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Abstract. Three parallel physical optimization algorithms for allocating irregular data to multicomputer nodes are
presented in this paper. They are based on simulated annealing, neural networks and genetic algorithms. The perfor-
mances of the algorithms are evaluated and compared. All three algorithms deviate from the sequential versions in or-
der to achieve acceptable speed-ups. The parallel simulated annealing (PSA) and neural network (PNN) algorithms
include adaptive communication schemes for maintaining both good solutions and reasonable execution times. PNN
also includes a data reallocation step to further reduce the communication overhead. Yet, PNN has the smallest effi-
ciency whilst the parallel genetic algorithm (PGA) shows excellent efficiency due to its embarrassing parallelism. The
three parallel algorithms maintain the good solution qualities and the non-bias properties of their sequential counter-
parts. Also, they are scalable. The comparison of the parallel physical algorithms shows their suitability for different
applications. For example, PGA yields the best solutions; but, it is the slowest of the three. PNN is the fastest; but, it
yields lower quality solutions. PSA's performance lies in the middle.
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1. Introduction

One of the first steps in data-parallel programming for distributed-memory MIMD computers, i.c.
multicomputers, is the partitioning of the data set into disjoint subsets and the allocation of the sub-
sets to the multicomputer nodes. This step is henceforth referred to as data allocation. The alloca-
tion of the data is a primary factor in determining the execution time of the associated parallel
algorithm. Hence, the data allocation problem can be considered as an optimization problem that
aims for minimizing the total execution time subject to the constraints presented by the parallel
algorithm and the parallel machine.

For some regular data sets and multiprocessor topologies, for certain applications, optimal or near-
optimal allocations can be easily determined, by inspcétion or by simple techniques. However,
good allocations of general and irregular data sets to various multiprocessor topologies is very dif-
ficult to accomplish. In fact, the data allocation problem is an NP-complete resource allocation
problem. Several heuristic methods have been suggested for finding good sub-optimal solutions.
Important deterministic methods include recursive coordinate bisection, recursive graph bisection,
recursive spectral bisection, mincut based methods, clustering techniques, geometry based map-
ping, block based spatial decomposition, and scattered decomposition [Berger 1987; Chrisoch-
oides et al. 1991; Ercal 1988; Fox 1988; Fox et al. 1988; Houstis et al. 1990; Nolting 1991; Pothen
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et al. 1990; Simon 1991; Walker 1990; Williams 1991]. Deterministic heuristics are fast; but, they
usually favor certain problem or multicomputer configurations. Another class of methods for data
allocation consists of physical optimization methods, which employ techniques from natural sci-
ences [Fox 1990]. Simulated annealing [Kirkpatrick et al. 1983], from statistical physics, views
optimization as finding the ground state of a system in a heat bath. The system temperature is grad-
ually reduced and a Monte Carlo algorithm is used to simulate the system’s behavior at each tem-
perature. Biologically motivated neural networks [Hopfield and Tank 1986; Fox and Furmanski
1988] are based on a mean field theory derivation, from physics, to quickly find good minima in
the search space. Genetic algorithms [Goldberg 1989; Holland 1975], from evolutionary biology,
are also used for optimization problems since they maximize the fitness of evolving population of
structures. These three paradigms have been applied to the data allocation problem [Flower et al
1987; Fox et al. 1988; Fox and Furmanski 1988; Mansour and Fox 1991a] and their performances
have been evaluated and compared for a number of test cases [Mansour and Fox 1991b]. They yield
good sub-optimal solutions and have more general applicability than deterministic methods,
although they are slower. To speed up their operation, the use of hybrid techniques and the addition
of a preprocessing graph contraction step were recently explored [Mansour and Fox 1991c]. The
implementation of both suggestions led to a reduction in execution time. However, the paralleliza-
tion of the physical methods is particularly attractive for fast execution, especially that the multi-
computer to whose nodes data are to be allocated is available anyway. In fact, for large or
dynamically varying problems, parallel implementation is indispensable to circumvent memory
space as well as time constraints.

A large class of parallel algorithms for scientific and engineering problems is loosely-synchronous
[Fox et al. 1988]. Loosely-synchronous algorithms consist of compute-communicate cycles. In
each cycle, multicomputer nodes carry out local computations on their allocated data subsets con-
currently and independently. Then, nodes communicate to exchange boundary information. In this
model, the total execution time of a parallel program is determined by the slowest node, which is
responsible for the maximum combination of computational work-load and communication cost.
In this paper, we concentrate on allocating irregular data sets to hypercube nodes for loosely-syn-
chronous programs; nevertheless, the methods are not restricted to these cases. This work consti-
tutes a part of a broader automatic parallelization effort, the Fortran D programming system, which
is a joint project of Rice University, ICASE and Syracuse University [Fox et al 1990]. In the For-
tran D system, we are interested in including a number of data allocation schemes that suit a variety
of problems and multiprocessors. High quality data allocation is needed for irregular problems,
such as finite elements in complex domains, and particle dynamics with finite range forces. We also
need to target SIMD and MIMD parallel machines with a variety of topologies and different com-
munication mechanisms.

