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Abstract

The notion of the central path plays an important role in the convergence analysis
of interior-point methods. Many interior-point algorithms have been developed based
on the principle of following the central path, either closely or otherwise. However,
whether such algorithms actually converge to the center of the solution set has remained
an open question. In this paper, we demonstrate that under mild conditions, when
the iteration sequence generated by a primal-dual interior-point method converges, it

converges to the center of the solution set.
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1 Introduction

We consider linear programs in the standard form:

T

minimize ¢’z
subject to Az = b, (1.1)
z2>0,

where ¢,z € R*, b € R™, A € R™"(m < n) and A has full rank m. The dual linear
program of (1.1) can be expressed in the following symmetric form
minimize dTy _
subject to By = Be, (1.2)
y20,
where y € R™ is the vector of dual slack variables, d = AT(AAT)=1p, B € R(*~™)X" has full

rank and ABT = 0 (i.e., the columns of BT form a basis for the null space of A). This form

of the dual was introduced by Todd and Ye in [9].
It is known that the optimality conditions for (1.1) and (1.2) can be written as a 2n x 2n

nonlinear system with non-negative variables; namely,

Az -b
F(:z:,y) = By — Bc = 0’ (z’y) 2 0, (13)
XYe '

where X = diag(z), Y = diag(y) and e is the n-vector of all ones.
The feasibility set of problem (1.3) is defined as

F ={(z,y) : z,y € R*, Az = b, By = Be,(z,y) 2 0}.

A feasible pair (z,y) € F is said to be strictly feasible if it is positive. In this work we
assume that strictly feasible points exist.

We denote the solution set of Problem (1.3) by

S ={(z,y) : F(z,y) =0,(z,y) > 0}.
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It is known that the existence of strictly feasible points implies that S is bounded (see the
proof of Lemma 2.1 in this paper). In addition, if S, and S, are the primal and dual solution

sets, respectively, then
S§=8:%x8,.

In this work, we are only concerned with the case when S is not a singleton set, i.e.,
_ri(8)#0

where ri(S) is the relative interior of S. In this case, the solution set S has the following
structure (see [1] for a proof): (i) all points in the relative interior satisfy strict comple-
mentarity (and all points on the relative boundary do not); (ii) the zero-nonzero pattern of
points in the relative interior is invariant. Therefore, for any (z*,y*) € ri(S), the following

index sets
IF={i:z;>0,1<i<n} and I} ={i:y; >0,1 <i<n}
are independent of the choice of (z*,y*). Moreover, by strict complementarity
rryrr=1{1,2,..,n} and IFIf =0

Given w € R™ such that
w>0 and efw =n, (1.4)

the w-center of j:he solution set S is defined as

(z¥,y*) = argmax {$*(z,y) : (,y) € S} - (19

where ,
¥(z,y) = [T = IT v (1.6)
el el

Equivalently, in (1.5) one can replace ¢*(z,y) by its logarithm, i.e.,

Iny*(z,y) = E w;lnz; + z: w; Iny;.
el el



Obviously, (z¥,y*) € ri(S) and ¥*(z*,y*) > 0. From the structure of both Y¥(z,y) and S,
we see that z* and y¥ are the w-centers of the primal and the dual solution sets, respectively;

namely,

:v"’:argmax{Hz}”‘:xGS,} and y‘"=a.rgmax{HyE”‘:yeSy}.

el i€l
The existence and uniqueness of w-center can be established in'a standard manner. For
more details, see McLinden [4] and Megiddo [5]. In [4] McLinden called z* and y* the
strong Pareto optimal elements of S; and S, respectively (see Proposition 5). |

For w € R™ satisfying (1.4), the w-path of Problem (1.3), parametrized by x, is defined
as

PY = {(z*(u),y* (1) : (z*(n),y" (k) € F, X“(W)Y*(p)e = pw,p >0}, (1.7)
In particular, the w-path corresponding to w = e is called the central path.

