Parallel Computers and
Complex Systems

Geoffrey C. Fox

CRPC-TR92266
December 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

From Biology to Computation, Inaugural Australian
National Conference on Complex Systems






SCCS - 370

Parallel Computers and Complex Systems

by
Fox, Geoffrey C.

Complex Systems ‘92: From Biology to Computation
Innaugural Australian National Conference on Complex Systems

December 1992

Syracuse Center for Computational Science
Syracuse University
111 College Place
Syracuse, New York 13244-4100
<sccs@npac.syr.edu>
(315) 443-1723






Parallel Computers and Complex Systems

Geoffrey C. Fox
Syracuse University
Northeast Parallel Architectures Center
111 College Place
Syracuse, New York 13244
gcf@nova.npac.syr.edu

September 30, 1992

- -

Abstract

We consider parallel computing as the mapping of one complex system—
typically a model of the world—into another complex system—the parallel
computer. We study static, dynamic, spatial and temporal properties of
both the complex systems and the map between them. The result is a
better understanding of which computer architectures are good for which
problems, software structure, automatic partitioning of data and perfor-
mance of parallel machines.

1 Introduction

Over the last dozen years, my group has been developing applications and the
necessary software support for parallel computing [1]-{5]. During that time
my work has made use of both physics and computer science ideas—the two
areas I know something about. I have found that it has often been very helpful
to view both the application, software and computer as systems, which we
will call complex systems. Viewing these as physical systems, we introduce
in Section 2 the concepts of space and time for complex systems. Section 3
describes spatial properties, size, topology, dimension and a physical analogy
for data partitioning of adiabatic problems leading to concepts of temperature
and phase transitions. In Section 4, we discuss temporal properties, a string
model for very adaptive problems and a duality between the temporal structure
of problems and the memory hierarchy of computers. In the final Section 5, we

1This work was supported by the Center for Research on Parallel Computation with Na-
tional Science Foundation CSoperation Agreement No. CCR-9120008—the Government has
certain rights in this material.



briefly discuss problem architecture and its relation to the better understood
computer architecture.

2 Complex Systems and Space-Time Picture

2.1 Problems and Computers

For this article, we shall consider that a complez system is a large collection
of, in general, disparate members. Those members have, in general, a dynamic
connection between them; a dynamic complex system evolves by a statistical
or deterministic set of rules which relate the complex system at a later “time”
to its state at an earlier “time”. Complex systems studied in chemistry and
physics, such as a protein or the universe, obey rules that we believe we un-
derstand more or less accurately. The military play war games, which is the
complex system formed by a military engagement. This and more general com-
plex systems found in society, obey less clear rules. One particular important
class of complex systems is that of the complez computer. In the case of the
hypercube, such as the nCUBE-1,2 or other multicomputers such as the Intel
Paragon or Thinking Machines CM-5, the basic entity in the complex systems
is a conventional computer and the connection between members is a communi-
cation channel implemented either directly in VLSI, on a PC board, or as a set
of wires or optical fibers. In another well-known complex computer, the brain,
the basic entity is a neuron and an extremely rich interconnection is provided
by axons and dendrites.

Mapping one complex system onto another is often important. Solving a
problem consists of using one complex system, the complez processor, to “solve”
another complex system, the complez problem. In building a house, the com-
plex processor is a team of masons, electricians, and plumbers, and the complex
problem is the house itself. In this article, we are mainly interested in the
special case where the complex processor is a complex computer and then mod-
eling or simulating a particular complex problem involves mapping it onto the
complex computer. In this case, the map of the complex problem onto the com-
plex computer involves decomposition. We can consider the complex problem
as an algorithm applied to a data domain. We divide the data domain into
pieces which we call grains and place one grain in each node of the concurrent
computer.

