Automatic Differentiation:
Overview and Application to Systems of
Parameterized Nonlinear Equations

Marcela Rosemblun

CRPC-TR92267
October 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

RICE UNIVERSITY
AUTOMATIC DIFFERENTIATION:
OVERVIEW AND APPLICATION TO
SYSTEMS OF PARAMETERIZED

NONLINEAR EQUATIONS
by
Marcela Laura Rosemblun
A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Arts
APPROVED, THESIS COMMITTEE:

NED.

John E. Dennis, Jr., Chairman
Noah Harding Professor of Computational

and Applied l:'Dthema.tics
—_— '

Richard A. Tapia
Noah Harding Professor of Computational
and Applied Mathematics

lan D. Walker
Assistant Professor of Electrical and
Computer Engineering

4) :
Los0,4 AL Jelliprrzes—
Karen A. Williamson
Research Scientist

(0. cu

Alan Carle
Research Scientist

Houston, Texas
October, 1992

AUTOMATIC DIFFERENTIATION:
OVERVIEW AND APPLICATION TO
SYSTEMS OF PARAMETERIZED
NONLINEAR EQUATIONS

Marcela Laura Rosemblun

Abstract

Automatic Differentiation is a computational technique that allows the evaluation of
derivatives of functions defined by computer programs. Derivatives are calculated by
applying the chain rule of differential calculus to the sequence of elementary com-
putations involved in the program. In this work, an overview of the theory and
implementation of automatic differentiation is presented, as well as a description of
the available software.

An application of automatic differentiation in the context of solving systems of
parameterized nonlinear equations is discussed. In this application, the “differen-
tiated” functions are implementations of Newton’s method and Broyden’s method.
The iterates generated by the algorithms are differentiated with respect to the pa-
rameters. The results show that whenever the sequence of iterates converges to a
solution of the system, the corresponding sequence of derivatives (computed by au-
tomatic differentiation) also converges to the correct value. Additionally, we show
that the “differentiated” algorithms can be successfully employed in the solution of

parameter identification problems via the Black-Box method.

Acknowledgments

I wish to express my deepest gratitude to professor John E. Dennis Jr. for his faith
in me, and his generous support, guidance . ..and patience! throughout my period of
graduate study. I was indeed fortunate to have him as my advisor.

I owe a great deal of thanks to Karen A. Williamson and to Alan Carle for
their guidance and valuable suggestions throughout this research , and for their careful
readings of this t'hesis.

Very special thanks to professors Richard A. Tapia and Ian D. Walker for being
part of my committee, and for taking the time to read this work.

I would also like to express my sincere gratitude to Dr. Andreas Griewank for his
helpful suggestions throughout this research. Working with him at Argonne National
Laboratory was a very valuable experience for me.

Thanks a lot to Mike Pearlman, Fran Mailian and Linda Neyra for being so
helpful with all the graduate students of the Computational and Applied Mathematics
Department.

Thanks to Siep Weiland, Wrenne Saunders, Cristina Maciel, Samir Kushalani,
Piotr Krychniak, Rene Rodriguez and Klaus Holliger for all the experiences that we
shared together, for their support and understanding ... and for their friendship!

Finally, my deepest appreciation goes to my parents Frida and David and to
my sisters Corina and Carla, for their love. They were always with me, offering

encouragement when I needed it the most.

To all my teachers.

Contents

Abstract
Acknowledgments
List of Illustrations

List of Tables
Introduction

Automatic Differentiation: an Overview
2.1 Preliminari€s ¢ v v v e e e e e e e e e e e e e e
2.2 Applying the Chain Rule to Computer Programs
2.3 Function Specificationo
9.4 The Forward Mode of Automatic Differentiation
2.5 The Reverse Mode of Automatic Differentiation
2.6 Graphical Interpretation
2.7 Computation of Jacobians oo
2.8 Implementations of Automatic Differentiation
2.9 Special Cases: Nondifferentiability and Branching
2.9.1 Nondifferentiability o oo
2.9.2 Branchingo oo

2.10 Future Developmentso

i1
1ii
vii

viii

Automatic Differentiation and Parameterized Fixed-Point

Iterations

44

3.1 On the Solution of Systems of Nonlinear Equations

3.2 Differentiation of Parameterized Fixed-Point Iterations

4 Numerical Results
4.1 Differentiating LMDER and HYBRJ via ADIFOR

4.2 Application to the Solution of Parameter Identification Problems . .
5 Concluding Remarks
A Test Problems

Bibliography

vi

62
63
73

86

88

91

2.1
2.2

3.1
3.2

Illustrations

Elementary partial derivatives for v; « @i(v;;,v5) - -« - -« -« - 27

Computational graph for f(z) = 1.5-(z1-z2 +exp (z2)) — cos (z1) 28

Execution of the algorithm A 53
Execution of the “differentiated” algorithm A" 54

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Tables

Problem1l n,=2,n=40,p5=(10"%,10"%T 66
Problem 2 n, =2 ,n=80,p=03,4)T 66
Problem3 n,=3,n=80,p=(2,4,4)T 67
Problem4 n,=3,n=80,p=(6,4,1)T 68
Problem5 n,=4,n=80, p=(10,10,30,30)7 68

Problem6 n,=5,n=200,p=
(0.58 x 107%,0.26 x 107*,0.16 x 107%,0.28 x 1073,0.46 x 10~H)T . . 69
Problem 6 (ext.) n,=10,n =195, p = (0.58 x 107*,0.26 x

10~%,0.16 x 10~4,0.28 x 10~3,0.46 x 107%,0.10 x 10*3,0.0,0.0,0.0,0.0)T 69

LMDER.ad - Final Results 71
HYBRJ.ad - Final Results 71
Problem1 n,=2,n=40,p, = (107,10~ 81
Problem 1 (ext.) n,=3,n =39, po = (107%,107%,0)T 81
Problem2 n,=2,n=80,po=(3,4)T 82
Problem 2 (ext.) n,=4,n=78,po=(3,4,1,007 82
Problem3 n,=3,n=80,p=(2,4,4)T 82
Problem 3 (ext.) n,=5,n="178, po=(2,4,4,1,03)T 82
Problem4 n,=3,n=80,po=(6,4,1)T 83
Problem 4 (ext.) =5,n=18,po=(6,4,1,1,0)7 83
Problem5 n,=4,n=280, po = (10,10,30,30)T 83

Problem 5 (ext.) n,=6,n =178, p = (10,10,30,30,1,0)T 83

1x

4.20 Problem6 n,=35,n=200, py=

(0.58 x 107%,0.26 x 107%,0.16 x 107*,0.28 x 107%,0.46 x 10-H)T .. 84
4.21 Problem 6 (ext.) n,=10,n =195, po = (0.58 x 107%,0.26 x

107%,0.16 x 107,0.28 x 103,0.46 x 10~4,100,0,0,0,0)T 84
422 Timeratios« v o v it e e e 85
Al Datafor Problem 1, 88
A2 DataforProblem2 88
A3 DataforProblem3 89
A4 Datafor Problem4 89
A5 DataforProblemd 0., 90

A.6 Datafor Problem6 90

Chapter 1

Introduction

This work is intended to provide a comprehensive survey on the theory and implemen-
tation of the chain-rule based technique of automatic differentiation, and to present
two applications: one in the context of solving systems of parameterized nonlinear
equations, and the other, related to the first, in the context of solving parameter
identification problems for ordinary differential equations via the so-called Black Box
method.

