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Abstract

Under mild assumptions, the classical Farkas lemma approach to
Lagrange multiplier theory is extended to an infinite programming for-
niulation. The main result generalizes the usual first-order necessity
conditions to address problems in which the domain of the objective
function is Hilbert space and the number of constraints is arbitrary.
The result is used to obtain necessify conditions for a well-known prob-

lem from the statistical literature on probability density estimation.

Key words: Lagrange multiplier theory, Farkas lemma, infinite program-

ming, mathematical programming.



1 Introduction

Kuhn and Tucker [1] developed a Lagrange multiplier theory for mathemat-
ical programming problems in which the domain of the objective function
. is Euclidean space and the constraint functionals are indexed by a finite
set. The standard development of the Kuhn-Tucker theory, explicated and
popularized by Fiacco and McCormick ([4], Chapter 2), invokes the classi-
cal Farkas lemma to generate a vector (the Lagrange multipliers) that can
be viewed as a “weighting” of the finite set of constraints. For years we
have taught this material, and each time we cannot avoid pondering the ex-
tent to which this development of Lagrange multiplier theory depends on
the finite dimensionality of Euclidean space and the finiteness of the con-
straint set. Somewhat recently, our interest was enhanced when we learned
of an important infinite programming problem in the statistics literature for
which we could state a formal generalization of the Kuhn-Tucker conditions
with no known theoretical justification for doing so. In the present study of
Lagrange multiplier theory, we have not only succeeded in generalizing the
Farkas lemma approach, but have also acquired new insight into the essential

features of that approach.



The objective of this paper is to extend the classical Farkas lemma ap-
proach to mathematical programming problems in which the domain of the
objective function is Hilbert space and the constraint functionals are indexed
by an arbitrary set. Our approach carefully mimics the finite programming
development. It is based on a generalized Farkas lemma, and replaces the
Lagrange multiplier vector with a measure on the (possibly infinite) index
set. If this measure is absolutely continuous, then it can be represented as a
(density) function on the index set. Because our point of view may seem un-
natural to some readers otherwise familiar with Lagrange multiplier theory,
we briefly digress to motivate it.

Consider vectors zy,...,zx € R, scalar weights u,,...,ux € R*, and the

weighted sum

> iz,

i€l
where the index set I = {1,...,k}. By defining a measure y on the Borel

sets of R™ that concentrates on {z;,...,zx} and satisfies u({z:}) = u;, we

can write

Zu;z; = /Rn zu(dz) .

i€l

Thus, a set of weights can be viewed as a measure and a weighted sum can



be viewed as a (Lebesgue) integral with respect to that measure. When the
weights are nonnegative and sum to unity, s is a probability measure and
probabilists call the integral an expectation.

No§v consider the index map i — z;, which embeds I in R". The measure
p induces a measure u on the subsets of I by u({:}) = u({z;}). This allows

us to further write

> uiz = /Rn zpu(dz) = /;a:,-u(dz') ;

i€l
hence, our point of view that a set of weights is a measure on an index set.
It is this perspective that will lead to a manageable statement of generalized
first-order conditions.

The flavor of our generalization of Lagrange multiplier theory is not en-
tirely new. Semi-infinite programming is also concerned with problems in
which the constraint functionals are indexed by an infinite set. However, the
domain of the objective function is still assumed to be Euclidean space. A
multiplier theorem of precisely the sort that we seek has been published by
Goberna et al. [2]. Unfortunately, their result depends critically on the finite
dimensionality of Euclidean space.

It should be noted that a number of authors have published multiplier



theorems in very abstract settings. The standard formulation is that of
Guignard (3], who derived both necessity and sufficiency conditions for the

problem

maximize  ¥(z)
subjectto zrzeCCX

a(z)eBCY,

where X and Y are real Banach spaces and 9 : X — (—o0,+00) and a :
X =Y are Fréchet differentiable. Guignard’s multiplier is an element of the
topological dual space of Y, and her entire approach is markedly different
from ours.