In this paper, we present three parallel physical optimization algorithms: parallel simulated anneal-
ing (PSA), parallel neural network (PNN) and parallel genetic algorithm (PGA). All three algo-



rithms deviate from their sequential counterparts, in order to achieve acceptable speed-ups. Thus,
we first investigate their individual properties, in comparison with the sequential ones, using four
test cases with different features. Then, their performances are compared. Two recursive bisection
methods are also included in the comparison as representative deterministic heuristics. It is worth
noting, however, that the three parallel algorithms can be regarded as general paradigms for paral-
lelizing the physical optimization methods, whose application is not restricted to data allocation.

This paper is organized as follows. Section 2 includes a definition of the problem. In Sections 3,
4, and 5, the three parallel algorithms are presented and their individual properties are discussed.
In Section 6, a comparison of their performances is given. In Section 7, conclusions are presented.

2. Problem Description

Given a problem and a parallel algorithm, ALGO, the problem can be represented by a computa-
tion graph with P vertices and edges. The P vertices represent the data objects in the underlying
data set, and the edges represent data dependences specified by ALGO. Data allocation refers to
dividing the computation graph among N hypercube nodes for minimizing the total execution time
of the parallel program, associated with ALGO. Thus, the execution time represents the objective
function to be minimized; it is determined by the slowest node and is typically given by
OF,,, = max, (W (n)+ X,C(nm)}, (1)
m

where W(n) is the computational load for node n, and C(n,m) is the cost of communication with
node m. OF OF .0t 18 computationally expensive for incremental changes needed in the phys-
ical algorithms. It can be replaced with a cheaper approximate quadratic objective function, given

by
OF ypr = YR W?(n) +B R, Y C(nm), @)

where R is a machine dependent ratio of communication to computation of one word; ¥ and P are
scaling factors expressing the relative importance of the computation and the communication
terms, respectively. Itis assumed, in this work, that the communication cost is given by Hamming
distances and that latency and link contention can be ignored. Obviously, the determination of
accurate cost functions depends on the particular algorithm and the the specific architecture and
software of the multicomputer. Thus, OF ,, and OF and their assumptions refer to one set of
algorithm and machine characteristics. However, they are not restrictive and can be modified to fit
other characteristics. Further, their assumptions are considered reasonable for typical cases. For
example, message latency is relatively small when message sizes are sufficiently large. Also, the
conservative Hamming metric favors near-neighbor communication and, hence, would reduce the
likelihood of link contention.

Although OF is used for the physical optimization methods, the data allocations they produce
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are still evaluated using OF typ - The quality of a solution of the physical algorithms refers to the
efficiency of the parallel program, associated with ALGO, and is defined as EnW (n) IN*OF xyp).
The solution itself is represented as an allocation vector, ALLOC(], with length P; an element n at

index p indicates that data object p is allocated to node n.

The implementation of the parallel physical algorithms and the experimental work reported below
involve the execution of the physical algorithms on Ny-node NCUBE/2. The interesting case,
when Ny =N, occurs when the physical data allocation algorithms are executed on the same hyper-
cube to which data are to be allocated. The efficiency of a physical algorithm is the time of the
sequential algorithm (Ny=1) divided by the product of N; and the parallel time (Ny; nodes).

3. Parallel Simulated Annealing Algorithm
3.1. Algorithm

Simulated Annealing (SA) for data allocation usually starts with a random allocation vector,
ALLOCI]. This random configuration is associated with a high temperature and a high energy
state. Energy is given by the objective function, OF ,,,,, and the goal of SA is to find a configu-
ration that corresponds to the ground state (minimum). The configuration is cooled down from the
initial temperature according to a schedule. In sequential SA [Mansour and Fox 1991b], a number
of successive perturbations, or moves, to the configuration are performed at each temperature, until
thermal equilibrium is reached. A perturbation is accomplished by a random reallocation of a ran-
domly chosen data object, i.e. by a random change to an element in ALLOCT]. A perturbation that
decreases the objective function value (downhill move) is always accepted; a perturbation that
increases it (uphill move) is allowed only with a temperature-dependent probability. A change in
OF 4, due to reallocating data object p from node n to m depends on the total numbers of objects
allocated to n and m, in ALLOC(], and on the change in communication cost due to the reallocation
[Mansour and Fox 1991a]. The numbers of objects allocated to the nodes are henceforth repre-
- sented by vector ALLOC_NUMY(] with length N. Thermal equilibrium at each temperature is
reached when the numbers of attempted or accepted perturbations exceeds some values, MAX_-
ATTEMPTS and MAX_ACCEPTS, respectively. The cooling schedule determines the next tem-
perature as a fraction of the current one. In our implementation, this fraction varies between 0.91
and 0.99 in a direction that is opposite to the slope of the number of accepted perturbations. The
initial and freezing temperatures correspond to a high probability and a very small probability of
accepting uphill moves, respectively.