Automatic differentiation is a computational technique that allows the calculation
of derivatives of functions defined by computer programs. It can be a very convenient
alternative compared to other approaches, such as symbolic differentiation or the
approximation of derivatives by finite differences. It has been investigated for at
Jeast thirty years, and currently a lot of effort is being spent in the development of
efficient tools. In Chapter 2, we will present the theoretical background underlying
this technique, discuss different ways in which it can be implemented, and mention
some of the available software.

Automatic differentiation has provided successful results in a variety of applica-
tions, including computer programs that describe very complicated models. However,
one may wonder how feasible the computed derivatives are when the code that is
“«differentiated” involves an iterative process, i.e., a sequence of instructions that are
executed several times, until a stopping criterion is satisfied.

In this work, we will analyze this situation in the context of the following applica-

tion. We will consider the problem of solving the system of parameterized nonlinear

1

equations

f(z,p) =0 (1.1)

where f:IR"™"™ — IR™ satisfies some smoothness assumptions, p € IR™ is a vector
of parameters, and z € IR" is the vector of unknowns, to be determined for a fized
p. Here IR™ denotes the n-dimensional Euclidean space.

Let us assume that for a given p, z, = z.(p) denotes a solution of (1.1}, and

that an iterative process of the form
Tht1 = ¢k($k,p) , k=012, ..., (1.2)

can be applied, where {¢:} is a sequence of functions such that ¢, : R**"» — IR", for
all k. As we will see later, the iterates generated by Newton’s method and Broyden’s
method, for solving system (1.1), can be expressed in this form.

Assuming that the sequence of iterates {zx(p)} generated by (1.2) converges to z.,
the idea is to apply automatic differentiation to a program that executes this iterative
process, considering the components of the parameter vector p as the independent
variables, and the components of each iterate z(p) as the dependent variables.

Upon execution, and for a given value p = p, the resulting “differentiated”
algorithm will generate two sequences: the sequence of iterates {zk(p)} and the
corresponding sequence of derivatives {0z«(p)/0p} -

The question that interests us is the following. Does {dzi(p)/0p} converge to
0z,(p)/Op when {zk(p)} converges to z«(p) ?

Recently, J.C. Gilbert analyzed this issue in [30]. In this theoretical work, he
identified a class of fixed-point iterations, that includes Newton’s method, for which
the above property holds. This class is quite restrictive, and it does not include
Broyden’s method or other secant methods. This theoretical work motivated our

numerical experiments, which are discussed and presented in Chapters 3 and 4.

In Chapter 3, we introduce some background material about the iterative solution
of systems of nonlinear equations, and discuss the application of automatic differen-
tiation to algorithms that execute an iterative process of the form (1.2).

Chapter 4 is divided in two parts. In the first part, we show the results obtained by
applying the automatic differentiation precompiler ADIFOR to two iterative solvers:
LMDER and HYBRJ, from the MINPACK-1 software library (see More et al.
[55]). Basically, the first one is an implementation of Newton’s method, and the
second one is an implementation of Broyden’s method. Both algorithms employ a
trust-region approach as the globalization strategy (see Dennis and Schnabel [24]).

The resulting “differentiated” versions of LMDER and HYBRJ were tested on
a set of 6 test problems, which are systems of parameterized nonlinear equations
of the form (1.1). These systems originated in the discretization of the systems of
parameterized first-order ordinary differential equations that are given in Appendix A.
For all the test problems considered, the convergence property of the derivatives was
satisfied. That is, whenever the sequence of iterates converged to a solution z.(p)
of the system, the corresponding sequence of derivatives (computed by automatic
differentiation) also converged to the correct value 0z.(p)/0p .

In the second part, we show that the “differentiated” versions of LMDER and
HYBRJ can be successfully incorporated into a code that implements the Black-
Box method for solving parameter identification problems. We tested the resulting
parameter identification codes on the problems given in Appendix A, and compared
their performance versus the performance of similar codes employing forward finite-
difference approximations, instead of automatic differentiation. The results obtained
indicate that using automatic differentiation leads to more robust but less efficient
codes than using forward finite-difference approximations.

Finally, in Chapter 5 we present some concluding remarks.

Chapter 2
Automatic Differentiation: an Overview

2.1 Preliminaries

Numerical methods employed in the solution of many scientific problems often require

the evaluation of the derivatives of some function

fi(z) n
f(z) = : =| : | €eR",
fm() Ym
where fi,...,fm:R"—=IR,and z = (z1,..-,2.)T € R".
For differentiation purposes, the components z1,...,ZTn of z are usually called
the independent variables, and the components yi,...,Ym of f(z) are called the

dependent variables.

Assuming that f is well-defined and at least once-differentiable on some neigh-

borhood of z, the derivative f’(z) is given by the m x n matrix
= fi(z) - 5hile)
J(z) = : :)
%fm(m) ?az_,,fm(m)
called the Jacobian.

In the scalar case, f(z) = y € IR, it is often necessary to compute the gradient

vector, which is given by

= f(z)
Vf(z) = : € R".
= f()

4

Often, the accuracy and the “computational cost” (measured in terms of speed
and storage requirements) of the derivative calculation, have crucial influence in the
robustness and efficiency of the numerical solution process.

In many applications, the function f to be differentiated is available either as
an algebraic expression or in the form of a computer program, in some high-level
programming language such as FORTRAN, Pascal, C, or another.

If f is given as an algebraic expression, then it is possible to differentiate it
“by hand”, applying the well-known rules of differentiation. However, this is not a
practical approach; it often becomes a tedious and error-prone task, even for moderate
size problems.

Until recent years, automatic differentiation was not acknowledged as a “stan-
dard” computational technique for calculating derivatives, and many applied scien-
tists considered that the practical alternatives were either symbolic differentiation or

the approximation of derivatives by finite differences.

Symbolic differentiation is a capability provided by the so-called computer al-
gebra systems, such as REDUCE [37], Macsyma [60], Maple [16], Mathematica [70],
and others. These systems are large pfogramming environments that solve or approx-
imate the solution to different kinds of mathematical problems. They have become
very popular tools due to their flexibility and user-friendliness.