The primary purpose of the present paper is perhaps pedagogical. That
is, we wish to demonstrate that by (i) interpreting the vector of Lagrange
multipliers as a measure on the index set of constraints and by (ii) utilizing
tools from functional analysis and probability theory, the standard finite-
dimensional approach to Kuhn-Tucker theory (Fiacco and McCormick [4])
can be successfully generalized to infinite programming in Hilbert space.
This exercise, however, is not entirely pedagogical, for we also believe that
there are important infinite programming problems to which the new theory
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can be profitably applied. Therefore, after in Section 2 deriving first-order
necessity conditions for general infinite programming problems, in Section 3
we will consider results that facilitate the use of these conditions. In Section
4, by v(ray of an example, we will also apply this theory to obtain necessity
conditions for a constrained optimiza.tion problem from the statistical liter-
ature on probability density estimation. However, we will defer to another

paper an investigation of the statistical consequences of these conditions.

2 Main Theorem

We begin with a real Hilbert space X with inner product (-,-). By the
general nonlinear programming problem — problem (NLP) for short — we

mean the constrained optimization problem
maximize  f(z)
subject to  gu(z) 20 Vael

hs(z)=0 VBeJ,

where f,ga,hg: X — (—o0,+00). We assume that the index sets I and J

have corresponding sigma fields I and J such that the pairs (I,I) and (J,J)



are measure spaces. Measures on these spaces will be denoted by ¢, u, A, etc.
At times, we will also endow I and J with topologies. Typically, I and J will
be subsets of Euclidean space. For each z € X, we define the index subset
Io(z) i= {a € I : ga(s) = 0}.

We assume that f,ga,hs € C'(X). For each z € X, the sets VAy(z) :=
{Vga(z) : @ € Iy(z)} and VB(z) := {Vhg(z) : B € J} are assumed to be
Borel measurable. We also assume that the index maps a — Vg.(z) and
B +— Vhg(z) are Borel bimeasurable functions. This will enable measures on
I and J to induce measures on X, and also conversely. Measures on X will
be denoted VF, VG, etc.

For technical reasons, we will sometimes further assume that the functions
go and hg are elements of a real Hilbert space I'. In that event, we will assume
that the sets Ao(z) := {go : @ € Ip(z)} and B := {hp : B € J} are Borel
measurable. We will also assume that the index maps a — g, and 8 — hg
are Borel measurable functions. This will enable measures on I and J to
induce measures on I'. Such measures will be denoted by F, G, etc.

In this section we will derive necessary conditions for a point z* € X
to be a local solution of problem (NLP). To do so, we generalize Fiacco’s
and McCormick’s [4] presentation of the Kuhn-Tucker theory for the finite-
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dimensional case. The key to this generalization is the concept of the ex-
pectation of a measure on a Hilbert space. Toward this end, in what follows
H will denote a real Hilbert space with inner product (-,:). Following

Parthésarathy [5] we have the following definition.

Definition 2.1 Let u be a measure on H. If the linear functional L(y) :=
[(y,z)pu(dz) is continuous, then the ezpectation of u, which we denote by

[ zp(dz), is defined to be the Riesz representer of L.

At this point it will be of value to introduce some basic notation. Let
M(K) denote the family of totally finite positive measures that concentrate
on the set K C H, and let M;(K) denote the family of probability mea-
sures that concentrate on the set K C H. We are interested in the sets of

expectations
C(K) = { [ontdz):ne M(K)}
and
Ci(K) = { [onidz):ne MI(K)} .
The set C,(K) is essentially the convex hull of K, and the set C(K) is

essentially the half-cone generated by Ci(K). It should be clear that C(K)

and C;(K) are convex. In the next section we will demonstrate that Cy(K) is
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also compact. The closedness of C(K) will be of fundamental importance in
our theory. In the next section we will construct a condition which guarantees
that C(K) is closed. However, for the moment we will assume that it is closed.

We now generalize a famous result. It is possible that our lemma can
be obtained as a special case of the very abstract Farkas lemma recently
given by Swartz [7]. However, after some thought we are convinced that
a demonstration of this fact would require considerably more effort and be
less illuminating than the elementary proof we give below, specific to Hilbert

space.

Lemma 2.1 (Generalized Farkas Lemma): Let H denote a real Hilbert space

with inner product (- ,-). Let zo € H. Assume:
Al: K C H is compact;

A2: C(K) is closed.

Then the following are equivalent:

(i) VyeH, (y,2)=20 Vz €K entails (y,z0) 20;

(i1) I pueM(K) suchthat zo= /zu(dz) .

Proof: Suppose that zo = [zu(dz). If (y,z) > 0V z € K, then it follows
from the definition of expectation and the positivity of p that (y,zo) =
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(y, [ zu(dz)) = [(y,z)p(dz) = 0. This proves that (ii) implies (i).

