Software Support for Irregular
and Loosely Synchronous Problems

A. Choudhary G. Fox
S. Hiranandani K. Kennedy
C. Koelbel S. Ranka
J. Saltz

CRPC-TR92258
May 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Appears in Computing Systems in Engineering, Vol. 3, Nos. 1-4,

pp. 43-52, 1992.

Computing Systems in Engineering Vol. 3, Nos 1-4, pp. 43-52, 1992
Printed in Great Britain.

0956-0521/92 $5.00 + 0.00
© 1992 Pergamon Press Ltd

SOFTWARE SUPPORT FOR IRREGULAR AND LOOSELY
SYNCHRONOUS PROBLEMS

A. CHOUDHARY,T G. Fox,T S. HirananDanLi K. Kenneoy,} C. KOELBEL,}
S. Rankat| and J. SALTZ§

+NPAC, 111 College Place, Syracuse University,
$CRPC, CITI, P.O. Box 1892, Rice University, Houston,
§ICASE, MS 132C, NASA Langley Research Center, Hampton,

Syracuse, NY 13244-4100, U.S.A.
TX 77251-1892, US.A.
VA 23665, U.S.A.

Abstract—A large class of scientific and engineering applications may be classified as irregular and loosely

synchronous from the perspective

of parallel processing.

We present a partial classification of such

problems. This classification has motivated us to enhance Fortran D to provide language support for

irregular, loosely synchronous
the context of Fortran D.

1. INTRODUCTION

Although parallel computer systems have been
widely available for several years, they have not yet
fulfilled their enormous promise. In spite of the
widespread interest in parallel systems, few scientists
and engineers are using parallel machines to do
their most important calculations, relying instead on
conventional supercomputers. There are two reasons
for this. First, parallel computer systems have only
recently become powerful enough to outperform
conventional supercomputers. Second, and more
importantly, there exists no machine-independent
programming interface for parallel machines that can
achieve an efficiency comparable to programs hand
coded in languages that reflect the specific underlying
architectures. This second problem is particularly
troublesome because it puts the parallel programming
investment at risk—if a program is converted at
great effort to run on a parallel machine, the
investment may be lost when the next generation of
parallel computers emerges with an entirely different
programming interface. Today, each new parallel
architecture requires a significantly different software
implementation.

1.1. Software model

An important lesson learned from using parallel
machines has been the need for a close coupling
between software and applications. Even though the
problems that we and others have looked at tend to
be in a limited domain, predominantly scientific and
engineering simulations, we expect this lesson to be
valid in general. Good performance for a parallel
machine requires a good mapping of the problem
onto the machine. Getting this mapping “right” seems
to imply a close coupling between the application
requirements and the software environment. Good

|| Author to whom all correspondence should be
addressed.

problems. We present techniques

43

for parallelization of such problems in

mappings for many large problems have been dis-
covered by users tuning their codes “by hand” using
relatively crude software approaches. The Caltech
Computation Project, for example, developed 50
successful parallel applications using node Fortran
or C plus message passing on 2 distributed memory
MIMD multicomputer. Building on that success
requires a more automatic method of detecting and
implementing good problem mappings. Our thesis is
that providing such an environment will be a great
help toward establishing a portable programming
model for parallel machines.

The success of hand-parallelization should be
contrasted with the experience of parallelizing
compilers where false dependencies often prevent the
compiler from exploiting the available parallelism.
We can understand this as follows: the problem
has a computational graph (such as a mesh for many
signal processing or partial differential equation
algorithms) that needs to be mapped onto the under-
lying parallel machine topology. In hand-coding
programs, Users are responsible for identifying the
problem and machine topology and performing the
mapping. The automatic compiler approach to paral-
lelizing the C, Fortran or ADA code version of the
problem fails when the compiler is unable to identify
the underlying graph and the relation between pro-
gram components. This can happen for a number
of reasons.

1. The compiler’s analysis can simply fail, report-
ing a dependence when none exists. (This is a
particular problem in the loosely synchronous
problems in Sec. 3, due to the data structures
required there.) In these cases, there is little
the programmer can do except complain to the
compiler vendor.

_ An actual dependence may be an artifact of
a sequential optimization, such as reusing an
array’s storage to save memory. In these cases,
it is often possible to rewrite the program to

44 A. CHOUDHARY et al.

allow parallelization, if the user can detect the
problem.

3. The program may use an inherently sequential
algorithm, or an algorithm with limited parallel-
ism. For example, the standard method of
solving a tridiagonal system uses a first-order
recurrence that cannot be directly parallelized.
In this case, the best option is to change to a
different algorithm.