The SA algorithm is very sequential, since it assumes one perturbation attempt at one time. A num-
ber of strategies have been suggested for Parallel Simulated Annealing (PSA) with acceptable
speed-ups [Greening 1990; Eglese 1990]. The strategy adopted in this paper is based on executing



the sequential SA concurrently and loosely-synchronously in all nodes of the hypercube, where the
nodes contain disjoint segments of the data allocation vector, ALLOC(], and the associatcd com-
putation subgraphs. This strategy is called asynchronous in [Greening 1990] and error SA in
[Eglese 1990]; we henceforth refer to it simply as PSA. It is adopted in this work because it is faster
and more scalable than the other known strategies, at least for our application. This strategy was
applied to dynamic load balancing in [Williams 1991]. Our design of PSA and its application to
data allocation have similar features. However, our adaptive communication scheme, illustrated
below, is more flexible and can lead to better speed-ups. In addition, we include explicit discussion
of the design choices made and employ diverse test cases, including 3-dimensional unstructured
tetrahedral meshes, for performance evaluations.

Clearly, PSA is not faithful to the sequential SA because perturbations can occur concurrently and
not successively. Hence, the local node (in Ny-node cube) view of a change in objective function,
AOF, due to a reallocation, in the local ALLOC[] segment, of a data object from node nl to n2 is
not always consistent with the global view. Since A OF depends on ALLOC_NUM[n!I] and
ALLOC_NUM[~n2] and on the change in communication costs, three types of inconsistencies can
be identified in PSA. The first type occurs if two (or more) concurrent perturbations, in different
nodes in Ny;-node cube, involve data objects pI and p2 (or more) with ALLOC[pI] = ALLOC[p2].
The second inconsistency type is concerned with ALLOC_NUM(] in different nodes. The third
inconsistency type occurs due to local use of outdated information about nonlocal elements of
ALLOC[] that are involved in the communication part of AOF. We emphasize, again, that these
inconsistencies are due to the deviation from the sequential algorithm. If they are allowed to accu-
mulate, they lead to degeneration. Inconsistency accumulation leads to either a convergence to a
bad minimum or an increase in the number of passes needed to maintain reasonable solutions, caus-
ing a decrease in speed-up in the latter case. The design of PSA discussed in the remainder of this
section consists of steps, which address these potential sources of inconsistencies, for producing
solutions comparable to those of sequential SA in acceptable execution times. The design strategy
is based on frequently unifying the local views of the global state in order to prevent degeneration.
Unifying involves inter-node communication, which reduces the speed-up of PSA. However, an
adaptive scheme is devised below for reducing the communication cost.

The first question that arises for PSA is how to allocate ALLOC(] and the associated computation
graph to Ny hypercube nodes, which is the same problem that PSA aims for solving in the first
place. We have chosen a negligible-time naive allocation scheme, where ALLOC(] is split into
contiguous segments, DSy, DS, ..... that are as equal as possible. The elements in DS; and the
corresponding computation subgraph are allocated to node i. Clearly, this allocation scheme is far
from optimal and the speed-up for the PSA algorithm is sensitive to the numbering order of the
input data because it determines the amount of inter-node communication.

An outline of PSA is given in Figure 1. After the naive allocation step, the algorithm includes



boundary communication and global summation steps, in addition to the local sequential SA pro-
cedure. The global summation of the number of attempted and accepted perturbations in all nodes
is required to detect thermal equilibrium. At high temperatures, the number of accepted moves at
one temperature is high and, thus, the number of elements that change in ALLOC(](] at each attempt
might be large. Therefore, the magnitudes of the three inconsistency types, described above, would
grow rapidly if local SA steps proceed without correction. Corrections can be accomplished in two
ways: a global sum operation to unify ALLOC_NUM(] in all nodes, correcting the second incon-
sistency type, and inter-node communication of boundary information, correcting the third incon-
sistency. The first inconsistency type occurs randomly and contributes to an inherent
“erroneousness” of PSA, mainly at high temperatures.

Determine segment of ALLOC(] and computation subgraph allocated to my_node;
Determine inter-node communication information ( nodes, boundary elements);
Generate random ALLOC[] segment;
Determine Initial temperature, T(0) (1 global comm.);
Determine Freezing temperature;
Communicate boundary information;
Global summation for ALLOC_NUM([];
while ( T(i) > Tfreeze and NOT converged ) do
Determine v, .;
while (not equilibrium) do
Local SA step;
Update #attempted and #accepted perturbations at v, .;
Communicate boundary infoat v, ;
Update ALLOC_NUM]] at v, (global sums);
end_while
T(i) = k* T(i-1)
end_while (end 1 pass)

Figure 1. PSA node algorithm for data allocation.