If we consider a typical matrix algorithm such as multiplication

aij =) bik ckj 6y
k

we have a data domain formed by the matrix elements, which we generally call
members. The algorithm (1) defines a graph connecting these members and
these connected members form a complex system. The standard decomposition



involves submatrices stored in each node. Edges of the graph connecting mem-
bers in different submatrices (i.e., members of the complex system stored in
separate nodes of the complex computer) need to be treated especially. To be
precise, in the map

Complex Problem — Complex Computer
Members map into memory locations
Internal Connections map into  arithmetic operations

Internode or “cut” connections map into communication followed
by arithmetic operations

In Section 3, we will be considering topological properties of complex systems
which correspond to the map

Complex Problem — Topological Structure
Members e map into  points in a space geometric
Connections map into  (nearest neighbor) structure

In the optimal decomposition studies in Section 3 and Section 4, we will be
considering dynamic properties of complex systems for which it will be useful
to consider the map

Complex Problem — Discrete Physical System
Members map into  particles or strings
Connections map into force between particles or strings

We see that different classes of complex systems realize their members and
interconnection in different ways. We find it very useful to map general sys-
tems into a particular class which have a particular choice for members and
interconnects. To be precise, complex systems have interconnects that can be
geometrical, generated by forces, electrical connection (e.g., wire), structural
connection (e.g., road), biological channels or symbolic relationships defined by
the laws of arithmetic. We map all these interconnects into electrical com-
munication in the multicomputer implementation. On the other hand, in the
simulated annealing approach to load balancing, we map all these interconnects
to forces.

2.2 Space-Time Picture

The above discussion was essentially static and although this is an important
case, the full picture requires consideration of dynamics. We now “define” space
and time for a general complex system.

We associate with any complex system a data domain or “space”. If the
system corresponds to a real or simulated physical system, then this data domain
is a typically three-dimensional space. In such a simulation, the system consists



of a set of objects labelled by index i and is determined by the positions z; t)
at each time t. The data domain consists of a set of interconnected nodes and
this forms what we call the computational graph. This is defined by a time slice
of the full complex system.

Other complex systems have more abstract data domains:

1. In a computer chess program, the data domain or “space” is the pruned
tree-like structure of possible moves.

2. In matrix problems, the data domain is either a regular two-dimensional
grid for full matrices or an irregular subset of this for sparse matrices.

3. In a complex computer defined in Section 2.1, the computational graph
of a multicomputer is formed by the individual nodes with the intercon-
nection of the graph determined by the topology (architecture) of the
multicomputer. We could enrich this complex system by looking with
finer resolution into the computer node itself which can be considered as
a set of connected components—chips or transistors depending on detail
required.

In a physical simulation, the complex system evolves with time and is speci-
fied by the nature of the computational graph at each time. If we are considering
a statistical physics or Monte Carlo approach, then we no longer have a natural
time associated with the simulation. Rather, the complex system is evolved
iteratively or by Monte Carlo sweeps. We will find it useful to view this evo-
lution or iteration label similarly to time in a simple time stepped simulation.
We thus consider a general complex system defined by a data domain, which
is a structure given by its computational graph. This structure is extended in
“time” to give the “space”-“time” cylinders. In our previous examples

1. Chess: time labels depth in tree

2. Matrix Algebra: time labels iteration count in iterative algorithms or
“eliminated row” in a traditional full matrix algorithm such as Gaussian
elimination.

3. The time dependence of a complex computer is just the evolution given
by executed instructions. SIMD machines give an essentially static or
synchronous time dependence, whereas MIMD machines can be very dy-
namic. We will later discuss in Section 5, an interesting class of problems
and a corresponding way of using MIMD machines, called loosely syn-
chronous. These are microscopically dynamic or temporally irregular but
become synchronous when averaged over macroscopic time intervals.

We expand the discussion of temporal properties in Section 4.



***FIGURE 1***

Figure 1: Computation and Simulation as a Series of Maps

In many areas, one is concerned with mapping one complex system into
another. For instance, simulation or modeling consists of a map

map
Nature (or system to be modelled) ~ — Idealization or Model  (2)
theory

This map would often_bs followed by a computer simulation that can be broken
up into several maps shown in Figure 1.

Nature, the model, the numerical formulation, the software, and the com-
puter are all complex systems. Typically, one is interested in constructing the
maps to satisfy certain goals, such as agreement of model with effects seen in
nature or running the computer simulation in a minimum time. In these cases,
one gets a class of optimization problems associated with the complex systems.
One approach is the use of simulated annealing or neural network methods to
address these optimization problems. These are methods to minimize the en-
ergy function, which is associated with the general physical system given by
the space-time analogy. The energy function is the analytic form that expresses
the goal described above. Typically, in studying performance, the energy func-
tion would be the execution time of the problem on a computer. For software
engineering, the energy function would also reflect user productivity.

