A Runtime Data Mapping Scheme for
Irregular Problems

Ravi Ponnusam& Joel Saltz
Charles Koelbel Raja Das
Alok Choudhary

CRPC-TR92263
April 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

In Proceedings of Scalable High Performance Computing Conference,
Williamsburg, VA, April 27-29, 1992, published by IEEE Computer Society Press.

N

SCCS - 356

A Runtime Data Mapping Scheme for Irregular Problems

by
Ponnusamy, R., Saltz, U]., Das, R., Koelbel, C., and Choudhary, A.

: in proceedings of
Scalable High Performance Computing Conference
Williamsburg, VA, April 27-29, 1992

Publisher
IEEE Computer Society Press
10662 Los Vaqueros Circle, P. O. Box 3014, Los Alamitos, CA, 90720-1264

April 1992

Syracuse Center for Computational Science
Syracuse University
111 College Place
Syracuse, New York 13244-4100
<sccs@npac.syr.edu>
(315) 443-1723

A Runtime Data Mapping Scheme for Irregular Problems *

Ravi Ponnusamy', Joel Saltz!, Raja Das*, Charles Koelbel!, Alok Choudharyt

YICASE, MS 132C, NASA Langley Research Center, Hampton, VA 23666
tNPAC and School of Computer Science, Syracuse University , Syracuse, NY 13244
$Department of Computer Science, Rice University, Houston, TX 77251

1 Introduction

In scalable multiprocessor systems, high perfor-
mance demands that computational load be balanced
evenly among processors and that interprocessor com-
munication be limited as much as possible. Compila-
tion techniques for achieving these goals have been
explored extensively in recent years, a good review
of this literature appears in [7]. This research has
produced a variety of useful techniques, but it has
typically assumed that the programmer specifies the
distribution of large data structures among processor
memories. Several projects have attempted to auto-
matically derive data distributions for regular prob-
lems, (e.g. [9, 8, 1].) In this paper, we study the
more challenging problem of automatically choosing
data distributions for irregular problems. This work
is closely related to schemes we proposed in [11] and
shares important features with the distributed mem-
ory runtime parallelization schemes proposed in [10].

By irregular problems, we mean programs where
the data access pattern cannot be determined during
compilation. For example, the loop

do i = 1, nnode
nil = nde(i,1)
n2 = nde(i,2)
flux = £(x(n1),x(n2))

y(n1) = y(n1) + flux
y(n2) = y(n2) - flux
enddo

sweeps over the edges of an unstructured mesh. This
is a simplified version of a type of loop that commonly
occurs in unstructured mesh computational fluid dy-
namics algorithms. The array nde is assigned at exe-
cution time, thus severely limiting the compiler anal-
ysis that is possible. Efficiently executing this loop

*To appear in Proceedings of Scalable High Performance
Computing Conference, Williamsburg, VA, April 27-29, 1992

requires partitioning the data and computation to bal-
ance the work load and minimize communication. As
the information necessary to evaluate communication
(i.e. the contents of nde) is not available until runtime,
this partitioning must be done on the fly. Thus, we
focus on runtime mappings in this paper.

Several general heuristics have been proposed to
efficiently map irregular scientific problems onto dis-
tributed memory multicomputers, some of these are
described in [2, 5, 6, 14]. The codes that implement
these mapping heuristics typically must be manually
coupled to application programs. In this paper we de-
scribe a method by which data arrays can be automat-
ically mapped at runtime. The mapping is based on
the computational patterns in one or more user spec-
ified loops. A distributed memory compiler generates
code that, at runtime, generates a distributed data
structure to represent the computational pattern of
the chosen loop. This computational pattern is used to
determine how data arrays are to be partitioned. The
compiler generates code to pass the distributed data
structure to a partitioner. The work described here is
being pursued in the context of the CRPC Fortran D
project [7].