Obviously, it would be disastrous for PSA’s speed-up to make the above-mentioned corrections at
every attempted move or at a high frequency. On the other hand, low-frequency corrections would
lead to degeneration. However, as temperature decreases the number of accepted moves decreases
and, thus, the likelihood of inconsistencies also decreases; at low temperatures PSA approaches
SA. This observation points to a remedy for the speed-solution dilemma, which is the use of an
adaptive correction scheme. In this scheme, the frequency of global summation of the numbers of
attempted and accepted moves, v, can be annealed, and the frequencies of updating ALLOC_-
NUMI, Vysum: and of inter-node communication, v, dry® €20 be made adaptive to the number of
accepted moves. Specifically, v, is decreased linearly from one every attempt, at initial temper-
ature, to a few times (1 to 10) per MAX_ATTEMPTS per node, at freezing temperature. Vy,,



equals one every few, say two, accepted moves per node. V, ;.. equals one every 3*(P/Ny)*(1/
SMALL_GRAIN) accepted moves per node, where SMALL_GRAIN is the size of a grain whose
boundary elements would be about one third. This value of v, dry makes use of the fact that the
boundary elements that are needed in other nodes are only a fraction of the local grain size, (P/Ny),
and that this fraction, generally, decreases with bigger granularity. We emphasize that the number
of global summation updates of ALLOC_NUM(] and the number of inter-node communication
operations are decreased with temperature due to their dependence on the decreasing number of
accepted moves. We also note here that the experimental results below show that while such com-
munication frequencies maintain reasonable speed-ups by allowing inconsistencies to occur in.
between corrections, these inconsistencies are corrected so frequently that the final solution quality
is not degraded.

3.2. Experimental Results

In this subsection, the properties of PSA are investigated; the quality of its solutions, efficiency,
and robustness are experimentally examined. We give particular attention to possible differences
in performance between PSA and SA due to the inconsistencies allowed in PSA. Three structures,
shown in Figure 2, are used. FEM-W is a 545-point unstructured tetrahedral finite-element coarse
discretization of an aircraft wing. GRID-P is a 551-point 2-dimensional grid-based discretization
of a broken plate having a large variation in the spatial density of its points. FEM-2 is a 198-point
3-dimensional structure. Four allocation test cases are considered: Testl is allocation of FEM-W
to 4-cube (N=16), Test2 is FEM-W to 3-cube (N=8), Test3 is GRID-P to 4-cube, and Test4 is FEM-
2 to 4-cube. The four test cases provide different geometries, granularities, spatial dimensionality,
and graph connectivities. The solution quality is the concurrent efficiency that results from the data
allocation solution, as explained in Section 2. All results in the paper are averages of ten runs.

Figures 3, 4, 7 and 8 show. the efficiency and the number of passes (temperatures) of PSA for dif-
ferent number of nodes, Ny, for the four test cases. The notion of efficiency, or speed-up, is not
precise here since the parallel algorithm deviates from the sequential one. However, it still serves
as a measure of the parallelizability of the annealing algorithm. This comment also applies to PNN
and PGA in the following sections. All figures show a decrease in efficiency when Ny, increases
and granularity decreases. Efficiency drops due to an increase in the relative cost of global summa-
tion operations and inter-node communication. It decreases more rapidly for FEM-2 because it has
the smallest granularity. The curves of the number of passes do not show a uniform and consistent
behavior. However, it can be seen in the four cases that, with the adaptive communication frequen-
cies, there is no significant increase in the number of passes for larger Ny. Hence, the inconsisten-
cies allowed in PSA do not lead to significant delays in the progress towards the final solution. But,
the communication cost per pass increases with Ny;.

PSA’s solutions are given in Figures 5, 6,9 and 10. Clearly, PSA’s solutions are very close to those



of sequential SA (N,=1) in all cases except for the small granularity cases of FEM-2, which is sdll
within a small fraction. Thus, the deviation of PSA from its sequential counterpart does not result
in premature convergence and degradation in solution quality, as long as the grain size is not too
small. Consequently, the solutions and the efficiency figures show that our scheme of annealed
V.. andadaptive vy and v, leads to both, preservation of SA’s solution quality and accept-
able efficiency values.

Sequential SA is fairly robust. Robustness, in this paper, refers to the insensitivity to problem and
design parameters. PSA includes additional parameters, namely the communication frequencies.
Although the adaptive communication scheme described above is adequate, these parameters make
PSA somewhat less robust than sequential SA.
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Figure 2. Three examples.
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4. Parallel Neural Network Algorithm
4.1. Algorithm

The sequential Bold Neural Network (NN) algorithm [Fox and Furmanski 1988; Mansour and Fox
1991b] consists of d iterations, where d= logN is the dimension of the hypercube to which the data
objects are to be allocated. In each iteration, i, the current 2! subsets of objects are bisected and
allocated to 2' subcubes. After the d-th iteration, N subsets become allocated to the nodes and, thus,
the allocation vector, ALLOC[], becomes fully specified. In each iteration, random spin values are
generated in the -1 to 1 range. Each spin s(e,i,t) is associated with data object e, where i corresponds
to the i-th bit in a node label and ¢ stands for time. A number of sweeps over the entire problem are
then performed until convergence. At convergence, new. spin subdomains, SPN_SD , with k=1
to 2', are formed. The spin direction, 1 (up) or -1 (down), determines the subdomain in which the
spin (or data object) lies. In each sweep, the spins are sampled at random and their values are up-

dated as follows: ¥

s(e,ijt+1) = tanh { -a s(e,i,t) + Bz G(s,s’) - (-5—) SPN_SUM[SPN_SD,] }, 3
s' i-1

where o, B and ¥ are scaling factors; D, ; is the size of the current subdomain (to be bisected) to
which data element e belongs; SPN_SUM]] is a vector of (up to N) net sums of spin values in cur-
rent spin subdomains; G is the coupling matrix determined from the problem’s computation graph.
The derivation of equation (3) uses OF ,,,, as the energy function to be minimized. The second
term in (3) represents local interaction which aligns neighboring spins. The third term represents a
long-range force that spans the entire current subdomain, to be bisected, and is responsible for the
up/down spin balance in this subdomain. The first term is a noise term.