Symbolic differentiation works as follows: it takes as input the algebraic expres-
sion (formula) representing the function, and it produces as output separate algebraic
expressions corresponding to the analytic derivatives, all of them in terms of the in-
dependent variables. The “naive” symbolic differentiation algorithm is basically a

straightforward application of the elementary differentiation rules on the given for-

mula, via symbolic manipulations. Mathematical expressions are represented by com-
putational data structures such as linked lists or others (see Char [15], and Goldman
et al. [31]). The generated derivative expressions can be evaluated at specific argu-
ments, providing “exact” derivative values, up to machine precision. This means that
the computed values would be exact if the computer arithmetic could be carried out
with infinite precision.

The “naive” symbolic differentiation algorithm can be highly inefficient. Since the
algebraic expressions for the derivatives are all expressed in terms of the independent
variables, the same subexpression may occur in several places within the generated
expressions. For large prdblems, this can result in a tremendous amount of formulae
that can saturate the system. This “expression swell” problem, discussed by Griewank
in [32], often limits the use of symbolic differentiation.

Most computer algebra systems pffer the capability of program generation. In
other words, they are able to translate the generated algebraic expressions for the
derivatives into a computer program. But, due to the redundancies, the quality of the
computational code generated from symbolic differentiation may be far from optimal.
The evaluation of the partial derivatives 8f/8z1,...,0f/0z, can be about n times
as expensive as the evaluation of f itself, or more (see Iri [43]). However, efficiency
in the generated code can be considerably improved by the application of source-code
optimizers which, among other tasks, try to simplify the code by removing redundant
computations, as shown by Char in [15].

It is important to point out that the code generation and optimization facilities
offered by symbolic differentiation may require a large amount of computing resources,
even on very small problems (see Campbell [14]).

Another limitation in the application of symbolic differentiation is that it requires

as input the algebraic expression for the function, which may not be available. Often,

the user can only provide the computational code that defines the function (for ex-
ample, if the function is the result of a complex sequence of calculations, such as a
simulation). Additionally, functions involving branches or loops cannot be handled

by symbolic differentiation in a straightforward manner.

Traditionally, the alternative to computing analytic derivatives has been the use
of finite-difference approximations.

For a scalar function y = f(z) € IR, the partial derivative with respect to zy ,
the k** component of the vector z € IR", can be approximated either by one-sided

differences

8f(x) feh-e®) - f(x)

B2, - , (2.1)
or by central differences
6f(a) _ flzth-e®) = flz—h-e®) 02)
(9.’Bk = 2h ’)

where e® denotes the k* Cartesian basis vector in IR, and h is called the
finite-difference step.

In order to compute these approximations, the user needs to provide a computer
program that evaluates the function f(z) at the required arguments, and possibly
other parameters for the calculation of an appropriate step & .

The approximation error involved in (2.1) and (2.2) is of order h and h?, re-
spectively (see Dennis and Schnabel [24], p. 77 - 80). Thus, for “sufficiently small”
values of h, the central difference approximation is more accurate than the one-sided
difference approximation, but it requires more function evaluations. Notice that in
order to approximate the n partial derivatives 8f/0z1,...,0f /0z, it is necessary

to perform n + 1 evaluations of f(z) in (2.1), and 2n evaluations in (2.2).

For this reason, the computational cost of using finite-difference approximations
can increase considerably for problems where the evaluation of the function is expen-
sive and there is a large number of independent variables.

In the case of a vector function with n components, the one-sided difference
approximation to the Jacobian also requires n + 1 function evaluations, and the
central difference approximation requires 2n evaluations. However, if the Jacobian is
sparse, it is possible to reduce the number of function evaluations. Curtis, Powell and
Reid suggested in [20] an approach that is based on the partitioning of the columns
of the Jacobian. Coleman and More, in [18] and [17], connected the partitioning
problem to a graph coloring problem and gave some parfcitioning algorithms that can
considerably reduce the number of required function evaluations.

An important point is the choice of the finite-difference step h. It may seem
that the obvious thing to do is to choose h to be very small in order to make the
approximations more accurate. However, if becomes too small, then significant
digits can be lost due to cancellation errors. If the sacrifice of significant digits occurs
often enough in the program that employs the finite-difference approximations, then
the final results can become meaningless. This situation creates a serious problem for
the user: to find the optimal value for h in order to maximize the accuracy attained in
the derivative approximation and to minimize the loss of significant digits. A careful
analysis on how to choose the finite-difference step h can be found in the book by
Dennis and Schnabel [24] (p. 96 — 99). If the steps are properly selected, then methods
using finite-difference approximations to the derivatives can give similar performance
to the same methods using analytic derivatives.

In some cases, finite-difference approximations may become too inaccurate to be
useful. For the same reason, they may be unreliable for the estimation of second and

higher-order derivatives.

2.2 Applying the Chain Rule to Computer Programs

Automatic differentiation often tends to be confused with symbolic differentia-
tion. Both are computational techniques that implement the chain rule in a mechan-
ical fashion to compute analytic, or exact, derivatives. As we mentioned earlier, this
means that the computed derivative values would be exact if infinite precision arith-
metic were employed. In both techniques, there is no need to select parameters that
may affect the quality of the results, like in finite-difference approximations. But,
while symbolic differentiation is concerned with the differentiation of functions de-
fined by algebraic expressions, automatic differentiation considers functions defined
by computational codes. Automatic differentiation applies the chain rule to a sequence
of computational steps, rather than to formulae.

The idea of “differentiating” a computer program is attractive because most func-
tions of practical interest can be defined, or approximated, by programs written in
some high-level computer language.

Automatic differentiation can be viewed as a computational process that requires
as input the sequence of computations for evaluating a function, and produces as
output an extended sequence of computations for evaluating both the function and its
partial derivatives. The transformation process consists of the systematic application
of the chain rule to the sequence of elementary operations involved in the original

program. Graphically, this process may be viewed as follows:

10

evaluation of f(z)

~U« chain rule

evaluation of f(z)
and derivatives .

There are two basic ways in which the chain rule can be applied to the compu-
tational code that evaluates a function: the so-called forward and reverse modes of
automatic differentiation.

The forward mode has been investigated for at least thirty years. The first publi-
cations in the area were the works by Beda et al. [2] and by Wengert [67].

The reverse mode has been studied at least since the early seventies, and was first
published by Ostrovskii et al. [59]. This approach is closely related to the adjoint
sensitivity analysis for differential equations, which has been used particularly in
nuclear engineering (Cacuci [12], [13]), weather forecasting (Navon et al. [57]), and
neural networks (Werbos [68]).

Numerous other references about the forward and the reverse mode can be found
in the papers of Kedem [51], Rall [62], Kagiwada et al. [48], Fischer [27], and Griewank
32].

Both modes allow the computation of derivatives of functions defined by computer
programs, but depending on the characteristics of the problem, one may be more
efficient than the other in terms of time and storage requirements.