To demonstrate the converse, let Zo denote the projection of zo into C(K),
which we know to be closed and convex. Then Z, solves the optimization
problem min,ec(x) L]|z — ol|%; hence, (%0 — zo, = — &0) 2 0 ¥z € C(K).

Since C(K) is a half-cone, if & # 0, then (1 4+ r)&, € C(K) for r in a
neighborhood of zero. Then ¢(r) := ||&o + ro — Zo||? is minimized by r = 0;
hence, ¢'(0) = (20 — Zo,%0) = 0. Of course, if £o = 0, then this conclusion
is immediate. It follows that (£ — zo,z) > 0V z € C(K), and in particular
V z € K. Taking y = Z¢ — Zo, we infer from (i) that (o — zo,z) > 0. Then
0 < (&0 — %o, To) = —(%0 — To, Fo — To) = —||Z0 — zol|> £ 0, s0 2o = %o and
we have derived (ii). m]

Associated with problem (NLP) is the generalized Lagrangian gradient

£(z,u,3) = Vaf(2) - [ Vagala)u(da) + [ Veho()M(dB),

which is guaranteed to exist if the sets VA(z) and VB(z) are compact and
the measures u and ) are totally finite. Our goal is to derive necessary
conditions for solving problem (NLP) that involve this expression. We are

now in a position to characterize some of these conditions.
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Suppose that z is a feasible point of problem (NLP). Let

Zy(z) = {z€X:(2,Vga(z)) 20 V a € Iy(z),(z, Vhs(z))

=0V g€ (z,Vf(z)) =0},

Zy(z) = {z€X:(2,Vga(z)) 20 V a € Ig(z),(z, Vhg(z))
=0V Be€J(z,Vf(z)) <0}.

Proposition 2.1 Let K = VAq(z*) U VB(z*). Assume

Al: K is compact;
A2: C(K) is closed.

If z* is a feasible point of problem (NLP), then the following are equiva-

lent:
(1) Z2(z%) = ¢
(ii) There ezist totally finite measures u* on (I,I) and A" on (J,J) such
that
(a) €(z*,u*,X") =0,
(b) ga(z*) 20 V a €1,

(c) hp(z*) =0V B€J,
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(d) u*(I') =0 V I' measurable C I ~ Ipy(z*),

(e) u*(I') 20 V I'measureable C I.

We will refer to the conditions (a)-(e) in (ii) as the generalized first-order

. conditions.

Proof: Assume (ii) and suppose that z € Z;(z*). Then
0 > (z,Vf(z"))
= (2, [ Vgala")u(da) = [ Vho(")) " (dB))
[ Vga(z ) (da) - [ (= Vha(a)X(d8)

2 0,

which is a contradiction. This proves that (ii) implies (i).

Conversely, suppose that Z;(z*) = ¢. Then, if z satisfies
(2,Vga(z")) 20 V€& Iy(z")
(z,Vhg(z)) 20 VBeJ
(z,—Vhp(z*)) 20 VBEJ,

z must also satisfy (z, Vf(z*)) > 0. But this implication is (i) in Lemma

2.1, so we may conclude that

Vi) = [

VAo(z*)

/ "
yV Fo(dy) + /VB(I,)yVF (dy) _LB(z_) yVF"(dy)
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= /;0(3') Vga(.'t')to(da) +[]Vhﬁ(x')tl(dﬁ) _ /:,Vhﬁ(z‘)t"(dﬂ) .

We now obtain conditions (a)-(e) by setting u* = to on Ip(z*),u" = 0 on
I ~ Iy(z*), and A* = —(t' — ") on J. o

Our statement of first-order condition (a) is somewhat nontraditional.
Suppose that the g, and kg are elements of a real Hilbert space I. Assuming
that the indicated expectations exist (which, of course, they may not), define

the generalized Lagrangian function to be
z,u,3) = f(2) [ ga(@)u(de) + [ ho()A(B) .
To conform to common practice, we would write condition (a) as
VA(z*, u*, \*) =¥ (z",u",A%) = 0.

The following result establishes circumstances in which this representation is

legitimate.