Our experience has been that fully automatic com-
pilers often fail on realistic applications, although
they may perform better on individual loop nests.
Language such as *LISP, C* and CM Fortran have
succeeded on larger-scale problems because unlike
Fortran 77 or C, these “data-parallel” languages
properly express the structure of the problem and its
computation.

Generalizing from the above discussion, we feel
that successful parallel software models must provide
a mechanism for expressing the decomposition by the
programmer (as in C with message passing extensions)
or provide this mechanism indirectly (as in C*). We
feel that the interaction of applications and software
support (languages, run time systems) is very import-
ant for parallel computing. In other words, parallel
computing demands “high-level” software support—
software that precisely and effectively captures the
structure of the application resulting in automatic
generation of good parallel programs. Our belief is
that there is no need to write software designed for
a single specialized domain. On the other hand, it
is very hard to design universal software models.
Indeed, we define broad classes of computations
(we now have a total of about ten) which together
can cover a large range and each is itself large enough
to warrant individually tailored category-specific
software support. We believe that our approach can
be effectively extended to a much broader range of
application. Although this work was motivated by
our Fortran D compiler project for SIMD and
MIMD distributed memory machines, we believe
the classification can immediately be used for these
applications with other languages including C, C+ +
and ADA.

1.2. Problem classification

We have classified problems into five broad
categories in terms of the parallelization and software
support issues they address:

synchronous

loosely synchronous
asynchronous

embarrassingly parallel
loosely synchronous complex.

Each problem category covers a broad range of
applications. Current data parallel languages such
as C* and Fortran D provide language support
for expressing regular synchronous and loosely

synchronous problems. The success of the Fortran D
compiler project is partly due to our experience in
parallelizing this class of scientific applications. In
this paper we examine scientific applications that
are irregular and loosely synchronous in nature. We
present an overview of techniques for parallelizing
such problems. Although we use specific applications
as examples, our parallelization techniques are applic-
able to other disciplines and are in no way restricted
to these particular codes. We propose language
extensions and compiler techniques that are useful
for successfully expressing such problems in a data
parallel language such as Fortran D.

Section 2 provides a review of the architectural
classification for problems. In Sec. 3 we describe
different subclasses of irregular and loosely syn-
chronous problems. In Sec. 4, we discuss several
parallelization strategies for the inclusion of these
problems in the solution space of Fortran D.

2. PROBLEM ARCHITECTURE

We have looked at many applications in a detailed
survey in Ref. 1. Our analysis of problem architecture
or structure is based on a break-up of each problem
into spatial (data) and temporal (control) aspects.
Following Fox? we describe three problem architecture
classes in terms of their temporal (time or synchron-
ization) structure. The temporal structure of a prob-
lem is analogous to the hardware classification into
SIMD and MIMD. The spatial structure of a prob-
lem provides the computational graph of the problem
at a given instant and is analogous to the interconnect
or topology of the hardware. The detailed spatial
structure is important in determining the perform-
ance of an implementation but it does not affect the
broad categories.

Synchronous problems are data parallel with the
restriction that the time dependence of each data point
is computed by the same operations. Both algorith-
mically and in the natural SIMD implementation,
the problem is synchronized microscopically at each
computer clock cycle. Such problems are particularly
common in academia as they naturally arise in
any description of a system in terms of identical
fundamental units. We believe that Fortran D (in its
current version) should be able to address almost all
of these problems.

Loosely synchronous problems are also typically
data parallel but now we allow different data points
to be evolved with distinct algorithms. Points are
also often connected in an irregular, data-dependent
manner; for this reason we sometimes refer to this
class as “irregular problems.” Such problems appear
when one describes the world macroscopically in terms
of the interaction between irregular inhomogeneous
objects evolved in a time synchronized fashion.
Loosely synchronous problems are spatially irregular
but temporally regular. This class is the main focus
of this paper.

L

Software support for synchronous problems 45

The asynchronous problem class is irregular in space
and time. Because of this irregularity, it is difficult to
give general methods for parallelizing asynchronous
problems. Some run well with functional decom-
positions, some require real-time synchronization
techniques, and some have never been run success-
fully on massively parallel machines. For a detailed
description of these classes the reader is referred to
Ref. 3.

The class of embarrassingly parallel problems
contains those problems that are totally disconnected
in space and time. In these problems, no synchroniz-
ation or communication is needed at all. (Actually,
there is typically a final synchronized phase to collect
the computed answers, but this only uses a small part
of the total time.) Depending on the structure of the
problem at each point, these can be run efficiently on
either SIMD or MIMD hardware. We believe that
Fortran D and other data-parallel languages should
be able to express these problems well.

