / numNode
minCol = thisPE * B
logical mask(0:N-1)
real tmp(0:N-1)

integer, array(0:¥-1) :: indx
integer, array(1) :: iTmp
real, array(0:¥-1,0:NK-1) :: a
real, array(0:H-1) :: fac
real, array(0:NE-1) :: row
real :: maxNum

C$ DECOMPOSITION a(N,NN)
C$ ALIGE row(J) VWITH a(0,J)
C$ DISTRIBUTE a(:,BLOCK) °

Qo

integer indx(0:N-1)
real aLoc(0:§-1,0:B-1)
real fac(0:¥-1)

real rowLoc(0:B-1)
real maxNum

indx = -1

do i =0, -1
indx(i) = -1

end do

do k = 0, N-1
iTmp = MAXLOC(ABS(a(:,k)), MASK=indx .EQ. -1)
indxRow = iTmp(1)
do k = 0, ¥-1
if (k/B .EQ. thisPE) then
do i =0, N-1
mask(i) = indx(i) .EQ. -1
end do
do i =0, F-1
tmp(i) = ABS(aLoc(i,k-minCol))
end do
indxRow = MaxLoc(tmp, N, mask)
end if

maxNum = a(indxRow,k)
if (k/B .EQ. thisPE)
maxNum=aLoc (indxRow,k-minCol)

indx(indxRow) = k
if (k/B .EQ. thisPE) then
call csend(gtype+2+k+1,indxRow,intSize,
allNode,npid)
else
call crecv(gtype+2¢k+1,indxRow,intSize)
endif
indx(indxRow) = k

fac = a(:,k) / maxNum
if (k/B .EQ. thisPE) then
do i =0, E-1
fac(i) = aloc(i,k-minCol) / maxKum
end do
end if

Figure 4: Hand-compiled Fortran77+MP code for
Gaussian elimination.

Qa

row = a(indxRow,:)
do j = 0, B-1

rowLoc(j) = aLoc(indxRow, j)
end do

forall(i=0:¥-1, j=k:NN-1, indx(i) .EQ. -1)
3 a(i,j) = a(di,j) - fac(i) * row(j)
end do
if (k/B .EQ. thisPE) then
call csend(gtype+2sk,fac,realSizesl,

all¥ode,npid)
else '
call crecv(gtype+2¢k,fac,realSizesN)
endif

lbound = MAX(O, k-minCol)
doi=o0, E-1
do j = 1lbound, B-1
if (indx(i) .EQ. -1)
aLoc(i,j) = aLoc(i,j)-fac(i)*rowloc(j)
end do
end do
end do

integer function MaxLoc(x,n,mask)
integer n

real x(0:n-1)

logical mask(0:n-1)

real t

t = -MAXINT
do i =0, n-1
if ((mask(i)) .AND. (t .LT. x(i))) then
t = x(i)
MaxLoc = i
endif
end do
return
end

Figure 4. Hand-compiled Fortran77+MP code for

Gaussian elimination (cont.)

tmp(i) = ABS(aLoc(i,k-minCol))

end do

end

it

where index k has been translated into k —minCol by
the local-to-global index conversion.

In

the case of a distributed array, the operations

are distributed to PEs. For example, the statement

row

= a(indxRow,:)

is translated into

do j = 0, B-1
rowLoc(j) = aLoc(indxRow,j)

end

do

The following statement is to be duplicated:
indx(indxRow) = k

However, the value of indzRow is not available at every
PE. Therefore, a pair of communication calls, csend
and crecv, are inserted to broadcast indzRow to all
the PEs as shown:

it (kx/B .EQ. thisPE) then
call csend(gtype+2+*k+1,indxRow,intSize,
& allNode,npid)
else
call crecv(gtype+2+*k+1,indxRow,intSize)
endif
indx(indxRow) = k