Another interesting issue is the loss of information implicit in the successive
maps of Figure 1. As reviewed in Section 5, we can discuss key problems in the
design of software systems in terms of minimizing information loss.

We believe that the structure of all the complex systems in Figure 1 is
interesting. They can be quite different. Consider, for instance, a computational
fluid dynamics study of airflow where Figure 1 becomes

So(flow around airframe) — Sy(molecular picture) — Sy(continuum) —
Ss(numerical method) — Sy(virtual problem) — Ss(final computex()

So is nature.

S, is a (finite) collection-of molecules interacting with long range Van der Waals
and other forces. This interaction defines a complete interconnect between
all members of the complex system S .



S, is the infinite degree of freedom continuum with the fundamental entities
as infinitesimal volumes of air connected locally by the partial differential
operator of the Navier Stokes equation.

S3 = Spum could depend on the particular numerical formulation used. Multi-
grid, conjugate gradient, direct matrix inversion and alternating gradient
would have very different structures in the direct numerical solution of the
Navier Stokes equations. The more radical cellular automata approach
would be quite different again.

Ss = SHLson would depend on the final computer being used and division
between high and low level in software. The label HLSoft denotes “High
Level Software”.

Ss = Scomp Would be SHLsoft embroidered by the details of the hardware com-
munication (circuit or packet switching, wormhole or other routing). Fur-
ther, we would often need to look at this complex system in greater reso-
lution and expose the details of the processor node architecture.

3 Spatial Properties of Complex Problems and
Complex Computers

3.1 System Size

The size N of the complex system is an obviously important property. Note that
we think of a complex system as a set of members with their spatial structure
evolving with time. Sometimes, the time domain has a definite “size” but often
one can evolve the system indefinitely in time. However, most complex systems
have a natural spatial size with the spatial domain consisting of N members.
In the matrix example, Gaussian elimination had n? spatial members evolving
for a fixed number of n “time” steps. As usual, the value of spatial size N will
depend on the granularity or detail with which one looks at the complex system.
One could consider a parallel computer at the level of transistors with very large
value of N, but usually we look at the processor node as the fundamental entity
and define the spatial size of a parallel computer viewed as a complex system,
by the number Nproc of processing nodes.

Consider mapping a finite difference simulation with Npum grid points onto
a parallel machine with Nproc processors. An important parameter is the grain
size n of the resultant decomposition. We can introduce the problem grain size
Nnum = Nnum/Nproc and the computer grain size nmem 2as the memory contained
in each node of the parallel computer. Clearly we must have,

™ Tinum < Mmem (4)



if we measure memory size in units of seismic grid points. More interestingly, we
will later in Equation 5 relate the performance of the parallel implementation of
the seismic simulation to naum and other problems and computer characteristics.
We find that in many cases, the parallel performance only depends on Npum and

Nproc in the combination Npym/Nproc and so grain size is a critical parameter in
determining the effectiveness of parallel computers for a particular application.

3.2 Performance Model for a Multicomputer

The next set of parameters describe the topology or structure of the spatial do-
main associated with the complex system. The simplest parameter of this type
is the geometric dimension d&e°m of the space. Our early parallel computing
used the binary hypercube of dimension d, which has d8%°™ = d as its geomet-
ric dimension. This was an effective architecture because it was richer than the
topologies of most problems. Thus, consider mapping a problem of dimension
dpum onto a computei of "dimension dcomp. Suppose the software system pre-
serves the spatial structure of the problem and that dursor = dpum- Then, one
can show that the parallel computing overhead f has a term due to internode
communication that has the form,

NG

Nhum teale

with parallel speedup S given by

N
5= Tk
or fc = % -1
1
- (eﬁiciency c) -1 (6)

The communication overhead fc depends on the problem grain size npym and
computer complex system Nproc. It also involves two parameters specifying the
parallel hardware performance. These are:

e tcac: The typical time required to perform a generic calculation. For
scientific problems, this can be taken as a floating point calculation

a = bxc
ora = b+c

o tcomm: The typicaltime taken to communicate a single word between two
nodes connected in the hardware topology.



The definitions of tcomm and fcale are imprecise above. In particular, tcaic
depends on the nature of node and can take on very different values depending
on the details of the implementation; floating point operations are much faster
from registers than from slower parts of the memory hierarchy. On systems built
from processors like the Intel i860 chip, these effects can be large; tcaic could be
.0125p sec from registers (80 megaflop) and a factor of ten larger when the vari-
ables a, b are fetched from dynamic RAM. Again, communication speed tcomm
depends on internode message size (a software characteristic) and the latency
(startup time) and bandwidth of the computer communication subsystem.