The class of loosely synchronous complex contains
problems that are an asynchronous collection of
loosely synchronous problems. A typical application
in command and control belongs in this class. Each
of the tasks in such an application is synchronous
or loosely synchronous and can be parallelized indi-
vidually. An overall asynchronous expert system
coordinates the interaction between these tasks.

3. TYPES OF LOOSELY SYNCHRONOUS
PROBLEMS

General purpose mapping tools and run time sup-
port must be able to handle a reasonably broad range
of problems. As mentioned in the previous section,
we intend to develop a parallel software environment
for what we call loosely synchronous problems,
linked to the Fortran D compiler at Rice and Syracuse
Universities. This concept has been explained in
detail in Refs 2, 4 and 5. The current Fortran D is
designed to handle the special cases of synchronous
problems and loosely synchronous problems with
regular interconnection patterns. In extending the
Fortran D environment, we have found it useful
to divide this problem into several subclasses, which
are described below. All loosely synchronous prob-
lems can, by definition, be divided into a sequence
of concurrent computational phases. The differences
between the subclasses lie in how the phases are
separated and when the computation and communi-
cation patterns within the phases are set. In the
remainder of this section, we will describe several
subclasses of loosely synchronous problems, illus-
trated by actual applications. We present these sub-
classes to give an idea of the types of problems we
plan to address, but we do not claim at this point to
be in a position to present any kind of formal
taxonomy. As described in Sec. 3.5, our classification
is of course not complete and we are continuing our
study of problem structures.*

S1 do i=1,N
S2 do j=1,M

(i) = y(i) + a(i,j)*x(col(i,j))
end do

end do

Fig. 1. Sparse matrix vector multiply.

3.1. Static single phase computations

A static single phase computation consists of a
single concurrent computational phase, which may
be executed repeatedly without change. Examples of
static single phase computations are iterative solvers
using sparse matrix vector multiplications (€.g. Ref. 6)
and explicit unstructured mesh fluids calculations (e.g
Ref. 7). The key problem in efficiently executing these
programs is partitioning the data and computation to
minimize communication while balancing load. This
partitioning then dictates the program’s synchroniz-
ation and communication requirements, which must
also be computed. Because the computational pattern
is only set at run time, this cannot be done directly
by the compiler; instead, calls to a run time environ-
ment must be generated to do the partitioning
dynamically. Reducing the overhead of these calls,
both by reusing information computed in the calls
and by performing the calls efficiently, is also vital
for high efficiency. The PARTI library® and the Kali
compiler® introduced the inspector/executor paradigm
to perform these optimizations.

In the remainder of this section, we describe some
of the details that must be considered in implementing
these kernels.

In some cases, there is a straightforward relation-
ship between the way we partition distributed arrays
and the way we partition work. Figure 1 depicts a
sparse matrix vector multiply. The integer array col
is used to represent the sparsity structure of the
matrix. Loop S1 sweeps over the matrix rows, while
loop S2 sweeps over the columns of the sparse matrix
and calculates the required inner product. If the
sparse matrix vector multiply in Fig. 1 is to be carried
out repeatedly, it is reasonable to partition x and y
between processors in a conforming manner. In such
a problem, we can follow the common convention of
carrying out computational work associated with
computing a value for distributed array element y(@)
on the processor onto which y(t) is mapped.'®

There are other common cases in which the assign-
ment of distributed array elements to processors and
assignment of work to processors cannot be coupled
in such a straightforward fashion. Figure 2 depicts a
loop that sweeps over the edges of a mesh; indirection
is used to index array x on the right hand side of S3
while indirection is used to index array y on the left
hand side of S4 and S5. In this loop, it appears to be

46 A. CHOUDHARY et al.

C This is a simplified sweep over edges of a mesh. A Hux across a

C mesh edge is calculated. Calculation of the flux involves

C flow variables stored in array X. The flux is accumulated to array y.

doi=1,N
S1 nl = nde(i,1)
52 n2 = nde(i,2)
83 fluz = f(z(nl),z(n2))
S4 y(n1) = y(nl) + fluz
S5y(n2) = y(n2) — fluz
end do

Fig. 2. Another example of static single phase.

advantageous to assign each iteration of loop to a
single processor. By doing this, we avoid having
either to recalculate or to communicate values for
Slux, since y(n1) and y(n2) appear on the left hand

sides of statements. We can see that we must now -

determine separately how to partition distributed
array elements and loop iterations.