The Parallel Neural Network (PNN) algorithm takes a similar approach to that of PSA. It is based
on executing the sequential NN concurrently and loosely-synchronously in the Ny hypercube
nodes, where the local memories of the nodes contain disjoint subsets of spins, i.e. data objects,
and their associated computation subgraphs. This gives rise to parallelization issues similar to those
encountered in PSA. However, the NN algorithm suggests different ways to address these issues.
For example, the initial allocation of spins to Ny nodes follows the naive scheme used in PSA for
the first bisection step of PNN. But, the results of the bisection steps themselves allow a realloca-
tion of spins which subsequently reduces the communication overhead. A suitable reallocation
scheme is discussed below.

PNN also deviates from the sequential operation of NN. According to equation (3), an update of a
spin value s(e) of spin subdomain SPN_SD, atany time in a sweep depends upon the most recent
values of the neighboring spins (second term) and the most recent value of the sum, SPN_-
SUM(SPN_SD, ], of the values of all spins that lie in SPN_SD, . Concurrent spin updating in
PNN, therefore, involves two possible sources of inconsistencies. The first source is the local use
of outdated nonlocal spin values. The second source of inconsistency is the concurrent updating of
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spins that belong to the same subdomain, which leads to what we henceforth refer to as inherent
“erroneousness” of PNN. The design of PNN consists of steps that deal with these inconsistencies
by updating boundary information and global spin summation. Similarly to PSA, an important
component of PNN’s design is a communication scheme which exploits the characteristics of PNN
and is guided by the requirement to maintain both, acceptable solution quality and reasonable exe-

cution time.

Similarly to PSA, the question related to outdated neighboring spin values can be stated as follows:

How often should inter-node communication take place for correcting local information about

neighboring spin values in other nodes and yet keeping the communication frequency as small as

possible? Before answering the question, we make three observations. The first observation is that

the boundary spins, to be communicated, form only a fraction of the spins allocated to a node.

Hence, their values are neither updated nor needed every spin update. The second observation is
experimental; after a number of sweeps, #SWP1, spin domains are formed, although not in their
final configuration. The spins in the middle of a domain become permanently aligned, and only the
spins near the boundaries of the domain might change value/direction. Figure 11 depicts an exam-
ple of spin alignment after a number of update sweeps for the first bisection and their naive alloca-
tion to a 4-node cube. It shows that a large proportion of spins that keep changing direction after
the formation of domains could lie entirely within a node and that spin values at the node bound-
aries might not change for many updates in a sweep and, therefore, need not be communicated
between nodes frequently. The third observation is that some inconsistencies resulting from the use
of outdated neighboring spin values can be tolerated since PNN is inherently “erroneous” anyway.
These observations lead to an internode communication scheme, whereby the frequency of bound-
ary communication, V.., is attenuated with the number of sweeps. V, ;. Starts with a high value,
3 to 6 times per sweep, until #SWP1 and is then gradually decreased to once per Sweep after
#SWP2. #SWP1 and #SWP2 are application dependent. They depend on the dimensionality of the
problem and the degree of connectivity of the computation graph. For example, for 3-dimensional
graphs with high vertex degree, such as that for FEM-W, suitable #SWP1 and #SWP2 would be

2P1/3 and 4P/3, respectively.

0 _§= < node
g - boundary
2 3 _
z [ spin domains
3 i ~ boundary
= (1st bisection)

Figure 11. Boundaries of nodes and spin domains.

The question of updating spin sums, SPN_SUM([], by global operations is similar to that of
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ALLOC_NUM(] in PSA. Here also, the frequency of global summation, V¢_ ., should be kept to
a minimum, whilst not allowing the inconsistency in the local values to grow beyond an acceptable
level. This question can be addressed in two ways. However, we first note that we are interested in
net sums of spin values, not in individual values, where inconsistencies contributing to a sum might
cancel each other. Further, due to the inherent erroneousness of PNN, some magnitude of inconsis-
tency can be tolerated and, hence, the global sums need not be evaluated every spin update. One
way to address the question of updating SPN_SUM(] is simply to perform global summation with
a frequency that decreases with the number of sweeps. The reason for decreasing the summation
frequency is, as mentioned above, that after the formation of spin domains, a smaller number of
spins change values/directions until convergence. A suitable scheme has been empirically found to
be as follows: Vg, starts with a high value, 3 to 6 spin updates in a sweep, until #SWP1 and is
then decreased gradually to a minimum of once per sweep.