The forall statement

forall(i=0:N-1, j=k:NN-1, indx(i).EQ.-1)
& a(i,j) = a(di,j) - fac(i) * row(j)

is to be translated into a nested loop. A pair of com-
munication calls are inserted before the loop to broac-
cast fac as shown:

if (k/B .EQ. thisPE) then
call csend(gtype+2*k,fac,realSize*N,
& allNode,npid)
else
call crecv(gtype+2*k,fac,realSize*N)
endif
lbound = MAX(O, k-minCol)
doi=0, N-1
do j = lbound, B-1
if (indx(i) .EQ. -1) then
aLoc(i,j)=aLloc(i,j)-fac(i)*rowLoc(j)
endif
end do
end do

where lbound is used to specify the active area, and
the mask is translated into an if statement.

The code in Figure 4 has been translated directly
from Fortran90D. We can optimize this code for bet-
ter performance. The optimized code is shown in Fig-
ure 5. We have performed three kinds of optimiza-
tions:

1. Invariant expression floating

The expressions that were executed many times
have been floated. For example, we have floated
kLoc = k — minCol. Also, an if statement has been
pulled out of the inner loop.

2. Loop fusion

We have put several loops and if statements to-

gether to reduce overhead.

I O 1l

thisPE = mynode()
numBode = numnodes()
B = NN / numNode
minCol = thisPE *= B

logical mask(0:¥-1)
real tmp(0:¥-1)

integer, array(0:¥-1) :: indx
integer, array(1) :: iTmp
real, array(0:¥-1,0:NN-1) :: a
real, array(0:N-1) :: fac
real, array(0:NE-1) :: row
real :: maxNum

aaaaaaq

C$ DECOMPOSITION a(N,NN)

C$ ALIGN row(J) VITH a(0,))

Cc$ DISTRIBUTE a(:,BLOCK)
integer indx(0:¥-1)
real aLoc(0:¥-1,0:B-1)
real fac(0:N)
real rowLoc(0:B-1)
real maxNum

[indx = -1
do i =0, ¥-1
indx(i) = -1
end do

do k = 0, N-1
iTmp = MAXLOC(ABS(a(:,k)), MASK=indx .EQ. -1)
indxRow = iTmp(1)
do k =0, ¥-1
kLoc = k - minCol
if (x/B .EQ. thisPE) then
doi=o0, F-1
mask(i) = indx(i) .EQ. -1
tmp(i) = ABS(aLoc(i,kLoc))
end do
indxRow = MaxLoc(tmp, ¥, mask)

aaa

. C maxNum = a(indxRow,k)

maxNum = aLoc(indxRow,kLoc)

[fac = a(:,k) / maxNum
do i =0, §-1
fac(i) = aLloc(i,kLoc) / maxNum
end do

c indx(indxRow) = k
fac(¥) = REAL(indxRow)
call csend(gtype+k,fac,realSize*(N+1),
z allNode,npid)

else
call crecv(gtype+k,fac,realSizesN)
indxRow = INT(fac(N))

endif

indx(indxRow) = k

Figure 5: Optimized Fortran77+MP code for Gaus-
sian elimination.

c row = a(indxRow,:)
do j = 0, B-1
rowLoc(j) = aLoc(indxRow, j)

end do
(] forall(i=0:N-1, j=k:NN-1, indx(i) .EQ. -1)
c L a(i,j) = a(i,j) - fac(i) = row(j)
Cc end do

lbound = MAX(O, kLoc)
do i =0, F-1
if (indx(i) .EQ. =-1) then
do j = lbound, B-1
aLoc(i,j)=aLloc(i,j)-fac(i)*rowLoc(j)
end do
end if
end do
end do

integer function MaxLoc(x,n,mask)
integer n
real x(0:n-1)
logical mask(0O:n-1)
real t
t = -MAXINT
do i =0, n-1
if ((mask(i)) .AND. (¢t .LT. x(i))) then
t = x(i)
MaxLoc = i
endif
end do
return
end

Figure 5. Optimized Fortran77+MP code for
Gaussian elimination (cont.)