3.2. Multiple phase computations

A multiple phase computation consists of a series
of dissimilar loosely synchronous computational
phases. Such applications usually have several parallel-
izable loops that involve a variety of distributed arrays.
In this section, we will only consider the case where
each individual phase is a static single phase com-
putation as defined above. Examples of these compu-
tations include unstructured multigrid (e.g. Ref. 11),
parallelized sparse triangular solver (e.g. Refs 12
and 13), particle-in-cell codes (e.g. Refs 14 and 15),
and vortex blob calculations.' The key problem in
implementation is again partitioning computation

N

>~

Fig. 3. Unstructured multigrid—coarse grid.

and data, but now the task is complicated because the
interfaces between phases must be considered in the
partitioning. The synchronization and communication
requirements are similarly complicated by the multiple
phases. As for static single phase computations, this
partitioning must be performed at run time. Saltz
and coworkers have recently extended the PARTI
library to include incremental routines which will be
applicable to these problems.!” It is not clear whether
further extensions will also be needed. It is clear,
however, that these computations can again take
advantage of saving information computed in the run
time environment.

In the remainder of this section, we describe the
unstructured multigrid application to show some of
the implementation complexities of this class.

Unstructured multigrid codes'" carry out mesh
relaxation over each of several increasingly refined
meshes M, ..., M,. Figures 3 and 4 depict two levels
of these meshes from a fluid dynamics code that we
have parallelized. Both of these grids represent the

Fig. 4. Unstructured multigrid—refined grid.

Software support for synchronous problems 47

same physical geometry but the grid in Fig. 4 is more
highly refined than the grid in Fig. 3. The algorithm
alternates between sweeping over each mesh and
moving data between meshes, as shown in Fig. 5. The
meshes M,, ..., M, should be partitioned so that

(1) sweeps over each mesh M, do not require
excessive amounts of interprocessor commun-
ication,

(2) the computation involved in sweeping over
each mesh should exhibit good load balance
and

(3) interpolations and projections should only
require modest amounts of data movement.

We have partitioned the grids in our example
using the partitioner described in Ref. 18 with
good results, but there are many other possible
partitioners.

3.3. Adaptive irregular computations

An adaptive irregular computation consists of a
loosely synchronous computation executed repeatedly
in which the data access pattern changes between
iterations. The changes may be gradual, reflecting
adiabatic changes in the physical domain, or large-
scale, reflecting additions to a data structure.
Molecular dynamics applications often exhibit the
first behavior because interactions between particles
are implemented by neighbor lists which change as
the atoms move.” Adaptive PDE solvers are often
examples of the second behavior, as discussed below.
Other examples with which we are familiar include
some vision algorithms including region growing and
labeling,?! statistical physics simulations near
critical points® and the particle sorting phase of a
direct monte carlo simulation.”® The key problems
in implementing these algorithms are to react quickly

T Greatly oversimplified multiple mesh computation - Sweep over coarse

C mesh, transfer information to fine mesh, sweep over fine mesh

C and transfer information back to coarse mesh. xc,yc represent coarse

C mesh variables, xf,yf represent fine mesh variables.

C Typically these computations are carried out in an iterative manner.

C Sweep over coarse mesh

do i = 1, Ncoarse
do j =1, Kcourse

ye(i) = ye(§) + ac(i, j) » ze(ic(i, 7))

end do
end do

C Transfer data from coarse mesh to fine mesh

doi=1,Nfine
do j =1, Ninterpf(3)

2 f(i) = f(i) + weight f(i,) » ye(interpf(i, j))

end do
end do

C Sweep over fine mesh
do i =1, N fine
do j =1,K fine

yf(i) = yf() + af(i,5) * = f(f(i,5))

end do
end do

C Transfer data from fine mesh to coarse mesh

do i = 1, Ncoarse
do j = 1, Ninterpc(?)

zc(i) = ze(i) + we(i, j) * y f(interpe(i, J)

end do
end do

Fig. 5. Static multiple phase.

48 A. CHOUDHARY et al.

Fig. 6. Adaptive grid—after refinement.

to changes in the data structure. The physical and
numerical properties of these algorithms typically
guarantee that large-scale restructuring of data is
only needed infrequently. New constructs are needed,
however, to communicate this to the underlying
system software.