Proposition 2.2 Fir z € X. Let u and ) denote totally finite measures
on (I,I) and (J,J). Assume that the ezpectations g := [; gou(da) and h:=
[7 haA(dB) both ezist. If the sets of functions A := {ga : @ € I} and B are

each uniformly Lipschitz continuous, then V€(z,u,)) = €'(z,u, A).
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Proof: We must establish that

V/;ga(z)u(da) =Vg(z) = /VA(z)yVF(dy) = /IVga(z)u(da), (1)

where VF is the measure on X induced by u. Clearly it suffices to prove

that

(. Va(=) = n. [, yVF@) ¥neX. ©)

We note that

(0,V3(z)) = F(=)n)
= lim~{g(z +en) — 3(2)}
= lim={ [loale + en) = ga(@lu(da)}

= lim [ 4.(z)u(do)

and that

(n, /v i VVE@) = /v A\ PV E(dY)
= [ 1, Vga(2))u(de)
= [ gu(@)n)u(de)
= [ imloa(e + en) - ga(@)lu(ded)
= [lime(au(da).
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Since the g,’s are uniformly Lipschitz continuous, i.e. 3 M < oo such that
g

|9a(y) — ga(2)| S M|ly—z|| V z,y € X and V a € I, we have
M
|$e(a)l < —llenll = Minl| < oo

Then, since u is totally finite, we can apply the Dominated Convergence
Theorem to interchange lim,_o and f;. This establishes (2); hence, (1). The

identical argument establishes that

V [ ha(@)\(d8) = [ Vha(e)A(@B),

and the result follows. ]
We now return to problem (NLP). As in the finite-dimensional case, in or-
der to derive a necessity condition from Proposition 2.1, we must supplement

the first-order conditions with a constraint qualification.

Definition 2.2 Suppose that z* is a feasible point of problem (NLP). We

say that z* satisfies the constraint qualification for problem (NLP) if:
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for each nonzero z € X satisfying (z,Vga(z*)) 20V a € Io(z*) and
(z,Vhg(z*)) =0V B €J,Ir >0 and a continuous arc C : [0,7) = X

satisfying

C(0) = z*,
Cc'(0) =z,
4.(C(t))=20 Vte[0,7)andVa€el,
B(C(t)=0 VYV te[0,r)andVBeJ.

Our main result now follows precisely as in the finite-dimensional case.

Theorem 2.1 Let K = VAo(z*) UVB(z*). Assume

Al: K is compact;

A2: C(K) is closed.

If z* satisfies the constraint qualification for problem (NLP), then a nec-
essary condition for z* to be a local solution of problem (NLP) is that the

first-order conditions hold.

Proof: We invoke Proposition 2.1. Suppose that z* is a local solution and
that z € Zo(z*). Clearly it must be that z # 0, so there exists a feasible

continuous arc C : [0,7) — X. Since 2z is a local solution, for ¢ > 0

17



sufficiently small it must be that
fe@)—£(c) =0

and therefore
Lfew) - FeE) 2 0.

But this implies that
[f o CJ(0) = (V£(C(0)),C'(0)) = (Vf(27),2) 20,

which is a contradiction. m|

3 Discussion of Hypotheses

Let us now examine assumptions Al and A2 of Theorem 2.1. To begin, recall
that in the finite programming case they automatically hold. Specifically, a
finite set is obviously compact, and it is well-known that a finitely generated
cone is closed. Hence, assumptions Al and A2 are exactly the price one must
pay to exteﬁd the Farkas lemma approach to necessity conditions from finite
programming to infinite programming. Of course this extension will be of
no value if we cannot find reasonable conditions that imply assumptions Al,
A2, the constraint qualification, and a meaningful example that satisfies our

18



conditions. These concerns are the subject of the remainder of this section
and the next section where our example is presented.

We first consider assumption A1, the compactness assumption for the sets
VAO(:B“) and VB(z*). Since problem (NLP) is stated without reference to
these sets, it is obviously cumbersome to check hypotheses involving them.

Fortunately, many problems will not require this.

Lemma 3.1 Suppose that the g, and hg are elements of a real Hilbert space
I. Fiz z € X and let V, denote evaluation at z. Suppose that the g, and hg
are uniformly continuous and that V; is a continuous functional on A and
B. Assume that the indez sets I and J have been topologized. If I and J are
compact and the indez maps a — go and B — hg are continuous, then the

sets VAo(z) and VB(z) are compact.