Another way to decrease the cost of updating SPN_SUM]] is based on spin reallocation. Given the
small amount of computations required for a spin update, the relative cost of global summation, at
Ve umo 0T updating SPN_SUM(] rises rapidly and PNN’s speed-up starts to vanish for smaller
granularity and large hypercubes. To decrease the summation cost, we reallocate spins to nodes
after each bisection pass so that summation will subsequently be needed within smaller subcubes
instead of the entire cube. The initial allocation remains as described above. After the first bisection
pass, two spin domains are generated. The spins in domain O can be reallocated to nodes in subcube
xx...x0 and those in domain 1 to subcube xx...x1, where x is a don’t-care symbol, as shown in Fig-
ure 12. That is, spins are reallocated so that boundaries of spin domains coincide with node bound-
aries. In the second bisection pass, each of SPN_SUM([0] and SPN_SUM([1] is needed in only one
subcube. Thus, updating the two values can be carried out within the two subcubes concurrently,
which reduces the cost of the global operation to a half of what itis in the first bisection pass. Sim-
ilarly, after the i-th bisection, spins in subdomain j are reallocated to the subcube whose node num-
bers agree in the (i-1)-th least-significant bits with those of j. The cost of updating SPN_SUM(] is
therefore halved with each successive bisection pass, which yields significant overhead reduction
for large hypercubes and improves PNN's scalability. The overhead due to reallocation has been,
experimentally, found to be relatively small and is, anyway, acceptable since it places the data
objects where they should be allocated for the parallel program, ALGO. However, the cost of inter-
node communication might increase for some problems because of possible increase in the number
communicating nodes, with smaller messages. For example, in Figure 12, node 2 has three neigh-
boring nodes instead of two, as in Figure 11. The PNN algorithm is summarized in Figure 13.
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spin domains
~ boundary

Figure 12. Spin reallocation after the first bisection.

Determine spin subset and computation subgraph allocated to my_node;
Find inter-node communication info (nodes,boundary spins);
fori=0to(lg,N-1)do
if (i > 0) then I* after Ist bisection */
Reallocate_spins() and determine my_subcube;
Find inter-node communication info ( nodes,boundary spins);
endif
random spin values, s(e,i,t), e=0 to P-1;
repeat
for all spins 0 to P-1 do .
Global_add(SPN_SSUM[] Jmy_subcube) at V¢, ;
Communicate_boundary(spin values) at v, .
Pick a spin, e, randomly;
Compute s(e,i,t+1); I* equation (3) */
end-for
until (convergence)
Set bit i in the neurons (0 or 1);
end-for

Figure 13. PNN node algorithm for data allocation.

4.2 Experimental Results

Figures 14, 15, 18 and 19 show the efficiency of PNN for the four test cases for different Ny. All
four figures show a rapid decrease in efficiency with increasing Ny and decreasing granularity. The
sharp fall in efficiency reflects the small amount of computation performed by PN N per spin and,
thus, the rapid increase in the relative cost of global and semi-global summation operations for
SPN_SUM(] and in the cost of inter-node communication. However, it is clear that for reasonable
grain sizes the efficiency is acceptable.

Figures 16, 17, 20 and 21 show the quality of the solutions produced by PNN. It seems that a
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decrease in granularity leads to a decrease in quality. However, the decrease is small in some cases
and negligible in others. The decrease can be attributed to considerable increase in the relative
magnitudes of the inconsistencies, in between communication operations, for small grain sizes and
can be ignored for reasonable granularities.

Sequential NN is quite robust; the quality of its solutions is not sensitive to design and problem
parameters. InPNN, v, and v, dry 2TE WO additional parameters whose values affect solutions,

needles to mention efficiency. Although the empirically derived frequencies are adequate, experi-
mental experience has shown that the inclusion of these parameters results in reduced robustness.
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5. Parallel Genetic Algorithm
5.1. Algorithm

A sequential hybrid Genetic Algorithm (GA) starts with a population of randomly-generated pos-
sible solutions, ALLOC]], and evolves over a number of generations [Mansour and Fox 1991a].
Each ALLOCT] in the population is called an individual. In each generation, individuals reproduce
and genetic operators are then applied to the survivors. Individuals are assigned reproduction trials
according to their fitnesses, the reciprocal of OF,,,. Then, pairs of mates are randomly selected
from the reproduction trials list. Crossover is applied to the selected parents by randomly choosing
a contiguously numbered segment of data objects and swapping the respective node allocations.
Mutation, at a low rate, represents a random reallocation of a data object. The algorithm is hybrid-
ized by the inclusion of a hill-climbing procedure for the individuals. The resultant offsprings form

the next generation and the evolution process is continued until convergence.

The Parallel Genetic Algorithm (PGA) described in this section represents a different approach to
that of PSA and PNN. It is based on discontinuous distributed population structures and the shifting
balance theory of evolution. In PGA, the population is divided into subpopulations, i.c. demes, to
which reproduction is restricted. This is a deviation from the classic GA where the whole popula-
tion is a single mating unit. Such a distributed population structure is a better simulation of natural
population and represents a natural way for preserving genetic diversity and, thus, for circumvent-
ing the problem of premature convergence often encountered in the single mating GA model.