The existence, differentiability and limit behavior of the w-paths were first studied by
McLinden [4] in a general setting, and later by Megiddo [5] for linear programming in par-
ticular. The most striking result in McLinden [4] is perhaps Theorem 9. In the case of linear
programming, it states that the limit of the w-path as u converges to zero is the w-center of
S, namely,

(=*,y*) = lim(a®(k), y*(w))- (1.8)
See also Proposition 8.2 in Megiddo [5] and the discussion prec‘eding it.

The prima.l-du;a,l interior-point algorithms considered in this research can be motivated in

several ways, e.g., path-following or potential reduction, but in essence they are all variants

of Newton’s method. The following generic algorithmic framework includes a majority of

existing primal-dual interior-point algorithms.

Algorithm 1 (Generic Primal-Dual Algorithm)
Given a strictly feasible pair (z°,y°) and w € R™ such that w > 0 and efw = n. For
k=0,1,2,..., do

kT k

(1) Choose o* € [0,1) and set pF = o¥ZL

n .
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(2) Solve the following system for (Az*, Ay*):

F'(z*,y*) ( i ) = —F(z* y*) + 4* ( ° ) . |
y w T

(3) Choose a step-length of = min(1,7*&*) for * € (0,1) and

kL -1
© 7 min((X*) Ak, (YR 1AgE)

(1.9

(4) Form the new iterate
(zk+l,yk+l) = (zk,yk) + a"(Az", Ayk).

The standard choice for w in Algorithm 1 is w = e. Since the analysis is no more complicated
for general w, we will carry out our analysis for the general case.

A straightforward calculation gives

A0
F(z,y)=|0 B|. (1.10)
Y X
There are two fundamental parameters in Algorithm 1, the centering parameter o* and

the step-length 7% (or a*). The choice of step-length o* guarantees (z*+!,y*+1) > 0. It is

easy to verify that the iterates satisfy the following useful relationships

g Tyktt (1- ak(l — k) kT yk e + (1.11)
and ,.szyk S . .
Y*Azk + XFAy* = —X*YFe + oy, ——w. (1.12)

The first primal-dual interior-point algorithm for linear programming was constructed by
Kojima, Mizuzo and Yoshise [3]. It was based on the idea of following the central path (i.e.,
w = e) which was studied in Megiddo [5] (see also Sonnevend [7]). Other early primal-dual
interior-point algorithms using the central path include Monteiro and Adler [6] and Todd
and Ye [9]. ‘



The convergence properties of the duality gap sequence have been studied extensively

by many authors. On the other hand, the convergence properties of the iteration sequence

were investigated only very recently. Tapia, Zhang and Ye [8] showed that under suitable

conditions. if o* is chosen to converge to zero fast enough, then the iteration sequence will
? . , ’ ’ q

converge to a solution: At this juncture, it is still unknown if the iteration sequence converges

when {c*} does not converge to zero; though in practice convergence seems to be the norm

rather than the exception.

Another unanswered question is whether a path-following interior-point algorithm can

be constructed with the property that when the iteration sequence converges, it actually

converges to the center of the solution set. In the next section, we establish that convergence

to the center of the solution set is indeed attainable.

2 Main Result

We begin by introducing our notation. Define
gf =alyt, i=12,...,n,

and

-k__n k
¢ _nz¢t'

=1

It follows from (4) of Algorithm 1, (1.11) and (1.12) that
#iH = ¢H(1 — o) + wic B + ActAyi(at)?
and
FH = (1= ot + ohah).

Therefore,
SEHL — ittt = (¢F — wid®)(1 — o) + ActAyf(eF)?.

This leads to

P —wittt  gF—wigt 1o ActAyf (eF)?