Adaptive algorithms are useful for solving Euler and
Navier-Stokes problems that arise in aerodynamics.
In these algorithms, mesh refinement is carried out
in portions of a computational domain where it is
estimated that additional resolution may be required
(e.g. see Refs 24 and 25). The grid in Fig. 6 is an
adaptive refinement of the grid in Fig. 4. The initial

mesh-point distribution is determined from the
geometry of the airfoil to be simulated. Adaptive
mesh refinement is achieved by adding new points
in regions of large flow gradients. A simple version of
the algorithm is presented in Fig. 7. The remapping
needs to be performed before the inner do loop is
executed.

3.4. Implicit
computations

multiphase loosely synchronous

An implicit multiphase computation is one con-
taining irregular inter-iteration dependencies. The
problems discussed thus far have consisted of a
sequence of clearly demarcated computational
phases. There are a number of problems in which
there are inter-iteration dependencies that might at
first appear to inhibit parallelization. These data
dependency patterns

(1) are known only at run time but,

(2) can be fully predicted before a program enters
the irregular loop or loops. Figure 8 shows the
back substitution phase of a sparse matrix
factorization, a simple algorithm of this type.

This is similar to solving sparse triangular systems of
linear equations arising from ILU preconditioning
methods.”*?” Another example of this class is the tree
generation phase of the adaptive fast multipole algor-
ithms for particle dynamics.”®? The key problem in
implementing these algorithms is to detect and exploit
opportunities for partial parallelization. In Fig. 8, it
is often possible to carry out many simultaneous row
substitutions. The sparsity structure of the system
determines which row substitutions can be carried

C Adaptive Two Mesh Algorithm
C Coarse mesh U, covers entire domain

C Refined mesh U, covers “active” portion of domain
C Location, shape, and size of refined mesh all change

dok.=1to K
Sweep over the U,

Flag region of U, that should be refined.

If flagged region is not empty.
Modify shape of U,

Interpolate boundary values for U, from U..

do k., =1 to K,
Sweep over U,
end do
Inject values of U, into U,
end do

Fig. 7. Adaptive two mesh algorithm.

Software support for synchronous problems 49

T Implicit Multiphase
C Example - sparse triangular solve (unit diagonal)

dot=1,N
(i) = rhs(i)
doj = ija(i),ija(i+1) -1
y(i) = y(3) — a(3) * y(eol (1))
end do
end do

Fig. 8. Implicit multiphase.

out concurrently; however, this information is only
available at run time. In such problems, we carry
out a form of run time preprocessing with the goal
of defining a sequence of loosely synchronous
computational phases. In bus based shared memory
multiprocessors, we have demonstrated that it is
possible to integrate run time parallelization with
compilers.® We anticipate that it will also be possible
to link run time parallelization with compilers aimed
at scalable multiprocessors and have carried out
preliminary work in this area.

A more difficult problem is that of run time
aggregation of work and data. When we carry out
sparse computations such as sparse triangular solves
or sparse direct factorizations,”' our run time prepro-
cessing can determine the number and content of the
concurrent computational phases that will comprise
a computation. We will call this process run time
aggregation or run time tiling. There have been a
variety of numerical algorithms to carry out what we
call run time tiling for multiprocessor and vector
computers; a small subset of this extensive collection
of methods may be found in Refs 32 and 33.

3.5. Static and dynamic structured problems

This class of problems consists of highly structured
computations on sets of subdomains that are coupled
in an irregular manner. The computations on each
individual subdomain are frequently highly structured,

Fig. 9. Two-mesh refinement.

but the computational relationship between the sub-
domain is known only at run time. Furthermore, the
relationship between the subdomains frequently
changes dynamically during the course of a computa-
tion. The examples described in this subsection differ
from the examples described in the previous four
subsections in that the previous problems consist of
irregularly coupled “points”, whereas we now deal
with collections of nontrivial structures. Examples of
such problems include the adaptive mesh method
described below and a combined hydrodynamics and
particle astrophysical simulations implemented by
Edelsohn at Syracuse.* The key to efficiency on these
problems is to aggressively apply optimizations to the
regular subproblems, which can be implemented with
lower overheads. Also, the larger granularity of the
coupled subproblems can be exploited to reduce
preprocessing overheads and also reduce memory
requirements.”

An example of this class is shock profiling as
described in Ref. 35. The basic problem is to solve
a partial differential equation in the presence of a
shock, computing the profile (detailed shape) of the
shock. Resolution of the profile implies that a highly
refined grid must be used in a neighborhood of the
shock. The method initially computes the solution on
a coarse mesh. An error estimator is then applied to
determine the regions that will be covered by a refined
mesh. An example mesh from this two-level refinement
is shown in Fig. 9. The solution is time-dependent.

saaas

:
Fig. 10. Mesh used to calculate interaction of planar shock
wave with a double wedge.