2 Compiler Embedded Runtime Map- .
ping

In the scheme we present, a user labels a loop that is
used to determine how a set of arrays are to be parti-
tioned. The user also designates specific distributed
arrays on which attention should be focused. The
compiler generates code that, at runtime, produces
a distributed data structure called the Runtime De-
pendence Graph or RDG. The RDG represents the
loop’s computational pattern. The compiler also gen-
erates code that passes the RDG to a parallelized
partitioner. This partitioner uses the RDG to de-
termine how to partition data. We limit ourselves to

Scalable High Performance Computing Conference ‘92

array partitioning based on loops in which all desig-
nated distributed arrays conform in size and are to be
identically distributed.

We generate an RDG using references to desig-
nated arrays in each statement of a labelled program
loop. The RDG is constructed by adding dataflow
edge < i,j > between nodes i and j either when

a reference to array index i appears on the left
side of a statement and a reference to j appears
on the right side, or

a reference to array index j appears on the left
side of a statement and a reference to ¢ appears
on the right side.

Each time dataflow edge < i,j > is encountered, we
increment a counter associated with < i,j >. Ac-
cumulation type output dependency dataflow edges
of type < i,i > are ignored in the graph generation
process as the presence of such dependencies do not
induce inter-processor communication. The RDG is
currently represented by a distributed data structure
[4], this data structure is closely related to Saad’s
Compressed Sparse Row (CSR) format (see [12]).

Once we have partitioned data, we must partition
computational work. If we use the ”owner computes”
convention, it is clear how work must be partitioned.
Otherwise, as we will describe below, we must parti-
tion each loop’s iterations.

2.1 The Runtime Iteration Graph

We first partition distributed arrays and then,
‘based on distributed array partitionings, partition
loop iterations. In order to partition loop iterations
based on a given data partition, we generate a dis-
tributed data structure we call the runtime iteration
graph or RIG. The RIG associates with each loop
iteration i, all indices of each distributed array ac-
cessed during iteration i. A RIG can be generated
for every loop that references at least one irregularly
distributed array. The runtime iteration processor as-
signment graph, or RIPA, is derived from the RIG.
The RIPA lists, for each loop iteration, the number
of distinct references to data stored on each processor.

Just as there are many possible strategies that can
be used to partition data, there are also many strate-
gies that could be used to partition loop iterations.
We currently employ strategies that consult the RIPA
to assign each loop iteration i to the processor which
stores the largest percentage of the data accessed by
iteration 1.

2

2.2 Compiler-linked Mapping: Runtime
Support

In this section we outline the primitives employed
to carry out compiler-linked data and loop iteration
partitioning.

We begin with a preprocessing phase where we have
an initial distribution of loop iterations. The object
of this preprocessing is to extract information needed
for mapping. In many cases, the initial distribution of
loop iterations, Iinit, Will be a simple default distribu-
tion. In some situations (e.g. adaptive codes), prepro-
cessing to support irregular array mappings may have
already been carried out. Our runtime support will
handle either regular or irregular initial loop iteration
distributions [ini:.

The preprocessing is carried out using the follow-
ing mapper coupling procedures. Procedure elim-
inate_dup_edges uses a hash table to store unique
dataflow edges, along with a count of the number
of times each edge has been encountered. We de-
fine the local loop RDG as the restriction of the loop
RDG to a single processor. The local loop RDG
includes only distributed array elements associated
with Lini:. Once all dataflow edges in a loop have
been recorded, edges_to-RDG generates the local loop
RDG and then merges all local loop RDG graphs to
form the loop RDG. The data structures that describe
the loop RDG graph are passed to a data partitioner
RDG_partitioner. RDG_partitioner returns a pointer
to a distributed translation table [13], [4] that de-
scribes the new mapping. Note that RDG_partitioner
can use any heuristic to partition the data, the only
constraint is that the partitioners have the correct call-
ing sequence. Once the partitioner identifies an effi-
cient mapping the data can be remapped by using the
procedure remap. Procedure remap is passed a pointer
to the distribution translation table of the old data dis-
tribution and a pointer to the distribution translation
table of the current data distribution . Remap returns
a pointer to a data structure which stores the commu-
nication pattern that can be used to remap the data
[4]-