PGA’s model of evolution is based on Wright’s shifting balance theory [Wright 1977], in which
evolution consists of three phases. The first and second phases are for random genetic drift and
local intrademe selection. In these phases, the isolated demes explore different parts of the solution
space. Also, favorable gene combinations which correspond to different fitness peaks in the space
are preserved. In the third phase, interdeme selection takes place; demes with higher fitness expand
in size and shift the genetic structure of adjacent demes until they come under the control of the
higher fitness demes. The fitter genetic building blocks spread throughout the population in wid-
ening concentric circles. This evolution model possesses the property of intrinsic parallelism,
which refers to the concurrent and independent exploration by the demes of different regions in the
solution space. It has been chosen, in contrast with other distributed population models, because it
is coarse-grain and promises faster convergence.

The shifting balance model lends itself to an embarrassingly parallel implementation. The popula-
tion is divided into equal N, demes assigned to the nodes of the hypercube and interdeme selection
occurs as migration between neighboring nodes with direct interconnections. Clearly, PGA is per-
fectly load balanced. Further, the time required for the drift and local selection phases, which con-
stitute local computations, is much greater than that for the interdeme selection phase, which is
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associated with inter-node communication. Therefore, the communication overhead is very small.
An outline of a shifting balance theory based PGA is given in Figure 22. The drift and local selec-
tion phases are simulated by a simplified version of the sequential hybrid GA described above. The
simplifications cover features that were included in GA to alleviate premature convergence. Drift
and local selection are performed within each deme, i.e. in each node, for D generations. Interdeme
selection is simulated as a one-way migration of the M% best individuals from the fitter demes to
the less fit neighboring demes, allowing the better structures to spread throughout the population.
Neighborhood, in this context, is associated with the physical interconnection network. Fitter
demes send copies of their M% best individuals. Receiving demes replace their worst M% individ-
uals with the incoming migrants, assuming limited resources for a constant population size. The
parameters D and M depend on the deme size and the required convergence rate. Suitable values
have been empirically found to be about half the deme size for D and 20% to 40% of the deme size
for M [Mansour and Fox 1991d].

Random generation of initial deme.
Evaluate fitness of this deme.
repeat
/* Drift and local selection phases */
for (D drift generations) do
Perform Sequential GA
endfor
[* 1-way migration phase (interdeme selection) */
Find the highest fitness peak in the immediate
neighborhood (including this deme)
if (mynode contains highest peak) then
Send copies of M migrants to less fit neighbors
else
Receive M migrants from the fittest neighbor
Replace M weakest individuals with migrants
" end-if-else
_ until convergence
Solution = Fittest individual

Figure 22. PGA node algorithm for data allocation.

5.2 Experimental Results

Figures 23, 24, 27 and 28 show the efficiency and the number of generations. All figures show
superlinear efficiencies, which increase with Ny,. This indicates that, in contrast with the sequential
classic GA, intrinsic parallelism tends to evolve good solutions in a shorter time, which is evident
in the number of generations taken. In this sense, superlinear efficiency is a property of PGA. As
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expected, inter-node communication was found responsible for less than 3% of the time in the
worst case attempted.

The quality of the solutions are shown in Figures 25, 26, 29 and 30. They are close to the sequential
solutions, although they show a small decrease in quality for the largest Ny,. Previous work [Man-
sour and Fox 1991d] showed that PGA would find better solutions than GA if the design parame-
ters were appropriately tuned and the population size is sufficiently large. In this work, we favor
general setting of parameters and faster execution to small improvements in solution quality.

Sequential GA is more sensitive to design and problem parameters than SA and NN. PGA has
reduced sensitivity with respect to some parameters, such as operator frequencies, since it embod-
ies another mechanism for controlling premature convergence. But D, M and the global conver-
gence detection parameter are additional parameters that affect PGA’s performance for different
problems. The overall result is some decrease in PGA’s robustness.
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6. Comparison of the Algorithms

The measures considered, in this section, for comparing the performances of the three parallel data
allocation algorithms are solution quality, bias, execution time, scalability, robustness, and memory
space requirements.

Figures 31-34 provide compact pictures of the solution quality of the parallel physical algorithms
for the four test cases. In addition, results of two fast bisection heuristics are included to give an
indication of how good the solutions of the physical methods are. The two methods are recursive
coordinate bisection (RCB) and recursive spectral bisection (RSB) [Simon 1991], which partition
a computation graph into subgraphs (data subsets). RSB is regarded as a representative of good
quality heuristics [Pothen et al. 1990]. For a consistent comparison, we added a second step to both
algorithms. A simulated annealing algorithm is added to allocate the subgraphs to hypercube nodes
such that OF typ is minimized. It is clear from the figures that the physical algorithms produce good
sub-optimal solutions which outperform the bisection methods. The only exception is the two-
dimensional GRID-P case where RSB and PNN seem comparable. It should be noted, however,
that the discrepancy between the uses of OF . to guide the operation of the three algorithms and

appr
OF,,  to evaluate their solutions presents an impediment to the full realization of the capabilities

3
of th?physical optimization methods. Comparing the three algorithms, it is clear that PGA consis-
tently prodixces the best solutions, PSA produces the second best, and PNN’s solutions come last.
For example, for Testl and Ny, = 16, PSA’s solution was 11% better than PNN’s, and PGA’s solu-
tion was 6% better than PSA’s and 18% better than PNN’s. This finding is consistent with what is
observed for the sequential algorithms (N, = 1). It is interesting to note that the differences in the
solution qualities do not undergo any significant changes with the grain size, i.e. with different Ny
values. Further, since the solutions of the parallel algorithms are consistent with those of their
sequential counterparts, our earlier conclusion about the applicability of this class of algorithms
can be reiterated: the parallel physical algorithms do not exhibit a bias towards particular problem

topologies [Mansour and Fox 1991b].