50) A. CHOUDHARY et al.

Time-marching on the refined mesh is performed by
taking many (e.g. 100) time steps on the refined mesh
for a single coarse-grid time step. The refined mesh is
dynamic—its location, shape, and size all change.
This means that the relationship of the two meshes
will change during the execution of the program.
Hence the structures of the computations change with
time and a nonuniform communication pattern arises
due to the sharing of data between grids. This
example also generalizes to a full structured adaptive
multigrid. An example of a mesh employed in such
a full structured adaptive multigrid may be seen in
Fig. 10. This mesh is used in a solution of the Euler
equations used to simulate interaction of a planar
shock wave with a double wedge.

4. CONCLUSIONS

In this paper, we presented a partial classification
of scientific and enginegring applications which are
irregular and loosely synchronous from the perspective
of parallel processing. This classification should be
helpful in extending Fortran D to permit its applica-
tion to a large class of loosely synchronous problems.
There are a few important tasks which may be
necessary for the above. While we have made
significant progress on each of these tasks, there is
still much work that remains to be carried out.

Firstly there is a need for development of automatic
and semi-automatic data partitioners and a strategy
for incorporating these in a compiler. Currently,
partitioners are designed using programmers’ a priori
knowledge about a problem’s computational struc-
ture and its expected computational behavior. There
has been significant progress in the development of
robust partitioners for static single phase loosely
synchronous calculations, see e.g. Refs 18 and 37, but
much work remains to be done in order to deal with
other problem classes. Similarly, we have proposed a
scheme for integrating data partitioners into com-
pilers that appears to be appropriate for static single
and perhaps for multiphase loops.'” Much work is
needed to generalize these methods before they are
able to handle the more challenging classes of com-
putations. Some preliminary work along these lines
has been reported in Refs 38 and 39.

Time-dependent or iterative loosely synchronous
computational problems can exhibit a range of
dynamic behaviors. These behaviors can be divided
into three rough categories:

(A) data dependency pattern is static and does
not change between iterations;

(B) data dependency pattern is modified on
occasions but between changes, the dependency
pattern remains static for many iterations;

(C) data dependency pattern changes every
iteration.

Problems in category A would fall either into the
class of static, single phase loosely synchronous

computations (Sec. 3.1) or into the class of static,
multiple phase loosely synchronous computations
(Sec. 3.2), while problems in categories B and C
would fall into the class of unstructured adaptive
problems (Sec. 3.3 and 3.4) or structured adaptive
problems (Sec. 3.5). It is also useful to categorize
irregular problems by whether a given iteration or
time step is composed of multiple, dissimilar loosely
synchronous computational phases. In such cases, it
is often necessary to partition a problem in a way that
takes into account all of the computational phases
in an iteration. Further, there are issues related to
partitioning and run time aggregation,’>** which
can affect the performance of these problems.

Secondly, we need to standardize extensions to
Fortran D to facilitate the specification of partitioning
strategies and irregular meshes. These extensions will
be used to

(1) indicate which loops in a program should be
taken into account when considering how to
partition distributed arrays;

(2) allow users to force the selection of a particular
partitioner;

(3) allow users to assert that a given set of loop
dependencies can or cannot change when the
loop is iteratively invoked; and

(4) allow users to specify the granularity with
which parallelism is to be exploited.

In Ref. 17, we have proposed extensions (and
developed run time support) that fulfil the first two
of the above mentioned goals. There is also a need
for development of new data structures targeted
towards problems in which highly structured com-
putations on a set of subdomains are coupled in an
irregular manner. We are particularly interested in
representing structured adaptive problems in which
subdomains are coupled by irregular tree dependency
structures.

In this volume, in the paper by Sussman et al., we
describe the portable run time support for static single
and multiphase problems, and for static structured
problems. This run time support is oriented towards
distributed memory MIMD architectures. The run
time support for static single and multiphase problems
has also been ported to SIMD architectures, but the
static structured run time support has as yet not been
implemented on an SIMD architecture. There is still
a clear need for development of appropriate run time
support for Adaptive Irregular Computations, Implicit
Multiphase Loosely Synchronous Computations,
and Dynamic Structured Problems targeted towards
SIMD and MIMD distributed memory architectures.