Proof: We argue in terms of the go. Given a sequence {a.} C Io(z),
we claim that there exists ag € Io(z) and a subsequence {an/} such that
Va,,(T) = Ve (T)-

The indexing assumptions imply that A is compact. Since V; is con-
tinuous on A, it follows that the level set Ao(z) = {ga : ga(z) = 0} =

{ga : Vi(ga) = 0} is closed, hence compact itself. Therefore there exists
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ao € Io(z) and a subsequence {an} such that go, — ga-
The convergence indicated is in norm. However, since the g, are uniformly

continuous, the convergence must also be uniform. But this allows us to write

n!‘_{l:o Vo, (z) =V ﬂl,l_?go 9o (%) = Voo ().
o

We now derive conditions which imply that assumption A2 holds. We first
derive a technical lemma about expectations that will be used to show that

K compact and 0 ¢ C;(K) implies A2. This lemma derives from probability

theory. An excellent reference for the requisite material is Billingsley [6] .

Lemma 3.2 Let H denote a real Hilbert space with inner product (-,-). Let
M, (K) denote the family of probability measures that concentrate on the set
K c H. If K is compact, then the set of expectations C1(K) := {[ zp(dz) :

p € M;(K)} is convezr and compact.

Remark: As mentioned before, the set Cy(K) is essentially the convex hull

of K.

Proof: Since K is compact, [(y, z)u(dz) < ||yl| [ llzlln(dz) < |lyllsupzexlizll <
oo; we are therefore assured that the expectations exists. The convexity of
C1(K) follows immediately from the linearity of expectation.
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To demonstrate compactness, consider the sequence {z, = [zpu,(dz) :
pn € M;(K)}. Since K is compact, M;(K) is tight. It follows from Pro-
horov’s Theorem that there exists a weakly convergent subsequence of {4,},

i.e. that there exists po € M;(K) and a subsequence {y,/} such that

[ $@wldz) > [ o(@)polda)

for all bounded continuous functions ¢ : H — (—o0, +0). Since K is com-

pact, (y,-) is such a function; hence

J@2)wldz) > [0, 2)olde) Vy € H.

Then it must be that the Riesz representers

Tp = _/a:p,,:(d:z:) — Tg = /:z:po(da:) ,

so the arbitrary sequence {z,} has a convergent subsequence. mi
We now remove the restriction that the positive measures used to form

expectations have a total mass of unity.

Lemma 3.3 Let H denote a real Hilbert space with inner product (- ,-) and
origin 0. Let M(K) denote the family of totally finite, positive measures
that concentrate on the set K C H. If K is compact and 0 € C1(K), then
C(K) := {f zp(dz) : p € M(K)} is conver and closed.

21



Remark: As mentioned before, the set C(K) is essentially the half-cone

generated by the convex hull of K.

Remark: The conditions that K is compact and 0 € C(K) are sufficient
but not necessary for the conclusion. To illustrate, let S be a closed
subspace of H and let K C S be any set such that 0 is an interior point
of C’l(I\") C S relative to S, e.g. {x € S:|z]| <1}. Then C(K) =S
is automatically convex and closed. However, the simple conditions
stated in the lemma have a natural analog in the finite-dimensional

theory and are entirely adequate for the example of Section 4.

Proof: Writing C(K) = {rz : z € C1(K),r = [0,400)}, it follows from the
convexity of C;(K) that C(K) is a convex half-cone. We claim that C(K) is
also closed.

Toward that end, suppose that {y,} C C(K) with ||y, — §|| — 0. Write
Yn = TnZn With z, € Ci(K). By the compactness of C1(K), {zn} contains a
subsequence {z,} with ||z, — Z|| — 0 for some Z € C1(K). Moreover, since
0 ¢ Ci(K), ||zl > 0.

Now let € > 0 be arbitrary. By construction, there exists N(¢) such that

n' > N(e) entails ||z — Z|| < € and |jrazw — | <€ Tt follows that, if
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€ < ||Z]| and n’ > N(e), then

lol=c_, lol+e
Izl + € Izl — e
so that 7, — 7 := ||7]|/||Z||. Hence,
lyn = 7Z|| = |[raZn — TZ + rpZ — 7Z||
< rwllze = Z| + |re — 7] ||Z]]
— 0.
By the uniqueness of limits, § = 7z € C(K). a