In the remainder of this chapter, we will present a survey of the theory and im-

plementation of automatic differentiation. In Section 2.3 we introduce some notation

11

that is used to describe the evaluation of a function defined by a computer program.
In Sections 2.4 and 2.5 we discuss the forward and the reverse modes of automatic
differentiation. In Section 2.6 we show a different way of representing the process
of evaluating a function in terms of the so-called computational graph. This rep-
resentation is useful in the context of automatic differentiation. In Section 2.7 we
discuss some approaches to compute Jacobian matrices by automatic differentiation.
In Section 2.8 we comment about different implementations of automatic differen-
tiation and mention some of the available software. In Section 2.9 we discuss some
difficulties that may arise in “naive” application of automatic differentiation, and that
may lead to incorrect results. Finally, in Section 2.10 we mention some of the current
topics of research in the field.

Even though we will consider the application of automatic differentiation to com-
pute first-order derivatives, this can be generalized to the computation of multivariate

higher-order derivatives.

2.3 Function Specification

In this section, we introduce some notation that allows us to represent the evaluation
process of a function defined by a computer program. We will focus on the scalar
case. Vector functions will be discussed in Section 2.7.

Let us assume that a function y = f(z) € IR is defined by an evaluation program
in some high-level computer language. For a given z = (vy,... ,v,)T € R™, the
execution of this evaluation program in a computer can be viewed as the composition
of a finite sequence of unary and binary elementary operations, such as +,—, x, =+,
ezp, log, sin, cos, etc.

Let us denote each elementary operation executed in the evaluation of f(z), by

@i , with i > n, and let us assume that the result of evaluating each ¢; at the current

12

arguments is stored in an intermediate variable v; . We assume that the arguments
of each elementary operation are already computed quantities.

As an example, let us consider the function f : IR? —» IR given by
y = f(z1,22) = 1.5 (7122 + exp(z2)) — cos (z1) - (2.3)

The corresponding gradient vector is

1.5z + sin (z1))

V() = (1.5-(x1+exp(=vz))

For a given = = (v1,v2)7 € R?, the evaluation of y = f(z) can be performed by

executing the following sequence of elementary operations:

vz — @3(v,v2) = v1-V2
vy — @4(v2) = exp (v2)
vs — @s5(v3,v4) = v3+ g (2.4)
ve <+ e(vs) = 1.5 vs
vr — (V1) = cos(v1)
y=uvg + s(veV7) = Vs — V7.

Obviously, there may be many different ways of evaluating f (z) as a sequence of

elementary operations. For example, f(z) could also be evaluated by executing the

sequence
va — 3(v1) = cos(v1)
ve — @a(v1,v2) = v1-V2
vy v = exp(v
5 905(2) p(2) (2.5)
ve +— o(va,v5) = V4t Us
vr — 1(ve) = 1.5 -ve
y=vg ¢ @g(vr,v3) = vr—v3.
In more general terms, for a given z = (v1,... ,vn)T , we can denote the sequence of

elementary operations executed to evaluate f(z) by @n41,...,¢-, for some r > n.

13

As shown in the examples (2.4) and (2.5), the evaluation of each ¢; (n+1 <@ <

r) can be represented by an assignment of the form
vi — @i(vj)jezi » (2.6)

where the index set Z;, associated to v;, contains the indices j corresponding to the
arguments v; on which v; depends directly. These arguments are either one or two
variables, depending on whether the ¢; is unary or binary. As we mentioned earlier,
the arguments of ¢; must be already computed quantities, that is {v; : j€ L} C
{v1,...,vic1} .

Using an informal programming language, we can specify the evaluation process

of y = f(z) as follows

Function Evaluation

Given vi = T1,...,n =2Zn

for i=n+1,...,r (27)

vi — @i(vj)jer »

Y=

In practice, some other parameters or constants may be provided as input in (2.7),
but we do not need to take these quantities into consideration for our study.

The above notation can be applied to programs involving any number of interme-
diate variables. Usually, this number is much larger than the number of dependent

and independent variables.

14

As mentioned earlier, each @; (n+1 <1 < r) is unary or binary, and is typically

of the form

@i(viy, V) i @i = =X (2.8)

or

(2.9)

i(vj,) if @; = ezp, log, sin, cos, etc.

The sequence @ni1,---,9r characterizes the computation of the function. In the

literature, this sequence has been assigned different names, such as: basic representa-
tion (Kedem [51]), code list (Rall (62]), computational scheme (Iri [42]), computational
process (Iri et al. [44]), characterizing sequence (Fischer [29]), etc.

The list of elementary operations could also be extended to include any other

function required by the user, provided that the corresponding partial derivatives are
supplied as well.

We will assume that for each elementary operation

V; — cp,-(vj)je*_r.. , n+1<i<r, (2.10)
the corresponding elementary partial derivatives
80i(v:) et
Opilvi)iets forallk e T (2.11)

ka
are well-defined and easily computable at all arguments of interest. This is clearly
the case when ; is one of the operations inc! -ded in the lists (2.8) or (2.9).

For example, in the third line of (2.4), from the assignment:
vs — ps(v3,ve) = V3 + Vs

it follows that
9¢5(v3,v4) _ | ,n4 Ops(v3, va)

=1,
81)3 a'U4

15

or from the fifth line:

vr — @r(v) = cos(vy),

we can compute

Op7(v1)

———= = —sin(v1).

avl

This is the context in which we will study the application of automatic differenti-
ation. Basically, this technique consists in applying the chain rule in an appropriate
way to propagate the elementary derivatives (i.e., the derivatives corresponding to
the elementary operations) through the entire sequence of calculations that charac-
terize the function. At the end of the process, the desired derivative values can be
obtained. As we will see in the next sections, this can be implemented in a completely

mechanical fashion.

2.4 The Forward Mode of Automatic Differentiation

The forward mode of automatic differentiation is basically a straightforward appli-
cation of the chain rule to the sequence of elementary operations that characterizes
the function. The idea is to eztend in the original code (2.7), the evaluation of each
intermediate variable v; (n+1 < i < r), with the computation of an n-vector Vv,

defined by

0v;/0v,
Vv; = : € R", (2.12)
Ov;/0v,
where v;,...,v, are the independent variables.