Acknowledgements—We wish to thank Mavriplis at ICASE
for the mesh illustrations depicted in Figs 3, 4, 6 and 7
and thank James Quirk for the mesh depicted in Fig. 10.
The research of Alok Choudhary, Geoffrey Fox and Sanjay
Ranka was supported in part by DARPA under contract
no. DABT63-91-C-0028. The content of the information

Software support for synchronous problems 51

does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.
The research of Joel Saltz was supported by the National
Aeronautics and Space Administration under NASA contract
NAS1-18605, while the author was in residence at ICASE,
and supported from NSF grant ASC-8819374 while the
author was in residence at Yale University. The research of
Seema Hiranandani, Ken Kennedy and Charles Koelbel was
supported in part by the Center for Research on Parallel
Computation, a National Science Foundation Science and
Technology Center. Additional support was provided by
DARPA under contract no. DABT63-91-C-0028. The
content of the information does not necessarily reflect the
position or the policy of the Government and no official
endorsement should be inferred.

1.

10.

1.

12.

13.

. Y. Saad,

REFERENCES

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon
and D. Walker, Solving Problems on Concurrent Com-
puters, Prentice-Hall, Englewood Cliffs, New Jersey,
1988.

. G. C. Fox, “Parallel problem architectures and their

implications for parallel software systems,” DARPA
Workshop, Providence, RI, February 1991 (also
SCCS-78).

. G. C. Fox, “The architecture of problems and port;

able parallel software systems,” Supercomputing 91,
November 1991, also SCCS-134.

. G. C. Fox, “What have we learnt from using real

parallel machines to solve real problems?” The Third
Conference on Hypercube Concurrent Computers and
Applications, Vol. 2, January 1988.

. G. C. Fox, “Fortran D as a portable software system

for parallel computers,” Presentation at Supercomputing
USA [Pacific *91 Conference, Santa Clara, CA, June 1991
(also SCCS-91).

“Communication complexity of the
Gaussian elimination algorithm on multiprocessors,”
Linear Algebra Applications 77, 315-340 (1986).

. D. L. Whitaker, D. C. Slack and R. W. Walters,

“Solution algorithms for the two-dimensional Euler
equations on unstructured meshes,” in Proceedings
AIAA 28th Aerospace Sciences Meeting, Reno, Nevada,
January 1990.

. R. Das, J. Saltz and H. Berryman, “A manual for parti

runtime primitives—revision | (document and parti soft-
ware available through netlib),” Interim Report 91-17,
ICASE, 1991.

. C. Koelbel and P. Mehrotra, “Compiling global name-

space loops for distributed execution” (to appear in
IEEE Transactions on Parallel and Distributed Systems,
July 1991), Report 90-70, ICASE, 1990.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U.
Kremer, C. Tseng and M. Wu,” Fortran D language
specification,” Department of Computer Science, Rice
COMP TR90-141, Rice University, December 1990
(also SCCS-42C).

D. J. Mavriplis, “Three-dimensional unstructured
multigrid for the Euler equations,” paper 91-1549¢p, in
AIAA 10th Computational Fluid Dynamics Conference,
June 1991.

D. Baxter, J. Saltz, M. Schultz, S. Eisentstat and
K. Crowley,” An experimental study of methods for
parallel preconditioned krylov methods,” in Proceed-
ings of the 1988 Hypercube Multiprocessor Conference,
Pasadena, CA, pp. 1698, 1711, January 1988.

E. Anderson and Y. Saad, “Solving sparse tri-
angular linear systems on parallel computers,” Inter-
national Journal of High Speed Computing 1(1), 73-95
(1989).

. D. W. Walker, “Characterizing the parallel perform-

ance of a large-scale, particle-in-cell plasma simulation

16.

17.

18.

19.

20.

21.

22

23.

24,

25.

26.

27.

28.

29.

30.

31

32

33.

code, Concurrency: Practice and Experience 2(4),
257-288 (1990).

. P. C. Liewer and V. K. Decyk, “A general concurrent

algorithm for plasma particle-in-cell simulation codes,
Journal of Computational Physics 85(2), 302-322 (1989).
S. Baden, “Programming abstractions for dynamically
partitioning and coordinating localized scientific calcu-
lations running on multiprocessors,” SIAM J. Scientific
and Statistical Computation 12(1), 145-157 (1991).

R. Das, R. Ponnusamy, J. Saltz and D. Mavriplis,
“Distributed memory compiler methods for irregular
problems—data copy reuse and runtime partitioning,”
in Compilers and Runtime Software for Scalable Multi-
processors (edited by J. Saltzand P. Mehrotra), Elsevier,
Amsterdam, to appear.