Notice that the hypothesis that 0 ¢ C;(K) is closely related to the oft-
imposed (in finite programming) condition of regularity. A feasible point z*
is said to be regular if the set K is linearly independent, i.e. if no finite
nonzero linear combination of the constraint gradients at z* can vanish. Our
condition is somewhat stronger in one respect, but much weaker in another.
On the one hand, we consider arbitrary measures (weights) on K, not just
finitely supported ones. This is analogous to infinite linear combinations,
hence stronger; on the other hand, we only consider probability measures
(nonnegative weights totalling unity); this is analogous to convex combina-

tions instead of linear combinations, hence weaker.
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In finite programming, if z* is a regular point, then z* must satisfy the
constraint qualification. This pleasant property does not hold in infinite
programming; in fact, since the number of linearly independent gradients
cannot exceed the dimension of the space X, the notion of regularity is
wholly inappropriate for the case of semi-infinite programming and somewhat
inappropriate in the case of infinite programming. Accordingly, we will search
for other conditions that will imply the constraint qualification.

The simplest situation is the one in which all of the constraints are linear.

If z* and z are as in Definition 2.2, then the arc C(t) = z* + tz satisfies

c) = z°;

]
8

C'0) = z;

9.(C(1)) 0 Vt>0, Vace€l(z);

ho(C(t) = 0 Vt>0, VBeJ.

Moreover, for each a € I ~ Iy(z*) (the nonbinding constraints), there exists
7(a) > 0 such that

92(C(t)) > 0Vte|0,7(a)).
If the number of nonbinding constraints is finite, then we can take 7 =
inf,{7(a)} > 0 and the constraint qualification is automatically satisfied.
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Otherwise, it may be that inf,{7(a)} = 0 and the constraint qualification
may not hold. We are therefore content to establish that the constraint
qualification holds for one important family of examples.

Both control theory and statistics abound with constraints of the sort
that a function be bounded by certain values. The following result addresses
the prototypical case; we hope that the method of proof will suffice for a

variety of applications.

Lemma 3.4 Let X denote a real Hilbert space of functions z : I — (—o00,+00).
Let g, denote evaluation at o € I. If X is a proper functional Hilbert space,

i.e. if the go are continuous, then the collection of inequality constraints

9a(z) =2(a) 20 Vael

satisfies the constraint qualification.

Proof: Since the g, are continuous and linear, Vg,(z) exists V z € X.

Suppose that z* € X is a feasible point and that a nonzero z € X satisfies

(z,Vga(2")) = go(2")(2) = 2(a) 2 0 Y a € Ip(z"),

i.e. Va suchthat z(a)=0.
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For t > 0, let z*(t) := P,z, where P, denotes projection into the closed convex

set

Kit):={yeX:z"(a)+ty(a) 20 V a€l}.

We note that the sets K(t) are nested, for suppose that {o < ;. If 0 <

z*(a) +tiy(e) V a€l, ie y € K(t1), then
t
0 < 22%(a) + toy(e) < 2°(a) +toy(a) Va €T,
1

ie. y € K(to). Thus, K(t1) C K(to). We also note that, if ¢, — ?o and
Yo € K(o), theﬁ there exists y, € K(ta) such that ||y, —yo|| — 0 as t, — 0.
This follows upon setting y, = (to/tn)yo, and means that the point-to-set
map t — K(t) is open. (See Hogan [8] for an introduction to this subject in
the context of mathematical programming.)

Next suppose that t, | to. Since the K(t) are nested,

ll2*(tn) = 2|l L 7 := lim [|z"(¢a) — =]l

and ||2*(to) — 2|| < r. Let B(z,r) denote the closed ball of radius r centered
at z. The point z*(¢o) must lie on the boundary of B(z,r), for suppose that it
lies in the interior. Then there exist y, € K(t,) such that ||yn—2z"(t0)|| — 0 as

t. — to and it follows from the triangle inequality that limp.co [lyn — 2| < 7.
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But

[9n = 2ll 2 |z°(ta) = 2l V' m 5

hence inf {||yn — z||} = r, which is a contradiction.

Th-us, B(z,r)NK(to) = {z*(t0)}. Since z*(t,) € K(t.) C K(to), it follows
that ||z2*(ts) — z*(to)|| — 0 as t, | to. A similar argument establishes the
same fact for ¢, T to, and we conclude that z*(t) is a continuous arc for ¢t > 0.
Moreover, since z°(a) = 0 entails z(a) > 0, z is contained in the closure of
Ut>oK (t). We can therefore close the arc by setting 27(0) = 2.