By applying evaluation rules together with elementary differentiation rules the
pairs (vi, Vv;) can be propagated throughout the whole sequence of elementary oper-

ations executed in (2.7). At the end, the last computed intermediate variable v, will

16

give the value of y = f (z), and its corresponding derivative vector Vv, will give the

value of Vf(z). In this way, the forward mode computes the derivatives of all the
intermediate quantities involved in the calculation with respect to the independent

variables

Each vector Vv; (n+1 < i< r)is evaluated by applying the chain rule to the

corresponding elementary operation
vi = @i(vi)jet. »

which gives

0pi(vj)je:
Vv; = e i== . Vog. (2.13)
lcezl'.- 8vk

The evaluation of Vwv; can be easily performed because of the following facts:

e The ¢;’s are just unary or binary operations (i.e., each set Z; has either one or
two elements), and the partial derivatives 8¢;/0vy , with k € I;, that appear

in the right-hand side of (2.13), are easy to compute.

o The vectors Vvg, with k € Z;, that also appear in the right-hand side of (2.13),
can be calculated by the same formula (2.13) in a previous step of the process
(for example, when the corresponding vy ’s are evaluated). Notice that k € Z;

implies k < ¢, since v; depends on previously computed quantities.

Thus, by applying the chain rule as in (2.13) to each elementary assignment in (2.7),

the following extended program can be generated:

17

Forward Mode

Given v1 = Z1,...,Up = Tp,
Initialization
for :=1,...,n

V'U,' — € (’)

(2.14)
Function evaluation and forward accumulation

for i=n+1,...,r
v; — @i(vj)jer.

8¢i(vj)jer;
Vi « Yher, — 5o+ - VUk

Yy="1vr,

Vy = Vo,.

This extended program evaluates both f(z) and Vf(z) simultaneously. In (2.14),
y denotes the computed value for f(z) and Vy denotes the computed value for
Vi(z).

The initialization of the gradients Vv; = ¢ (i = 1,...,n), corresponding to
the independent variables, arises from (2.12). Notice that e() represents the 7'
Cartesian basis vector in IR™.

Let us illustrate how the forward mode of automatic differentiation would proceed

on the sequence of computations given by (2.4).

18

Vv, « eV =

Vv, « 6(2)= (g)

Function evaluation and forward accumulation:

Initialization:

V3 “— V1°V2
V2
Vvs « vy-Vvi+uv Vo = ()
v
vy +— exp(vo)

Vvy « exp(v2): Vv = (expo(v2))

Vs ¢ U3+ U4

Vus = Vus+Voy = (v +:):p(v2))

ve — 1.5 :wvs

_ 1.5 - vy
Vvg +« 1.5 -Vus = (1.5 - (vy + exp (v2)))
V7 «— COS (Ul)
Vv, « —sin(vi)- Vo, = (—six(l)(m))
Y=g — Vg — V7

Vy=Vuvg ¢« Vuvg—Vuvr = <

1.5 - vy + sin(v1)
1.5 - (v + exp (v2))

Since the evaluation of each intermediate quantity v; is accompanied by the
evaluation of the n components dv;/dvy,...,8v;/0v, of the corresponding gradient

vector Vu;, the time complexity is proportional to the total number of independent

19

variables n . Therefore, the forward mode can be about as costly as approximating
Vf(z) by forward finite-differences.

The space complexity is also proportional to 7, because of the dimension of the
vectors Vv;. It may be possible to save space by using sparse storage techniques,
since the Vv;’s often have many zero components. However, a sparse implementation
may add some overhead.

In order to save storage, it is possible to implement the forward mode in another
fashion. The idea is to consider just a subset of the independent variables at a time,
and apply the forward mode to obtain the partial derivatives of f(z) with respect
to those variables.

For example, let us assume that just one independent variable is chosen for dif-
ferentiation, say v (1 < I < n). The forward mode proceeds as in (2.14), but instead
of associating with each intermediate quantity v; an n-vector Vv; as before, just a

scalar ?; is computed, defined by

which is in fact the I** component of the gradient Vv;. As before, the pairs (v; , ;)
can be propagated throughout the entire sequence of computations. At the end of
the process, the last computed scalar &, will give the value of df(z)/dvi, the [th
component of V f(z). This process can be repeated n times, once for each independent

variable, as described in the following algorithm.

Component-by-component forward mode

Given v1 = Z1,...,Un = Tn -
Foreach v; (1 <1< n):

Initialization

5 = ou
v’—au,‘—l’

=24 — 0, i=1,...,n;1#1,

ou (2.15)

“—

Function evaluation and forward accumulation
for i=n+1,...,r

v; — @i(vj)jer:

. dvi(vj)jer; | Bux
Vi & Zkel} vk TR

Yy="17r,

Oy /0v = 0, .

This implementation of the forward mode is considerably less economical than

(2.14) in terms of computational effort, but requires only about twice as much storage

as the original evaluation program.

2.5 The Reverse Mode of Automatic Differentiation

The reverse mode of automatic differentiation associates with each intermediate vari-
able v; a scalar quantity o;, called the adjoint. The calculation of adjoints proceeds
in reverse order with respect to the order in which the intermediate quantities are

evaluated in the original program (2.7). This is in remarkable contrast with the for-

1

ward mode, where each v; is computed together with the associated n-vector Vu;,
as shown in the previous section.
For each intermediate quantity v; (n+! < i < r), the corresponding adjoint is

defined by
Jdy ov,

Vv = — =

3’0; - 8v,~ ’

and it measures the sensitivity of the final result v, with respect to the intermediate

(2.16)

quantity v; .
The process for calculating the adjoints requires going through the entire sequence
of elementary computations in reverse order. Thus, it can be executed only after the

function has been evaluated.

This can be best understood with an example. Let us consider the function

f:R?* > IR defined by
Yy = f(z1’$2) = $1-$2+CXP($2).

Let us assume that, for a given z = (v1,v;)T € IR?, f(z) is evaluated by the following
sequence of assignments
V3 & U1-V2
vs ¢ exp(v2)
y=vs <« Uztuvg,

which coincide with the first three elementary operations in (2.4).
Considering the final result y = vs as the dependent variable, we can compute
its partial derivatives with respect to all the quantities involved in the calculation by

applying the chain rule in a “backwards” fashion, as follows

6'05

Bvs
Ovs _ Ovs Ovs

vy Ovs Ovg

Ovs _ Ovs Ovs

vs dvs Ovs

= 1

QEE Ovs Ovs Ovs _ %

Ovs 50_351)_2 -874 Ovy
% Bvs 61)3 31)5 81)4

on 5;)_3 ' 51)_1 Ovy Ovy

Denoting

8v5 _ 8’05 _ 8’05 _ avs _ Bvs

’1755—— V4 = V3 = 7 Ve = T m = —
61)5 ’ 8v4 ’ (%3 ’ 6'02 ’ 6v1 ’

we can rewrite the previous sequence of computations in following way

’55 == 1
0
s = 65-—0—2—i=1-1=1
0
Ty = '55-52—;:1-1:1
Vg = 63~%§+64-%Z—: = 1l-v;+1-exp(v2) = v1+exp(v2)
0 0
61 = 53_2_}_1‘)4_1)2 = 1"02+1'0=’02.
0‘01 6‘01

vy = 22

V2 = I + €Xp ($2) ’

which are the components of V f(z).