The partitioning of loop iterations is supported by
two primitives, deref-rig and iter_partition. The RIG
is generated by code transformed by a compiler. The
primitive deref_rig takes the RIG as input. This prim-
itive accesses distributed translation tables to find
the processor assignments associated with each dis-
tributed array reference. deref_rig returns the RIPA..
The RIPA is partitioned using the iteration partition-
ing procedure, iter_partition.

Scalable High Performance Computing Conference ‘92

2.3 Compiler-linked Mapping: Compiler
Support

In Fortran D, a user declares a template called a
distribution that is used to characterize the significant
attributes of a distributed array. The distribution fixes
the size, dimension and way in which the array is to be
partitioned between processors. A distribution is pro-
duced using two declarations. The first declaration is
decomposition. Decomposition fixes the name, dimen-
sionality and size of the distributed array template.
The second declaration is distribute. Distribute is an
executable statement and specifies how a template is
to be mapped onto processors. Fortran D provides the
user with a choice of several regular distributions. In
addition, a user can explicitly specify how a distribu-

- tion is to be mapped onto processors. A specific array
is associated with a distribution using the Fortran D
statement align.

In (3] we present new Fortran D syntax which
implicitly specifies processor mapping in a distribute
statement by refering to a labelled loop and to a choice
of partitioner. The current Fortran D syntax allows
the user to specify whether the ”owner computes” rule
is to be employed or whether all work pertaining to
each loop iteration is to be assigned to a single pro-
cessor. [7]. We are also developing new syntax that
will make it possible for a user to specify what method
is be used to partition loop iterations.

The primitives described in Section 2.2 have been
implemented and have been employed in a 3-D un-
structured mesh Euler solver. The performance of the
primitives for the Euler solver is shown in table 1.
The cost of generating the RDG is small compared
to either the overall cost of computation or the cost of
our parallelized partitioner. For our mapper, we em-
ployed a parallelized version of Simon’s eigenvalue par-
titioner [14]. We partitioned the RDG into a number
of subgraphs equal to the number of processors em-
ployed. The cost of the partitioner was relatively high
both because of the partitioner’s high operation count
and because only a modest effort was made to pro-
duce an efficient parallel implementation. The time
required to generate and partition loop iterations (us-
ing deref_rig and iter_partition from Section2.2) is ap-
proximately half of the cost of a single iteration of the
3-D unstructured Euler code.

3 Conclusions

We have described how to design distributed mem-
ory compilers capable of carrying out dynamic work-

3

load and data partitioning. The runtime support re-
quired for these methods has been implemented in the
form of PARTI primitives. We implemented a full un-
structured mesh computational fluid dynamics code
and a conjugate gradient code by embedding our run-
time support by hand and have presented our perfor-
mance results. Our performance results demonstrate
that the costs incurred by the mapper coupling primi-
tives are roughly on the order of the cost of a single it-
eration of our unstructured mesh code and were small
compared to the cost of the partitioner.

Acknowledgement

The authors would like to thank Geoffrey Fox for
many enlightening discussions about universally appli-
cable partitioners and Ken Kennedy for feedback on
Fortran D support of compiler-linked runtime parti-
tioning. The authors would also like to thank Horst Si-
mon for the use of his unstructured mesh partitioning
software. This work was supported by National Aero-
nautics and Space Administration under NASA con-
tract NAS1-18605. Additional support for Ponnusamy
and Choudhary have been provided by DARPA under
DARPA contract DABT63-91-C0028.

References

(1] V. Balasundaram, G. Fox, K. Kennedy, and
U. Kremer. A static performance estimator to
guide data partitioning decisions. In Proceed-
ings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
Williamsburg, VA, April 1991.