Returning to Equation 5, we really only need to understand here that the
term tcomm/tcalc indicates that communication overhead depends on relative
performance of the internode communication system and node (floating point)
processing unit. A real study of parallel computer performance would require a
deeper discussion of the exact values of {comm and tcalc. More interesting here is
the dependence (Ngmc/nﬁgm) on the number of processors Nproc and problem
grain size Nipym. AS described above, grain size Npum = Nnum/Nproc depends
on both the problem and the computer. The values of  and S are given by

1

dnum

B= M

independent of computer parameters while if
doum <dcomp , =0

. 1 1
a-nd lf dnum > dcomp Py a= (-—' - ) (8)

d comp d num

The results in Equation 8 quantify the penalty, in terms of a value of fc
that increases with Nproc, for a computer architecture that is less rich than
the problem architecture. An attractive feature of the hypercube architecture
is that dcomp is large and one is essentially always in the regime governed by
a = 0 in Equation 8. Recently, there has been a trend away from rich topolo-
gies like the hypercube towards the view that the node interconnect should be
considered as a routing network or switch to be implemented in the very best
technology. The original MIMD machines from Intel, nCUBE and Ametek all
used hypercube topologies as did the SIMD Connection Machine CM-1, CM-2.
The nCUBE-2 introduced in 1990, still uses a hypercube topology but both it
and the second generation Intel iPSC/2 used more sophisticated routing. The
latest Intel Paragon and Touchstone Delta and Symult (ex Ametek) 2010 use a
two-dimensional mesh with wormhole routing. It is not clear how to incorpo-
rate these new node interconnects into the above picture, and further research is
needed here. Presumably, we would need to add new complex system properties
and perhaps generalize the definition of dimension dcomp as we will see below
is in fact necessary for Equation 5 to be valid for problems whose structure is
not geometrically based.



***FIGURE 2 ***

Figure 2: The Information Density and Flow in a General Complex Systems
with Length Scale L

3.3 System Dimension

Returning to equations 5, 6, 7, and 8 we note that we have not properly defined
the correct dimension dnum o dcomp to use. We have implicitly equated this
to the natural geometric dimension but this is not always correct. This is
illustrated by the complex system Spum consisting of a set of particles in three
dimensions interacting with a long range force such as gravity or electrostatic
charge. The geometric structure is local with d85°™ = 3 but the complex system
structure is quite different; all particles are connected to all others. As described
in Chapter 3 of [3], this implies that dejstem = 1 whatever the underlying
geometric structure. We define the system dimension d®¥***™ for a general
complex system to reflect the system connectivity. Consider Figure 2 which
shows a general domain D in a complex system. We define the volume Vp of
this domain by the information in it. Mathematically, Vp is the computational
complexity needed to simulate D in isolation. In a geometric system

Vp o L5 (9)

where L is a geometric length scale. The domain D is not in general isolated
and is connected to the rest of the complex system. Information Ip flows in D
and again in a geometric system. Ip is a surface effect with

Ip o< L4712 (10)

If we view the complex system as a graph, Vp is related to the number of
links of the graph inside D and Ip to the number of links cut by the surface of
D. Equation 9 and Equation 10 are altered in cases like the long range force
problem where the complex system connectivity is no longer geometric. We
define the system dimension to preserve the surface versus volume interpretation
of Equation 10 compared to Equation 9. Thus, generally we define

ID - VDl_lldlyncm (11)

With this definition of system dimension d*¥***™, we will find that Equa-
tion 5, 6, 7, and 8 essentially hold in general. In particular for the long range
force problem, one finds d*V**™ =1 independent of d&%°™.



3.4 Physical Analogy

In the previous three subsections, we described static spatial properties of com-
plex systems which were relevant for computation. These included size, topology
(geometric dimension) and the information dimension. We will find new ideas
when we consider problems that are spatially irregular and perhaps vary slowly
with time. A simple example would be a large scale astrophysical simulation
where the use of a parallel computer required that the universe be divided into
domains that, due to the gravitational interactions will change as the simulation
evolves.