3. Reordering

We have reordered statements without changing the
results of the program. More loop and if statement
fusions can be performed with reordering.

5 Experimental Results

We are building a test suite including a set of test
programs. For each of the programs, we have the fol-
lowing versions:

o original Fortran77 code
CMFortran code
Fortran90D code
hand-written Fortran77+MP code
hand-written iPSC Fortran code
hand-compiled Fortran77+MP code from For-
tran90D code
e hand-compiled iPSC Fortran code from For-

tran90D code

e O o o o

The Fortran77+MP codes were written in EXPRESS.

Here, we will describe three small test programs in
our test suite: Gaussian elimination, FFT, and the
N-body problem. Performance of iPSC Fortran codes
(on the iPSC/2 hypercube) are shown in Tables 1, 2,
and 3, respectively. The “Hand” programs are hand-
written codes and the “Comp” programs are hand-
compiled codes.

Table 1: Performance for Gaussian Elimination
255*256 (time in sec.)

Number of PEs
1] 2] 4] 8] 16
[Handl || 85.4 | 58.1 | 31.1 | 16.0 | 8.42
Hand2 || 73.4 | 50.1 | 26.9 | 13.8 | 7.53
Compl || 80.0 | 50.2 | 26.6 | 13.8 | 7.72

For the Gaussian elimination with partial pivot-
ing shown in Table 1, the program has been block-
partitioned in columns. Essentially, the Fortran90D
code produced a code with performance equal to that
of direct Fortran+MP code. Moreover, we found
that “Compl” had better performance than “Handl.”
By comparing the two codes, we discovered that the
difference was the index calculation. We optimized
“Hand1” into “Hand2,” changing the following code
segment:

from
do i =0, K-1
do j = start, numCol-1
a(i,j) = a(di,j) - fac(i) * y(maxRow,j)
end do
end do
to:
do j = 0, B-1
row(j) = y(maxRow,j)
end do
do i =0, N-1
do j = start, numCol-1
a(i,j) = a(i,j) - fac(i) * row(j)
end do
end do

This reduced the duplicated index calculation in the
inner loop. Indeed, the “automatic” Fortran90D code
revealed a possible improvement that we could apply
to our hand-written code.

In Table 2, we used the FFT algorithm in [13]
with modification. We applied vector communica-
tion and reduced repeated computation. There was

Table 2: Performance for FFT 16384 Points (time in
sec.)

Number of PEs
1] 2] 4[8 | 16
Handl || 13.0 | 6.67 | 3.42 | 1.75 | 0.91
Compl || 18.8] 10.1 [5.36 | 2.84 | 1.50

a 50% degradation in performance for the “Compl”
code, since it tested for possible communication pat-
terns and involved larger overhead. For example, to
test if there was communication for a shift operation
in FFT, a compiler must generate 20-lines of code to
test if there were any data in the shift range needed
to be transferred to other PEs. On the other hand,
the user knew they were not necessary. In the hand-
written code, a line of code was used to test if the loop
variable k was less than a given constant for determi-
nation of no communication.

Table 3: Performance for N-body 1024 Particles (time
in sec.)

Number of PEs
1] 2 | 4 | 8| 16
Handl 71.7 1 359 | 17.9 | 8.98 | 4.83
Hand2 66.5 | 33.3| 16.7 | 8.38 | 4.26
Compl || 139.6 | 69.1 | 35.5 | 18.1 | 9.40
Comp?2 66.6 | 33.5| 16.8 | 8.45 | 4.32

Table 3 is for the N-body problem using the al-
gorithm in [13]. Note that the example is the sim-
ple O(N?) algorithm and not the more challenging
O(N(log N)) approach [14]. “Compl” was not opti-
mized, and communication was inserted in each itera-
tion. “Comp?2” grouped possible communications to-
gether. It reduced the number of communications and
increased granularity. The performance of “Comp2”
was better than “Handl,” since “Handl” exchanged
the order of array indices to avoid copying for com-
munication. However, index calculation in this order
consumed even more time than copying. Therefore, in
“Hand2,” we did not exchange the index order.