[2] MJ. Berger and S. H. Bokhari. A partitioning
strategy for nonuniform problems on multiproces-
sors. IEEE Trans. on Computers, C-36(5):570—
580, May 1987.

[3] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis.
Distributed memory compiler methods for irreg-
ular problems - data copy reuse and runtime par-
titioning. In Compilers and Runtime Software for
Scalable Multiprocessors, J. Saltz and P. Mehro-
tra Editors, Amsterdam, The Netherlands, To ap-
pear 1991. Elsevier.

[4] R. Das, J. Saltz, and H. Berryman. A manual for
parti runtime primitives - revision 1 (document
and parti software available through netlib). In-
terim Report 91-17, ICASE, 1991.

Scalable High Performance Computing Conference ‘92 4

Table 1: Mapper Coupler Timings for Unstructured Euler Solver (iPSC/860)

Number Number of Processors

of Vertices | (Secs.) 2 4 8 16 32 64
graph generation | 0.34 | 0.24 0.21] 0.20 - -

3.6K mapper 15.02 | 11.50 | 12.11 | 14.92 - -
iter partitioner 094 | 057 0.42] 0.34 - -

comp/iter 24| 131 0.6 0.34 - -

graph generation -1 0.86| 0.69] 0.53 0.35 -

9.4K mapper - [70.96 | 62.3| 65.2 89.7 -
iter partitioner - | 1.19] 0.82| 0.60 0.43 -

comp/iter -1 483 2.35 1.1 0.67 -

graph generation - - - - 1.50 0.94

54K mapper - - - -1 544.81 | 673.14
iter partitioner - - - - 3.30 3.03

comp/iter - - - - 6.06 3.81

[5] G. Fox. A graphical approach to load balancing
and sparse matrix vector multiplication on the
hypercube. In The IMA Volumes in Mathemat-
ics and its Applications. Volume 13: Numerical
Algorithms for Modern Parallel Computer Archi-
tectures Martin Schultz Editor. Springer-Verlag,
1988.

[6] G. Fox and W. Furmanski. Load balancing
loosely synchronous problems with a neural net-
work. In Third Conf. on Hypercube Concurrent
Computers and Applications, January 1988.

[7] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, and C. Tseng. An overview of the Fortran
D programming system. In Proceedings of the
Fourth Workshop on Languages and Compilers
for Parallel Computing, Santa Clara, CA, August
1991.

[8] K. Knobe, J. Lukas, and G. Steele, Jr. Data opti-
mization: Allocation of arrays to reduce commu-
nication on SIMD machines. Journal of Parallel
and Distributed Computing, 8(2):102-118, Febru-
ary 1990.

[9] 3. Li and M. Chen. Index domain alignment:
Minimizing cost of cross-referencing between dis-
tributed arrays. In Frontiers90: The 8rd Sympo-
sium on the Frontiers of Massively Parallel Com-
putation, College Park, MD, October 1990.

(10] L. C. Lu and M.C. Chen. Parallelizing loops
with indirect array references or pointers. In Pro-
ceedings of the Fourth Workshop on Languages

and Compilers for Parallel Computing, to appear,
Santa Clara, CA, August 1991.

[11] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M.
Nicol, and Kay Crowley. Principles of runtime
support for parallel processors. In Proceedings of
the 1988 ACM International Conference on Su-
percomputing , St. Malo France, pages 140-152,
July 1988.

[12] Y. Saad. Sparsekit: a basic tool kit for sparse ma-
trix computations. Report 90-20, RIACS, 1990.

[13] J. Saltz, H. Berryman, and J. Wu. Runtime com-
pilation for multiprocessors. Concurrency: Prac-
tice and Ezperience, 3(6):573-592, 1991.

(14] H. Simon. Partitioning of unstructured mesh
problems for parallel processing. In Proceedings
of the Conference on Parallel Methods on Large
Scale Structural Analysis and Physics Applica-
tions. Permagon Press, 1991.