Load Balancing can affect crucially the performance of a computation exe-
cuting on a parallel machine. By “load balance” we refer to the amount of cpu
idling occurring in the processors of the concurrent computer: a computation
for which all processors are continually busy (and doing useful-non-overlapping
work) is considered perfectly balanced. This balance is often not trivial to
achieve, however. The_problem of distributing a computation in an efficient
manner into a parallel machine can be fruitfully attacked via simulated anneal-
ing and other physical optimization methods [6]-[12].

As described in the previous section, a key to parallel computing is to split
the underlying spatial domain into grains which each correspond to a process as
far as the operating system is concerned. We will take a naive software model
where there is one process associated with each of the fundamental members of
the simulated system, i.e., with each “particle” in the astrophysical simulation.
This is not practical with current software systems as it gives high context
switching and other overheads. However, it captures the essential issues.

The processes will need to communicate with one another in order for the
computation to proceed. Assume that the processes and their communication
requirements are changing with time—processes can be created or destroyed,
communication patterns will move. This is the natural choice when one is
considering timesharing the parallel computer, but can also occur within a single
computation. It is the task of the operating system -to manage this set of
processes, moving them around if necessary, so that the parallel computer is
used in an efficient manner.

The operating system performs two primary tasks. First, it must monitor
the ongoing computation so as to detect bottlenecks, idling processors and so on.
Secondly, it must modify the distribution of processes and also the routing of
their associated communication links so as to improve the situation. In general,
it is very difficult to find the optimum way of doing this—in fact, this is an
NP complete problem. Approximate solutions, however, will serve just as well.
We will be happy if we can realize a reasonable fraction (let’s say 80%) of
the potential computing power of the parallel machine for a wide variety of
computations. We will see in what follows that the operating system functions
as a “heat bath”, keeping-the computation “cool” and therefore near its “ground
state” (optimal solution).

10



One can usefully think of a parallel computation in terms of a physical
analogy. Treat the processes as “particles” free to move about in the “space”
of the parallel machine. Minimizing the total execution time of the parallel
computation, formally requires that one minimize:

max_ Ci (12)

nodesi

where C; is the total computation time for calculation and communication. We
choose to replace this mini-max problem by a least squares [9] minimization of

E=).C? (13)

Suppose m(m') label the nodal points of the computational graph. Then

Ci= E [ Z Comm (m, m') + Calc (m)] (14)
™ e

where it takes time Calc(m) to simulate m and time Comm (m’', m) to com-
municate necessary information from m’ to m. If we consider the case where
we can neglect the quadratic communication terms, then

C? = const. Z Comm (m, m')

fo: :‘l'n i
and m’ linked
tom
+ Y Cale(m) Cale(m) (15)
with

ini

The last term in the Hamiltonian (Equation 15) corresponds to the require-
ment of load balancing which acts as a short range, repulsive “force”, causing
the particles, and thereby the computation, to spread throughout the parallel
computer in an evenhanded, balanced manner. The potential is indeed short
range where range is measured by distance between nodes in the space of the
complex computer. The last term in Equation 15 is zero unless particles m and
m’ are at the same place, i.e., in same node.

A conflicting requirement to that of load balancing is shown in the first term
of Equation 15 as interparticle communications—the various parts of the over-
all computation need to communicate with one another at various times. If the
particles are far apart (distance being defined as the number of communication
steps separating them) large delays will occur, slowing down the computation.
Thus, this represents a long range, attractive force between those pairs of par-
ticles which need to communicate with one another. This force is proportional

11



to the amount of communication traffic between the particles, so that heavily
communicating parts of the computation will coalesce and tend to stay near one
another in the computer.

We have given in Equation 15, and described qualitatively above, a “Hamil-
tonian” for parallel computation, which the operating system must try to min-
imize, and if possible find the ground state. We already noted that exact mini-
mization is not necessary—we have already “wasted” some computational power
using convenient high level languages—we can surely afford to lose another 20%
to load imbalance, so we can think of the operating system as a heat bath which
keeps the computation as cool as possible. Most scientific simulations change
slowly with time and redistribution of processes by the operating system can be
gradual. Thus, we can think of the computation as being in adiabatic equilib-
rium at a complex system temperature Tproblem Which reflects the ease of finding
a reasonable minimum. Tproblem Will be larger for those problems which change
more rapidly and where the operating system does not have “time” to find as
good an equilibrium. - =

The elegant physical analogy makes it plausible that simulated annealing is
an appropriate minimization technique for Equation 13. It corresponds to using
the normal Monte Carlo method to finding the ground state of the associated
physical system.