H. Simon, “Partitioning of unstructured mesh problems
for parallel processing,” in Proceedings of the Con-
ference on Parallel Methods on Large Scale Structural
Analysis and Physics Applications, Pergamon Press,
Oxford, 1991.

B. R. Brooks, R. R. Bruccoleri, D. B. Olafson, D. J.
States, S. Swaminathan and M. Karplus, “Charmm:
a program for macromolecular energy, minimization,
and dynamics calculations,” Journal of Computational
Chemistry 4, 187 (1983).

A. N. Choudhary and J. H. Patel, Parallel Architectures
and Parallel Algorithms for Integrated Vision Systems,
Kluwer, Boston, MA, 1990.

The DARPA Image Understanding Benchmark for
Parallel Computers, Journal of Parallel and Distributed
Computing 11, 1-24 (1991).

P. D. Coddington and C. F. Baillie, “Cluster algorithms
for spin models on MIMD parallel computers,” The Fifth
Distributed Memory Computing Conference, Charleston,
South Carolina, 9-12 April.

L. Dagum, “Data parallel sorting for particle simula-
tion,” NASA Ames Research Report, September 1991.
G. Warren, W. Anderson, J. Thomas and T. Roberts,
“Grid convergence for adaptive methods,” paper 91-
1592, in AIAA 10th Computational Fluid Dynamics
Conference, June 1991.

J. J. Quirk, “An adaptive grid algorithm for computa-
tional shock hydrodynamics,” Ph.D. thesis, Cranfield
Institute of Technology, U.K., 1991.

P. Venkatakrishnan, “Preconditioned conjugate gradient
methods for the compressible Navier-Stokes equations,”
AIAA Journal (June 1991).

P. Venkatakrishnan, J. Saltz and D. Mavriplis, ““Parallel
preconditioned iterative methods for the compressible
Navier-Stokes equations,” in /2th International Con-
ference on Numerical Methods in Fluid Dynamics,
Oxford, U.K., July 1990.

G. C. Fox, “Hardware and software architectures for
irregular problems architectures,” invited talk at ICASE
Workshop on Unstructured Scientific Computations on
Scalable Multiprocessors, Nagshead, NC, October 1990
(also SCCS-111).

J. K. Salmon, “Parallel hierarchical N-body methods,”
Tech. Report, CRPC-90-14, Center for Research in
Parallel Computing, Caltech, Pasadena, CA, 1990.

J. Saltz, R. Mirchandaney and K. Crowley, “Run-time
parallelization and scheduling of loops,” to appear in
IEEE Transactions on Computers, 1991, Report 90-34,
ICASE, May 1990.

I S. Duff and J. K. Reid. Direct Methods for
Sparse Matrices, Oxford Science Publications, Oxford
University Press, New York, 1986.

A. George, M. T. Heath, J. Liu and E. Ng, “Sparse
Cholesky factorization on a local memory multi-
processor,” SISSC 327-340 (1988).

C. Ashcraft, S. C. Eisenstat and J. W. H. Liu, “A fan-in
algorithm for distributed sparse numerical factorization,”
SISSC 11(3), 593-599 (1990).

52

34.

3s.

36.

37.

A. CHOUDHARY et al.

D. J. Edelsohn, “Hierarchial tree-structures as adaptive
meshes,” SCCS Report-193, Syracuse University.

H. Berryman, J. Saltz and J. Scroggs, “Execution time
support for adaptive scientific algorithms on distrib-
uted memory machines,” to appear in Concurrency:
Practice and Experience 1991, Report 90-41, ICASE,
May 1990.

J. Quirk, “An alternative to unstructured grids for
computing gas dynamic flows around arbitrarily com-
plex two-dimensional bodies,” ICASE Report 92-7,
1992.

S. Hammond and R. Schreiber, “Mapping unstructured
grid problems to the Connection Machine,” Report
90-22, RIACS, October 1990.

38.

39.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol
and K. Crowley, “Principles of runtime support for
parallel processors,” in Proceedings of the 1988 ACM
International Conference on Supercomputing, St. Malo,
France, pp. 140-152, July 1988.

L. C. Lu and M. C. Chen, “Parallelizing loops with
indirect array references or pointers,” Proceedings of
the Fourth Workshop on Languages and Compilers for
Parallel Computing, August 1991,

. P. C. Liewer, E. W. Leaver, V. K. Decyk and J. M.

Dawson, “Dynamic load balancing in a concurrent
plasma PIC code on the JPL/Caltech Mark III hyper-
cube,” Fifth Distributed Memory Computing Conference,
pp. 939-942, 1990.