Now let C(t) := z* + tz*(t). By construction, C is a feasible continuous

arc with C(0) = z*. Moreover,
.1 1, . .
limg 710(2) = C(0) — tal] = li 7l1t2°(2) — ta1] = lig ") = 2 = 0,

so C'(0) = z. This verifies the conditions specified by Definition 2.2. a

4 An Example

We now apply our results to obtain necessity conditions for a well-known
problem from the statistical literature on probability density estimation.

Watson and Leadbetter [9] sought to minimize the mean integrated squared

27



error of a kernel probability density estimator. Specifically, given indepen-
dent and identically distributed random variables Xj,..., X, with probabil-

ity density function §, they analyzed the optimization problem

(> =] n 2
Kot ¥ L. [% > Ka(z - X:) = 6(z)| dz .

i=1
It turns out that solutions are typically not everywhere nonnegative, which
results in estimates that are not themselves probability densities. This is a

matter of taste, but if we prefer to estimate densities with densities, then we

must confront the constrained optimization problem

2

- o1&
Rigimize  E /_ ~ [;gl{n(x—)(.-)—é(z) dz

subject to K.(z) 20 z € (—c0,+00)

/w K.(z)dz=1.

-0

This problem does not yield to variational methods, making it a natural can-
didate for the application of our multiplier theory. We proceed to formulate
it in that context.

Consider the Sobolev space H![a;, az], which is defined by endowing the
vector space

{z:2D € L*[e, ] for j = 0,1}
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with the inner product

1

(2, y) = Z(z(j)) y(j))L'*‘[m.O:]‘
i=0

It should be noted that the derivatives in the definition of H[a;, ] are taken
in the sense of distributions. It is well known that H![a;, 2] is a proper func-
tional Hilbert space and that each element of H'[ey, a;] is absolutely con-
tinuous. See Appendix I of Tapia and Thompson [10] for a discussion of the
analogous Sobolev space, H!(—o0,+00). Notice that, if § € H'(—o0,+00),
then the restriction of é to [a1, @3] is an element of H'[ay, ay).

We now return to the problem of Watson and Leadbetter, which we re-

formulate as problem (WL):

0o n 2
minin}‘ize f(zn) = E/_OO [l Z:i',,(a - xi) —6(a)| da

zn€ niz1
(WL) subject to 9a(zn) =2n(a) 20 Ya el

h(zn) = /[zn(a)da -1=0,
where I = [a;, 2], X = H'[ai, az], and Z, denotes the extension of z, to
(—o00, +00) defined by Z,(a) = 0 if a € I; and where the expectation is taken
with respect to the independent and identically distributed random variables
xiyt = 1,...,n, having probability density function § € H'(—o0,+00). We

have modified the original problem in two ways. First, we have demanded
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some additional smoothness. Second, we have restricted attention to kernels
supported on [a;, az]. We proceed to verify that Theorem 2.1 can be applied
to problem (WL).

The point evaluation functionals g. € T = X* are both linear and
continuous, hence continuously differentiable and also uniformly continu-
ous. It is also easily checked that f,h € C'(X). Furthermore, the set

VB(z) = {Vh(z)} is obviously compact. We also have

Lemma 4.1 For problem (WL), the set VA(z) = {Vga(z) : @ € I} is

compact.

Proof: We apply Lemma 3.1. The point evaluation functionals V; € T
are continuous, since V;(ga) = ga(z) = z(a). Since I is compact, it remains
only to demonstrate that the index map a — ga is continuous.
Consider the optimization problem
%2 2
minimize / [z'(@)] de
z a1
subject to  z(a1) = b1, z(az) = b2 .
It is a trivial exercise in the calculus of variations to establish that the min-
imizer is a straight line with slope
(@) = (b2 — b1)/(az — a1)-
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This yields a minimum objective function value of |b; — ;|?/|az — a;|. It

follows that any z € X with z(a;) = b; and z(a;) = b, must satisfy
21?2 152 = 8:1[*/laz — aul. (3)

Now suppose that o, — ag as n — oco. Then (3) allows us to write

9an = gaoll = sUP |gan(2) = gao(z)| = sup |z(en) — z(e0)|
ll=ll<1 li=ll<1
< sup |ap — ao|%||a:|| = |an, — QQI% —+0asn—o0. O
li=lI<1

Next, we show that our conditions on K hold.

Lemma 4.2 For problem (WL), let K = VA(z)UVh(z). Then Cy(K) does

not contain the origin of X = H'[a, aa].