In [13, 14, 15], we explore this analogy further and find that at low temper-
atures, the parallel computation exhibits a phase transition controlled by the
relative strengths of the terms in Equation 15. This phase transition corresponds
to a switch between different styles of decomposition.

4 Temporal Properties of Complex Problems
and Complex Computers

4.1 The String Formalism for Dynamic Problems

In the previous section, we thought of a problem (the complex system Spum
or SHLsoft) as a graph (the computational graph) with vertices labelled by the
system member m and edges corresponding to the linkage between members
established by the algorithm. This is a good picture for what we called adiabatic
problems that change slowly with time. In this case, it makes sense to think
of slicing the “space-time” cylinder formed by the complex system and just
consider the computational graph—the spatial structure at fixed time. However,
this is not appropriate for rapidly varying or dynamic problems—those with
high temperature Tproblem in the language of Section 3.4. For such problems,
the operating system cannot “keep up” with the variation of the computational
graph—the graph changes significantly over the time period that the operating
system takes to partition the computational graph.

In adiabatic problems, our physical analogy was that of members mapped

12



in particles interacting by forces given by the member interconnect. One might
imagine that a reasonable analogy for dynamic problems was to add a kinetic
energy term to give time dependence to the member positions. I do not un-
derstand how to do this. Rather, we change the analogy to that of members
corresponding to strings representing the world lines of members moving in time
(measured by the complex computer).

We make this more precise with a dynamic complex system whose members
are labelled by m. At computer time ¢, member m is located at position z,(t)-
z is a position in the complex computer space. At its simplest z is just a node
number, but we can look at a finer resolution and consider z as a position in
the global computer memory. This allows one, in principle at least, to set up
a formalism in which one can study the full memory hierarchy of the system
including caches and register use. Each member now corresponds not just to a
position z,, but to a world-line {zm(t)}. The execution time Tpar on a parallel
machine is a functional of the world lines

Tpar = Tyue ({2o®)} -+ -{Zm(®} - (16)

The structure of the original dynamic complex system leads to an expres-
sion for Equation 16 which is similar to the simpler Equation 15. There is a
repulsive force between world lines corresponding to load balancing. There is
an attractive force corresponding to the dynamic interconnection between the
members m. The details of this depend on the relation between clock time t
and the simulation time ¢,, of each member m.

The most straightforward approach to minimize Tpar Would be simulating
annealing with the basic “move” being a change

{zm()} = {za ()Y

which is typically local in both z and t. This gives a formalism similar to
quantum chemistry or lattice gauge theories. One can also use a neural network
formalism which generalizes the original approach of Hopfield and Tank to the
Travelling Salesman Problem [16]. These points are described in greater detail
in references [8, 10, 15, 17].

We have applied these ideas to message routing in a network [18] and more
generally combining networks which implement global reduction formulae such

as forming a set of sums
i =y Mjizi 17
i

where yj, Mj;, and z; are all distributed over the nodes of a parallel computer.

A very initial examination was given in [19] of the application of these ideas
to register allocation for compilers. We have explored more deeply the applica-
tion of these methods tg multi-vehicle navigation (8, 20). Now {z(t)} is the
path of vehicle m in a two or three dimensional space with m at position z,, at
time t.

13



4.2 Memory Hierarchy

The discussion of Section 3 can be thought of as the mapping of the spatial struc-
ture of the problem’s complex system into the spatial structure of the computer.
The dimensionality relation of Equation 8 explains how these structures must
be related to get good performance.

We find a remarkable analogy with the temporal structure of the problem
corresponding to the memory hierarchy of the computer. In particular, we see
that the well known methods for improving the performance of caches and regis-
ters, correspond to blocking (clumping) the problem in its time direction. This
is analogous to blocking in space (as quantified by the grain nnum dependence
of Equation 5) to improve performance of a parallel machine. In particular, the
overhead fy due to cache misses, i.e., to reading and writing between cache and
main memory, takes exactly the same form as Equation 15. To obtain fy, one
must substitute ¢mem (2 typical time to read a word to cache) for tcomm and
Ntime fOF Mnum. Ntime isthe temporal blocking factor—the number of iterations
in the problem between cache flushes.