Now, we will describe the reverse mode in more general terms. After the function

f(z) is evaluated, the algorithm starts by initializing the adjoints as follows

7% = 0 1=1,...,7r=1,
Ov,

Uy = =1.

v ov,

Then, by going in a backwards fashion through the entire sequence of computations

performed in (2.7), the reverse mode considers each (already executed) elementary

operation
v;«—cpi(vj)jer,., 1=r,...,n+1,
and computes
00i(v;)ier.
Vp — U + —(ﬁ—(a%)—]é' - Vg for each k € Z; . (2.17)
k

In other words, all the adjoints ¥ such that the corresponding vi is an argument

of ¢;, are incremented by the quantity

0991'('01').7'61'.‘ Y
oo ;. (2.18)

Notice that in order to evaluate (2.18), all the arguments v;, with j € Z;, of the
elementary function ¢; , must be already computed.

The intermediate variable v; being processed must receive all the contributions
to its adjoint ; , before it can start contributing to the adjoints of the wvy’s, with
k < i. In this way, all the adjoints ¥y,...,Un+1,¥n,...,01 are computed.

At the end of the process, the adjoints s, . . ., U corresponding to the independent

variables, will give the components of the gradient vector, that is

n

Vi(z) =

Un

In this way, the reverse mode computes the derivative of the dependent variable
with respect to all the variables involved in the computation of the function. The
derivative calculation can only be performed after the function is evaluated, because
the values of the intermediate quantities v; , with j € I;, must be available as
arguments of ¢; in (2.17), for the computation of each adjoint.

The following extended program evaluates f(z) and V f(z) by the reverse mode

of automatic differentiation.

Reverse Mode

Given vy = T1,...,0n = Tn,
Initialization

v «— 0, i=1,...,7r—1,
Uy 17

Function evaluation
for i=n+1,...,r (2.19)

Vi & ‘Pi(”a’)je:ﬁ ’
y=uvr,

Reverse accumulation
for i=r,...,n+1
Bpi(v

{,k(_ﬁk+—-—g%e—zi--5; for each k€ I,

Oy/Ov; «— ©;, i=1,...,n.

Basically, the propagation of adjoints reduces to a sequence of multiplications,
additions and assignments. These simple rules allow the gradient computation to
proceed at a cost that is a fized constant times the cost required to evaluate the
function itself, no matter how many independent variables there are. If the evaluation
of the function involves R elementary operations, then the evaluation of the gradient

will require approximately c- R operations, where ¢ <5, as shown by Griewank in

(32].

25

Additionally, Iri showed in [42], [46], and [43] that as a by-product of the reverse
mode, it is possible to obtain fairly sharp estimates for bounds on the rounding errors
in the computed function value.

Despite the advantages of the reverse mode regarding time complexity, difficulties
might arise at the implementation level, since it is necessary to access in reverse order
the entire sequence of operations executed during the function evaluation. Most of
the current implementations achieve this by recording the sequence of elementary
operations in a file, or trace, while the function is being evaluated, and then accessing
this information in a reverse fashion. But, since practical problems tend to involve
millions of elementary operations, this file may require a very substantial or even
prohibitive amount of storage.

Recently, Griewank [33] showed theoretically that more reasonable compromises
between temporal and spatial complexity can be achieved by employing a technique
called recursive checkpointing. More specifically, he showed that if one accepts an
increase in the number of operations by a factor K , then the storage required by the
reverse mode is limited essentially by the ¥/T, where T is the run-time for evaluating
the original function (see Bischof [10]). This approach has not been implemented yet,
but the claim is that it can reduce the memory requirements of the reverse mode,

and facilitate its application to computations of virtually any length.

2.6 Graphical Interpretation

The process of evaluating a function and its derivatives can be “naturally” repre-
sented in terms of a computational graph. This is a directed acyclic graph, whose
vertex set is formed by all the quantities involved in the computation of the function:
independent, intermediate, dependent variables, and possibly constants. Every vari-

able is represented in the graph by a vertex. An arc runs from one vertex to another

26

if the variable associated with the latter depends directly on the variable associated

with the former. In other words, for each elementary operation
vi — @i(v;)jer,

in the evaluation program (2.14), the vertices corresponding to the arguments v;, with
j € I;, are connected in the graph to the vertex corresponding to the result v;. Each
arc connecting two vertices has associated with it the value of an elementary partial
derivative: the derivative of the variable corresponding to the vertex destination with
respect to the variable corresponding to the vertex origin.

For example, for an elementary operation of the form
vi — @i(Vin, Vi)

the arc connecting vj, with v; will have associated the value of 0¢i(vj,v5,)/0v) »

and the arc connecting v;, with v; will have associated the value of 0pi(vjy,v5,) [OVsy

as shown in Figure 2.1.

Oy
dvj,

Figure 2.1: Elementary partial derivatives for v; — ¢:(vj;,v;,)

Let us consider again the function f:IR? — IR, defined by
y = f(z1,22) = 1.5 - (z1-22 + exp(z2)) — cos(z1).

For a given z = (v1,v2)T, the corresponding evaluation process can be performed by

the sequence of elementary assignments (2.4), that is

vs — @3(v1,v2) = V12
vy — 4(v2) = exp (v7)
vs — ps(va,ve) = vty
ve — pe(Vs) = 1.5 - vs
v — or(v1) = cos(v1)
y=vg — ps(ve,v7) = V6—UT.

This evaluation process can be represented by the computational graph depicted in

Figure 2.2.

Figure 2.2: Computational graph for f(z) = 1.5-(z1-72+exp (z2)) — cos (z1)

29

From the computational graph, many valid evaluation processes can be derived.
For example, just by relabeling the nodes of Figure 2.2 in an appropriate way, it could
represent the evaluation process given in (2.5).

From the information stored in the graph, derivatives can be computed by ac-
cumulating the quantities associated with the arcs in an appropriate fashion. Given
z = (v1,...,vn)T € IR, the partial derivative of f(z) with respect to the independent
variable v; can be evaluated as follows

f(z) _
where P(vy, f) is the set of all directed paths P that connect v to the dependent
variable f, and Oa represents the value of the elementary partial derivative attached
to each arc a € P.

For example, in the computational graph of Figure 2.2, in order to calculate
df(x)/0v, , we must consider all the directed paths that connect the vertex v, with
the vertex f. They are indicated by the dotted lines. By multiplying the elementary
partial derivatives attached to each arc on a path, and finally adding the resulting

values of all the paths, we obtain

d0f(z) of Ove Ovs %_{_ﬁ Ovr

dv; Ove Ovs Ovs Oun v 51-)_1-

= 15 vy + sin(v1).

The forward and the reverse modes of automatic differentiation correspond to
two different ways of traversing the computational graph and using the information
contained in it.