The execution times, in seconds, of the three parallel algorithms are summarized in Figures 35-38.
It is clear that PGA is the slowest and PNN is the fastest. For example, for Testl and Ny =16, PSA
was 2.4 times slower than PNN, and PGA was 2.8 times slower than PSA. This result holds for
different degrees of parallelism, including the sequential case. However, the gaps separating the
time curves shrink with higher degrees of parallelism; PGA’s execution time decreases the fastest
as Ny, increases, followed by PSA. For example, for Test3, the sequential GA time is 29 times that
of the sequential NN. But, for 16 nodes, the ratio decreases to only 5. This follows from the result
that PGA yields the best efficiencies and PNN the smallest.

As discussed above, all three parallel algorithms are somewhat less robust than their sequential
counterparts due to additional design parameters. But, the parallel algorithms no longer exhibit the
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difference in robustness observed for the sequential algorithms [Mansour and Fox 1991c]; the lev-
els of insensitivity to problem and design parameters for the three parallel algorithms are compa-
rable.

There is a significant difference in the memory space requirements between the algorithms. In
PGA, a population of structures evolve, and, thus, information is needed in every node (subpopu-
lation) about the whole problem, whereas in PSA and PNN only the local subproblem is considered
in a node. For large problems, PGA requires large memory space, which might not be possible
depending on available technology. One way to alleviate this restriction istoadd a preproéessing
graph contraction step to PGA, where the problem, and consequently the individuals in the popu-
lation, are reduced in size by a certain factor [Mansour and Fox 1991c]. Generally, this could lead
to some decrease in solution quality as the contraction factor increases. But, it will also lead to sig-
nificant decrease in execution time.

PSA and PNN are scalable. The quality of their solutions remains almost constant provided that
the grain size does not become too small. Efficiency of both, PSA and PNN, decreases with larger
hypercubes, more quickly for PNN. Decreasing efficiency implies smaller decreases in execution
time as the size of the hypercube increases. If the memory space restriction is circumvented, as sug-
gested above, PGA would enjoy better scalability than PSA and PNN. With larger hypercubes, its
execution time decreases faster. It yields good solutions, even for the smallest deme size (PGA’s
grain size) of two. Furthermore, larger hypercubes offer the opportunity to increase the total pop-
ulation size and the number of demes for PGA, which is likely to produce yet better solutions.
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7. Conclusions and Further Research

Three parallel algorithms based on simulated annealing, neural networks and genetic algorithms
have been presented and applied to the problem of allocating data to hypercube nodes. The indi-
vidual properties of the parallel algorithms have been investigated and their performances have
been compared for four test cases with different features.

PSA and PNN deviate from their sequential counterparts. They are based on concurrent execution
of the sequential algorithms in all nodes. Communication schemes adapted to the characteristics of
the algorithms constitute salient components of the algorithms and are important for limiting the
communication overhead. In addition, PNN includes spin reallocation after bisection steps for
reducing the cost of global communication. PGA, on the other hand, is based on distributed popu-
lation models and the shifting balance theory of ‘evolution, which lends itself to embarrassingly
parallel implementation. The three parallel algorithms exhibited diverse properties which make
them suitable for different applications.

The data allocations produced by the three parallel algorithms are good sub-optimal solutions and
do not show a bias towards particular problem configurations. The inconsistencies allowed in PSA
do not lead to degradation in the quality of the solutions. The same conclusion holds for PNN, as
long as the granularity is not too small. PGA’s solutions, also, are consistent with those of the
sequential GA. PGA produces the best results, followed by PSA and then PNN. The adaptive com-
munication frequencies in PSA and PNN provide adequate schemes for limiting the decrease in
efficiency, for larger hypercubes, whilst maintaining good solution qualities. PGA enjoys superlin-
ear efficiencies, with respect to classic sequential GAs. However, PNN remains the fastest and
PGA the slowest. Interestingly, the gaps between the execution times of the three algorithms
decrease with larger hypercubes. All three parallel physical algorithms are somewhat less robust
than the sequential algorithms. However, the three share a reasonable and comparable level of
robustness. Further, the three algorithms are scalable. However, PGA requires additional prepro-
cessing to circumvent memory-space constraints.

The test cases which have been considered are rather small. However, we are confident that the
results, reported in this paper, extend to larger problems. For such problems, a preprocessing graph
contraction step has been found useful for reducing execution time and memory requirements
[Mansour and Fox 1991c]. Based on this finding, further work is underway to apply the physical
algorithms to large problems.
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