High performance computer architectures exploit data locality with a mem-
ory hierarchy implemented either as a multilevel cache and/or with distributed
memory on a parallel machine. Good use of cache requires blocking in time;
good use of distributed memory requires blocking in space. In general, full
space-time blocking is required.

5 Problem Architectures and Parallel Software

In a series of papers, we have developed a qualitative theory of the architectures
of problems [1, 21, 22, 23]. This is summarized in Table 1, which introduces five
general classes of problem classes. This is analogous to the well-known classifi-
cation of parallel computer architectures into SIMD and MIMD. We now return
to the concept of Figure 1—namely, computation is map between problem and
computer, and software is an expression of this map. We have explored in depth
this concept of problem architecture and its use for clarifying which problems run
well on SIMD machines and which on MIMD. One can also understand which
problem classes parallelize naturally on massively parallel machines. Here, we
just describe the consequences for software, which are summarized in Table 1.

We believe that successful software models will be built around problem and
not machine architecture. We see that some of the current languages—both
old and new—are flawed because they do not use this principle in their design.
The language often reflects artifacts of a particular machine architecture and this
naturally leads to nonportable codes that can only be run on the machine whose
architecture is expressed by the language. On the other hand, if the language
expresses properly the problem structure, then a good compiler should be able
to map into a range of computer architectures.

14



Table 1: Architectures for Five Problem Classifications

Synchronous: Data Parallel

Tightly coupled. Software needs to exploit features of problem structure to
get good performance. Comparatively easy, as different data elements are
essentially identical. Candidate software paradigms: High Performance
Fortran, Parallel Fortran 77D, Fortran 90D, CMFortran, Crystal, APL,
C++.

Loosely Syncl;ronous: Data Parallel

As above but data elements are not identical. Still parallelizes due to
macroscopic time synchronization. Candidate sofiware paradigms: may be
eztensions of the above. C (Foriran) message passing is currently only
guaranteed method!

Asynchronous

Functional (or data) parallelism that is irregular in space and time. Of-
ten loosely coupled and so need not worry about optimal decompositions
to minimize communication. Hard to parallelize (massively). Candidate
software paradigms: PCN, Linda, object-oriented approaches.

Embarrassingly Parallel

Independent execution of disconnected components. Candidate software
paradigms: Several approaches work? PCN, Linda, Network Ezpress, ISIS.
A=LS (Loosely Synchronous Complex)

Asynchronous collection of loosely synchronous components where these
program modules can be parallelized. Candidate software paradigms:
PCN, Linda, ADA, controlling modules written in synchronous or loosely
synchronous fashion.
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We can illustrate this with Fortran 77, which we can view as embodying the
architecture of a sequential machine. Thus, software written in Fortran 77 maps
the space-time structure of the original complex system into a purely temporal
or control structure. The spatial (data) parallelism of the problem becomes
purely temporal in the software, which implements this as a DO loop. Somewhat
perversely, a parallelizing compiler tries to convert the temporal structure of a DO
loop back into spatial structure to allow concurrent execution on a spatial array
of computers. Often parallelizing compilers produce poor results as the original
map of the problem into sequential Fortran 77 has “thrown away” information
necessary to reverse this map and recover unambiguously the spatial structure.
The first (and some ongoing) efforts in parallelizing compilers tried to directly
“parallelize the DO loops”. This seems doomed to failure in general as it does
not recognize that in nearly all cases the parallelism comes from spatial and not
control (time) structure. Thus, we are working with Kennedy at Rice and others
on a parallelizing compiler FortranD where the user adds additional information
to tell the compiler about the spatial structure. We are optimistic that the
resultant Fortran D project [22]-[26] will be successful for the synchronous and
loosely synchronous problem classes defined in Table 1.

Most languages do not express and preserve space time structure. Array
languages such as APL and Fortran 90 are examples of data parallel languages
that at least partially preserve the space time structure of the problem in the
language. Appropriate class libraries can also be used in C++ to achieve this
goal. We expect that development of languages which better express problem
structure will be essential to get good performance with an attractive user en-
vironment on large scale parallel computers. The results in Section 4.2 show
that data locality is critical in sequential high performance (hierarchical mem-
ory) machines as well. Thus, we would expect that the use of languages that
properly preserve problem structure will lead to better performance on all com-
puters.
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