Proof: We exploit the fact that the gradient is the Riesz representer of the
directional derivative. Let n € X; then
, .1
9a(2)(m) = lim=[ga(z +1n) = ga(2)]
.1
= lim 7 [=(a) +t7(a) - 2(a)]
= n(a)
and
1
W) = lim7lh(z +tn) - (o)
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= 11_%1% [/;[z +tp](a)da -1 — /Ia:(a)da + 1]

= ‘/In(a)da.

Hence, Vg, (z) must satisfy
(Vga(z) ,n) =n(a) VneX

and Vh(z) must satisfy

(Vh(z),n) = [n(e)da ¥neX.

Now suppose that there exists 4 € M;(K) such that [ yu(dy) = 0. Let
A = p(Vh(z)) and let (1 — X)u denote the measure on (/,I) induced by 4.

Then it must be that, Vn € X,

0 = (0,n)

( /Ky#(dy),n)

= /K(y,n)u(dy)

= [y o) + X(Th(2),7)
= /v A(z)n(a)#(dy) +2A /I'I(a)da

= (1-1) /I n(a)u(da) + A /I n(a)da . (4)
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But the last expression in (4) is strictly positive if n € X is strictly positive
on I; hence, C;(K) cannot contain the origin of X. m]
Remark: If u is a finitely supported signed measure, say v = Y1+, u;1(a;),

where 1 denotes point-mass, then (4) reduces to

0=(1-N)3 unles) + A /1 n(a)da .

i=1
If A = 1, this equality fails for (say) n(a) = 1; if A # 1, this equality fails
for any 7 satisfying n(a;) = —u; and [;n(a)da = 0. Thus, the condition of
regularity also holds for problem (WL). Notice, however, that the restriction
to finite linear combinations in the definition of linear independence is crucial
to this conclusion. If arbitrary signed measures are allowed, then take u to
be the negative uniform measure on I and put A = 1/(a2 — a; +1). Then

the last expression in (4) is

(1-2) /I n(a)u(da) + X /1 n(a)da

1 1 1
= |1- d ————/ de
[1 ag—a1+1]ag—a1-/rn(a)a+a2-—a1+1 ITI(C!)C!

which does indeed vanish ¥V n € X. This distinction should not be surprising.

Roughly stated, finitely many values do not determine a function’s Lebesgue

integral, but all values together do.
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Finally, the equality constraint in problem (WL) is easily incorporated
into the proof of Lemma 3.4. This provides a means of verifying that any
feasible point for problem (WL) satisfies the constraint qualification. Theo-
rem 2.1 therefore applies: a necessary condition for z;, to be a local solution
of problem (WL) is that the first-order conditions hold.

Let us make some further observations concerning problem (WL). The
objective function is strictly convex aﬁd the constraint set is convex. It fol-
lows that any local solution will be the unique global solution. It is well
known that the variational inequality which serves as a necessity condition
when the constraint set is convex serves as a sufficiency condition when the
objective function is also convex. A rather straightforward argument can be
used to show that, in the case of a convex constraint set, condition (i) of
Proposition 2.1, namely Z,(z*) = ¢, implies the variational inequality neces-
sity condition. These comments say that, in the case of a convex program
where the constraint qualification holds (as is the case for problem (WL)),
the existence of Lagrange multipliers (Proposition 2.1) is both necessary and
sufficient for z* to be a global minimizer.

Our theory, the above comments and some straightforward computations
lead us to the following result concerning problem (WL): z; is the unique
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global minimizer if and only if there exists a totally finite measure concen-
trating on [a1, @], with density function v}, and a real number A}, such

that
(a) ui(a) =22L[z] * 8% 8)(a) — 2[6 % 8)(a) + 2z5() + A Ve € o, ),
(b) zi(a) 20 Va € [a,a),

(c) Jai zh(a)da =1,

(d) z2(a)ui(a) =0 Vo€ [, al,
(e) ui(a) 20 Vac€la,a)

In condition (a), §(a) := §(—a), and * denotes convolution.

Since problem (WL) is highly nontrivial, it is not surprising that the
corresponding necessity conditions are somewhat complicated. It is not the
purpose of this paper to attempt a detailed analysis of these conditions,
although we intend to do so in later work. It is evident, however, that the
theory developed here may be productively applied to a body of problems

admitting an infinite programming formulation.
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