Pr+1 - Pk 1 — o + okak ¢ 1-—ak+okak
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Let

% = max "_‘_a"_w. . (2.4
T 1ikn | @6 M ‘ . -
Now, from (2.3) and the fact that ¢5/¢* < n we have .
| - 1-oFf |AzEAyE| n(a*)? '~
k+1 k i i
7 = 1—caok+ O'ka"n + 112%)1(1 { :ny,k 1 — ok + gka*’ (25)

For simplicity, in what follows we will drop the superscript “w” from the points on the

w-path, i.e., we will use the convention

(z(1),y(1)) = (=" (1), y* (1))

The following lemma states a very intuitive result; yét it is central to the establishment

of our main result. A rigorous proof for this lemma is in order.

Lemma 2.1 Let {(z*,y%)} C F. Assume z*Ty* — 0 and n* — 0. Then {(z*,y%)} con-

verges to the w-center of the solution set, i.e.,
klim (z*, %) = (, y").
Proof: The assumption =’ y* — 0 and (1.8) imply that (recall ¢ = i:;9:)
lim (2(8), 5(8)) = (2, 4).

Since

I(z*,5%) = (=, )l < I(=*, %) = (=(8*), »(&*))I| + Il(x(ak),y($")) = (=, 9,
ié suffices to prove -
(=%, 3*) — (=(8*), y(&")I| — 0. (2.6)

Let
1 - -
(25,5%) = 5(=" +2(8), 4" + 9(8"). (2.7)

It can be verified by substitution that

A 0 -
o g [ _ 0
o g |\ 8@ ) (XVre—g )



z* — 2(¢") 1=k kY1 0 . '
= [F'(Z", . .
( = (@) ) [F'(z",7°)] ( Xt¥Fe - Fw ) (2 8)
For (z,y) > 0, define TR - . REE .
P(z,y) = I- (XY;1)1/2AT (AXYTAT)TA(XY )2,
Hys,y) = (XY)P@y)(X)™, |
Hye,y) = (XY) X1 =Py)(XY)™

It is worth noting that P(z,y) and I — P(z,y) are orthogonal projection matrices. Now it
follows from (2.8) (see Lemma 3.1 in (8], for example) that

- a(@) | [ RHE X Y e - Frw) 29
v~ y(#) PH,(4, ) (X*Y e - $) | |
Therefore, there exists a constant 8 > 0 such that
lz* — (8 < Bl Hp (2", 75)In*, (2.10)
ly* =y < BlF*lIS*Ha(z*, 5°)lIn"- (2.11)

Clearly, (2.6) will be proved if we can show that " H,(z*,§%), & Hy(z*, §*) and (2*,7*) are
uniformly bounded. S
It is known that the level set

LE) =Fn{(z,y):z"y < ¢}

is bounded for all £ > 0. To see this, observe that given a fixed positive (&, 7) € F, for any
(z,y) € L(£), we have (z — £)T(y — §) = 0, which leads to

(§,%)T (z,y) = =7y + 37§ < €+ 274

This implies the boundedness of £(£). In particular, the solution set S = L£(0) is bounded.
Using the relation (z* — z(8*))7 (y* — y(¢*)) = 0, we have

y(#)7z* + () Ty* = 22573,

8



and hence
@77 = 30 + @ + (@0 + 23 Y() = T

Thus (z*,7%) € L(z*"y*) C £(a:°Ty°).' The uniform boundedness of (Z*, %) now follows
from the boundedness of the level set £(z°Ty?). '

To show the uniform boundedness of ¢*H,(z*,§*), it is sufficient to demonstrate that
¢*/(Z¥5¥) is uniformly bounded for all i because P(z*, 7*) is an ofthogona.l projection matrix.
In view of the fact that (z*, y*) >0 and (m($"),y($")) > 0, we have for all ;

(;k _ (;k < . 45/: < 4
ZhgE T (¥ + 7i(8%) (vF + vi(%)) T zFyF + FFwi - min(w)’

Similarly, we can show the uniform boundedness of ¢* Hy(z*,7%). This completes the proof.

0O

Now we are ready to state our main result.

Theorem 2.1 Let {(z*,y*)} be generated by Algorithm 1 with the parameter choices {o*}

and {a*}. Assume

Al 0% > o and of > a for some o,a € (0,1);

A2 min(X*Y*e)/(z%)Ty* > v/n for some v € (0,1);

A3 {(z*,y*)} converges to (z*,y*).