In the forward mode, the sequence of computations corresponds to traversing the
graph from the independent variables to the dependent variable. For this reason, it

is also called the bottom-up mode. Since the derivative calculation proceeds together

30

with the function evaluation, the forward mode can be implemented in one pass
through the computational graph.

On the other hand, the reverse mode computes the adjoints in opposite order with
respect to the order in which the elementary operations are executed to evaluate the
function. This corresponds to traversing the graph from dependent variable to the
independent variables. For this reason, the reverse mode is also called the top-down
mode. As we mentioned in Section 2.5, the derivative calculation can be performed
only after the function has been evaluated so that the values of all the intermediate
quantities are available for calculating the adjoints. This mode can be implemented in
two passes through the computational graph. In the first pass, or forward sweep, the
function is evaluated. In the second pass, or reverse sweep, the adjoints are computed.

Apparently, the graphical representation of evaluation programs was first proposed
by Kantorovich [50]. It has been extensively used in the context of error estimation
(see Bauer [1] and Miller [53]), a task that is closely related to the reverse mode.

An important use of the computational graph is to provide dependency informa-

tion that can be used for the parallel evaluation of the function and its derivatives

(see Bischof et al. [8], [9])-

2.7 Computation of Jacobians

As in the scalar case, the computational process for evaluating a vector function
f:IR"— IR™
fi(z) n
f(z) = : c]
fm(z) Ym

31

can be regarded as a sequence of elementary unary and binary operations. For a given

z = (v1,...,vn)7 , this evaluation process can be represented as follows

Function Evaluation

Given vy = T1,...,Un = Tp ,

for i=n+1,...,71,...,™m
(2.20)
v & ‘Pi(vj)jel'.' ’

Y1 < Uny

Ym — VUrp, -

Here, there are m dependent variables: y1,...,Ym .

Automatic differentiation can be applied to evaluate the corresponding

m X n Jacobian matrix

wfile) 0 Eohile)
J(z) = : :

’

ory

at a particular argument z € IR".

There are different ways in which this matrix can be calculated using automatic
differentiation. Naturally, either the forward or the reverse mode could be applied sep-
arately to the components fi(z),..., fm(z) of the vector function f (z), as explained
in Sections 2.4 and 2.5. In this way, we would obtain independently of each other,
the m gradient vectors Vfi(z),...,V fm(z), which are the rows of the Jacobian.
However, this approach may be far from optimal if the functions fi,..., fm involve

many common subexpressions.

32

Since the computation of the derivatives is intimately related to the evaluation
of the underlying function, it is often more efficient to evaluate both function and

Jacobian together. The following are some of the possible approaches.

e The entire Jacobian can be calculated by applying the forward mode to the eval-
uation program (2.20), using the same approach as in (2.14). At the beginning,
each independent variable v; is associated with a vector Vu; = e() € R™.
During the evaluation process, each intermediate quantity v; (t=n+1,...,rm)
is computed together with a corresponding n-vector

0v;/0v,
Vv; = :
Ov;/0vn,
The pairs (v; , Vv;) are propagated throughout the entire sequence of compu-
tations, as explained in Section 2.4. At the end, the vectors Vu,; associated
with the dependent variables y; (j = 1,...,m), will give all the rows of the

Jacobian.

e The entire Jacobian can be calculated by applying the reverse mode to the
evaluation program (2.20), using the same approach as in (2.19), but instead of
associating with each intermediate quantity v; (t=rm,...,n+1) a real-valued
adjoint, an m—vector is computed:

3f1 /a’U,'

v = :
O fm/[0vi

At the beginning, the adjoints corresponding to the dependent variables y;
are initialized by §; = ¢\9) € IR™. In the forward sweep, all the intermediate
quantities v; are computed. In the reverse sweep, the adjoint vectors ¥; are

propagated, as explained in Section 2.5. At the end, the vectors ©; associated

33

with the independent variables v; (7 =1,...,n), will give all the columns of

the Jacobian.

The Jacobian can be calculated column by column by the forward mode, using
the same approach as in (2.15). First, an independent variable is chosen, say v,
(1 <1< n). The associated scalar 9 is initialized to 1, and the remaining ;s
to 0. During the evaluation process, each intermediate quantity v; is computed
together with the corresponding scalar #; = Ovi/0vi. The pairs (vi,;) are
propagated throughout the sequence of computations, as explained in Section
2.4. At the end of the process, the last m computed scalars ¥,, , associated
with the dependent variables y; , will give the values of 0f;/0vi, j = 1,...,m,
which are the entries in the [** column of the Jacobian. This process can be

repeated n times, for [=1,...,n, to obtain all the columns.

If the particular application does not require the evaluation of the Jacobian
J = J(z), but instead the product Ju for some vector u € IR", this can be
done using the same approach, and initializing 9; = u;, for i =1,...,n, at the

beginning of the algorithm.

The Jacobian can be calculated row by row by the reverse mode, using the same
approach as in (2.19). First, a dependent variable is chosen, say fi (1 <1< m).
The associated adjoint ¥y, is initialized to 1, and the other adjoints to 0.
In the forward sweep, all the intermediate variables v; are computed. In the
reverse sweep, the scalars ¥; are propagated, as explained in Section 2.5. At
the end of the process, the last n computed adjoints o;, associated with the
independent variables v; , will give the values of 9f/dz;, i =1,...,n, which
are the entries in the [** row of the Jacobian. This process can be repeated m

times, for [=1,...,m, to obtain all the rows.

34

As in the previous case, for some vector w € IR™ , the product wTJ can be
computed by using the same approach, and initializing the adjoints v, = wj,

for j=1,...,m, at the beginning of the algorithm.

Griewank [34] related the task of computing the Jacobian to the problem of suc-
cessively eliminating intermediate vertices in the computational graph that represents
the function. This process involves an accumulation procedure which can be viewed
mathematically as a generalization of the chain rule. He conjectured that the problem
of finding the optimal accumulation procedure (with minimal number of arithmetic
operations) is NP-hard.

Jacobian matrices are often sparse, and the dependency information obtained from
the computational graph can be used to deduce the sparsity structure. Notice that if
there is a path from the i** independent variable v; to the jt* dependent variable
f;, then 8f;/0v; # 0 (in the absence of numerical cancellation), which means that
the component in the position (7,7) of the Jacobian is nonzero. In this way, it 1s
possible to determine all the nonzero entries. This approach is discussed by Bischof
et al. in [8)].

Once the sparsity structure is known, by using the graph coloring approach of
Coleman, Garbow and Moré [17] (which originated in the context of finite-difference
approximations, as mentioned in Section 2.1), it is possible to identify the component
functions f; that depend on disjoint subsets of independent variables. The gradients
of component functions that belong to the same subset (i.e., were assigned the same
color by the graph coloring procedure), can be evaluated in the same pass of the
reverse mode. This procedure can considerably decrease the number of reverse passes
required to compute all the rows of the Jacobian. Similarly, graph coloring can be
applied to detect a suitable partition of the columns of the Jacobian, so that all the

columns in each group can be computed in one pass of the forward mode.