Our initial experiments are sufficiently encourag-
ing. We believe that a language like Fortran90D will
become an efficient vehicle for applications with regu-
lar structures. We also hope that it can be extended
with higher level data structures to accommodate the
more complex problem architectures.

6 Conclusion

Fortran90D is a language that can naturally repre-
sent the parallelism of many applications, especially
those with static and regular array structures. This
language can be extended to represent applications
with irregular and dynamic structures.

Each stage of the Fortran90D project will be moti-
vated and tested using carefully selected applications.
The test suite is developed for testing our Fortran90D
compiler. We will add more applications, including
a number of sparse matrix problems, such as linear
systems, linear programming, and irregular finite ele-
ments.

Acknowledgments

The authors thank Wei Shu for her contribution
in building the test suite. The generous support of
the Center for Research on Parallel Computation is
gratefully acknowledged. This work was supported by
the National Science Foundation under Cooperative

'Agreement No. CCR-8809165 — the Government has

certain rights in this material.

References

(1] C. D. Polychronopoulos et al. Parafrase-2 : An
environment for parallelizing, partitioning, syn-
chronizing, and scheduling programs on multipro-
cessors. In Proc. Int’l Conf. on Parallel Process-
ing, pages 11.39-48, August 1989.

[2] J.R. Allen and K. Kennedy. PFC: A program to
convert Fortran to parallel form. In Supercom-
puters: Design and Applications, pages 186-205.
IEEE Computer Society Press, 1984.

[3] G.C. Fox, S. Hiranadani, K. Kennedy, C. Koel-
bel, U. Kremer, C.W. Tseng, and M.Y. Wu. For-
tran D language specifications. Technical Re-
port COMP TR90-141, Rice University, Decem-
ber 1990.

[4] D. A. Padua, D. J. Kuck, and D. L. Lawrie.
High speed multiprocessor and compilation tech-
niques. IEEE Trans. Computers, C-29(9):763-
776, September 1980.

[5] D. Callahan and K. Kennedy. Compiling pro-
grams for distributed memory multiprocessors.
The Journal of Supercomputing, 2(2):171-207,
1988.

[6] S. Hiranandani, K. Kennedy, and C.W. Tseng.
Compiler support for machine-independent par-
allel programming in Fortran D. In J. Saltz
and P. Mehrotra, editors, Compilers and Run-
time Software for Scalable Multiprocessors. Else-
vier, Amsterdam, The Netherlands, 1991.

[7] M.J. Quinn and P.J. Hatcher. Data-parallel pro-
gramming on multicomputers. IEEE Software,
September 1990.

[8] J.H. Merlin. ADAPTing Fortran 90 array
programs for distributed memory architectures.
In Proc. of the Ist Int’l Conf. of the ACPC,
Saltzberg, Austria, October 1991.

[9] H. P. Zima, H-J. Bast, and M. Gerndt. SUPERB:
A tool for semi-automatic MIMD/SIMD paral-
lelization. Parallel Computing, 6(1):1-18, Jan-
uary 1988.

[10] C. Koelbel. Compiling programs for nonshared
memory machines. Technical Report CSD-TR-
1037, Purdue University, November 1990.

[11] M. Y. Wu and D. D. Gajski. Computer-
aided programming for message-passing systems:
Problems and a solution. IEEE Proceedings,
77(12):1983-1991, December 1989.

[12] U. Banerjee. An introduction to a formal theory
of dependence analysis. The Journal of Super-
computing, 2(2), 1988.

[13] G. C. Fox, M. A. Johnson, G. A. Lyzenga, 5. W.
Otto, J. K. Salmon, and D. W. Walker. Solving
Problems on Concurrent Processors, volume I.
Prentice-Hall, 1988.

[14] J. Barnes and P. Hut. A hierarchical O(NlogN)
force calculation algorithm. Nature, 324:446,
1986.