Then {(z*,y*)} converges to the Q-centcr of the solution set, i.e., (z*,y*) = (:z:“’,y'”i.

Proof: Frc;m (1.11), Assﬁmption Al implies that the duality gap sequence converges to zero.
Hence, (z*,y*) is a solution. In addition, by Giiler and Ye [2] Assumption A2 implies that
(z*,y*) satisfies strict complementarity.

By Lemma 2.1, it suffices to prove {n*} converges to zero. First we prove that {n*}
cannot be bounded away from zero. Suppose this is not true, i.e. n* > n for some 5 > 0.
Then we can write (2.5) as

nk*t < grg*
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: 1-o* |AzkAyk (a*)? '
k_ v { AY; n(a B
_ A 1 — ok + okak + flsl{aé)fa{ zkyk } 7(1 — ok + qkak).' R ,(2-12)

where

A contrg.diction will arise if 8% < B for some B € (0, 1), which leads to Q-linear convergence
of {n*} to zero. I ' B
Under Assumption Al, there exist constants 7,3' € (0,1) and 8" >0 such that

1-of
< /
1 — o + okak sp<1

and ,
7z(ak)2 "
<pg".
(1l - oF + okak) ~ P
Hence, from (2.12) we have
, AzkAyt ‘
g <+ {12000 (2.13)

Now consider z; > 0. Obviously,

t

b+ Az
1= lim 2 = lim (1+ak—;°,:—').

k—oco T k—o00

This implies Az¥/z* — 0, because {a} is bounded away from zero. Moreover, it is well-
known that Assumption A2 implies that |Ay¥/y¥| is uniformly bounded (see [12], for ex-
ample). On the other hand, if z} = 0, then by strict complementarity y7 > 0. The same
argument, interchanging the roles of z and y, gives that Ayk/y¥ — 0 and [Az¥/z}] is uni-

formly bounded. Hence
AzfAyf

o
Consequently, for k sufﬁciently large

AzEAgH) _ 1=
< .
1255 { ckyk = 2B

However, it follows from (2.13) that for k sufficiently large

ﬂkSﬂ=——1-;ﬂl<1.
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This contradicts the hypothesis 7* > 5 > 0. Hence {n*} cannot be bounded away from zero.
As a result, there must exist a subseQﬁence of {n*} that coni)erges to zero. Consequently,
from Lemma. 2 1 the correspondmg subsequence of the 1tera.t10n sequence {(=*, y" )} converges
fo the w-center of the solution set. But since the iteration sequence itself is convergent the
entire sequence has to converge to the w-center of the solution set. This completes the proof.

a

3 Concluding Remai'ks

Assumptions A1-A2 can be easily achieved. For fixed o* = o € (0,1), Assumption A2 can
be enforced By properly choosing of and at the same time ensuring that {a*} is bounded
away from zero. A particular choice for o is given in [3], for example.

Let us put Theorem 2.1 in perspective. We have shown, under mild assumptions, that
if {o*} is bounded away from zero, then whenever the iteration sequence generated by
Algorithm 1 converges, it converges to the center of the solution set. Very recently, Tapia,
Zhang and Ye [8] demonstrated, under mild assumptions, that if {o*} converges to zero at
least R-linearly, then the iteration sequence converges to a point in the relative interior of
the solution set. In addition, the rate of the convergence of {o*} to zero is reflected in the
rate of convergence of the iteration sequence (see also Zhang and Tapia [11]). It is interesting
that at this juncture the price one pays for attempting to obtain convergence to the center
of the solution set is the loss of a guarantee for the convergence of the iteration sequence and
the loss of a guarantee for a fast convergence rate. We strongly believe that this 1atter loss
is a reality; however, based on our numerical experience, we believe that the former is most
likely not a reality. Hence convergence of the iteration sequence for the case when {o*} is

bounded below has become an important open question.
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