35

As in the case of finite-difference approximations, the use of graph coloring tech-
niques could improve the computational efficiency of automatic differentiation when

the Jacobian is sparse.

2.8 Implementations of Automatic Differentiation

Basically, the principle underlying automatic differentiation implementations is the
addition of extra computations to the original function evaluation program, to evalu-
ate both the function and the required derivatives. A wide variety of implementations
have been developed over the years, mostly in the form of FORTRAN precompilers
and overloading utilities in Pascal-SC, Ada, C++, etc. In this section, we will summa-
rize the features of these two approaches. A survey and classification of twenty-nine

available software tools for automatic differentiation has been done by Juedes in [47].

¢ FORTRAN Precompilers
A precompiler for automatic differentiation is a special-purpose program that
transforms the sequence of instructions for the evaluation of a function into a
sequence of instructions (or subroutines) for the evaluation of the function and

the required derivatives.

In the case of FORTRAN precompilers, the user is usually required to sup-
ply as input the source code for evaluating the function in some “dialect” of
FORTRAN, and to nominate the dependent and independent variables. The
source code is then fed to the precompiler, which analyzes the arithmetic assign-
ment statements, in a way similar to a compiler. All calculations involving real
variables are broken down into elementary arithmetic operations and univariate

functions, as explained in Section 2.3. Control statements remain unaltered.

For each elementary operation, the precompiler already has built-in expressions

for the corresponding partial derivatives. With this knowledge, it produces as

36

output an extended FORTRAN program that, upon execution, will evaluate

both the function and the required derivatives.

In the forward mode, the amount of storage can be predicted, since it is propor-
tional to the number of independent variables (unless a sparse storage technique
is being used). In the reverse mode, the storage is proportional to the total
number of elementary operations executed, which makes the storage allocation

a more complex issue, as mentioned in Section 2.5.

A drawback of many existing precompilers is that they usually impose restric-
tions on the kind of codes that they accept as input, since they support only a
subset of the language. Additionally, the code generated as output tends to be
rather cryptic. On the other hand, precompilers allow scope for performing an

optimization of the resulting code, to improve its efficiency.

In 1980 Speelpening [64] wrote a precompiler called JAKE, that implements
the reverse mode. JAKE was upgraded at Argonne National Laboratory to
JAKEF [38], which can calculate first derivatives of vector functions. Other
precompilers are GRESS [40], PADRE2 [45], and ADIFOR [6].

GRESS can compute first derivatives using either the forward or the reverse

mode. It has been successfully applied on a variety of problems. Examples of

the application of GRESS can be found in [41] and [39].

PADRE2 also implements both the forward and the reverse modes, and allows

the computation of first and second-order derivatives, as well as rounding error
estimates.

In all these implementations either the number of independent variables or the
total number of arithmetic operations must be of moderate size relative to the

available computing environment.

37

ADIFOR uses a hybrid approach. It is based on the forward mode, but employs
the reverse mode to compute the gradients of expressions on the right-hand sides
of assignment statements. This avoids some of the memory limitations of the
straightforward reverse mode. The current implementation of ADIFOR allows
the computation of first-order derivatives of vector functions. The user can
also incorporate information available about the sparsity structure of derivative
matrices in order to evaluate them more efficiently. The authors intend to
provide, in an upgraded version of the software, other capabilities such as the
computation of second and higher-order derivatives, the automatic detection of

sparsity, and the detection and handling of exceptions (see Section 2.9).

Operator Overloading

Operator overloading is a feature of modern programming languages like Ada,
C++, Pascal-SC, and others. In these languages, the compiler can be assigned
the task of executing certain instructions to evaluate the derivatives correspond-
ing to each elementary operation. First, the user has to identify all the variables
that correspond to “differentiable quantities”. Usually, this set consists of the
independent variables and all quantities that directly or indirectly depend on
them. The occurrence of such variables as arguments of an elementary operation
triggers the compiler to issue additional instructions for the calculation of the
corresponding derivatives. Every operation is associated to the corresponding
derivative calculation.

Compared to precompilation, operator overloading may require more insight
from the user, but it does not generate intermediate source code. All the deriva-

tive calculations are handled at the compiler level.

38

A drawback of this approach is that it is difficult to implement any optimization
in the derivative calculation that transcends elementary operations, since all
the computations are performed as by-products of these elementary operations.
Bischof studied in detail this issue in [8]. Another limitation is that the majority
of the programs from which it is necessary to compute derivatives are written

in FORTRAN77, which does not support operator overloading.

The implementation of the forward mode via operator overloading is quite
straightforward. A detailed description can be found in Rall [63]. For im-
plementing the reverse mode, all computations performed during the function

evaluation are recorded on a file, and then an interpreter performs a backward
pass on the data.

Apparently, the first implementation of automatic differentiation by operator
overloading is due to Kedem [51]. His software AUGMENT allowed the compu-
tation of gradients and truncated Taylor series in the forward mode. A few years

later, Rall [63] achieved an implementation of the forward mode in Pascal-SC,

an extension of PASCAL.

The forward evaluation of first and second-order derivatives in Ada is discussed
by Dixon and Mohseninia in [26].

Both the forward and the reverse modes have been implemented in the C++
package ADOL-C, developed by Giewank et al. [36]. ADOL-C allows the com-
putation of first and higher-order derivatives of vector functions. It is the only
tool available that supports the computation of arbitrarily high-order deriva-

tives.

39

2.9 Special Cases: Nondifferentiability and Branching

As mentioned earlier, automatic differentiation is based on the application of the
chain rule. The computed results are guaranteed to be correct provided that all the
elementary functions involved in the original program are sufficiently smooth in a
neighborhood of the points at which they are evaluated. Computer programs may
violate the smoothness requirements by evaluating elementary functions at points of

nondifferentiability, or by branching.

2.9.1 Nondifferentiability

We call a function nondifferentiable if there are points in its domain for which its
derivative does not exist. An attempt to evaluate derivatives at a point of mathe-
matical nondifferentiability is called an exception.

Elementary operations such as +,—, X, sin, cos, exp, etc., are everywhere dif-
ferentiable. Other elementary operations such as /, tan, In, logio, etc., fail to be
differentiable only at points where they fail to be defined. The operations in both
sets are considered to be differentiable, because they are mathematically differentiable
at each point in their domain of definition. The handling of exceptions for these op-
erations should be in the scope of the original program (unless overflow occurs in the
evaluation of the derivatives but not in the function).

On the other hand, functions such as abs, sign, maz, min, etc., are nondifferen-
tiable at certain points. These cases can be detected by the automatic differentiation
software, which can generate special code to handle the points of nondifferentiability.

Bischof et al. present in [11] a complete discussion about the detection and han-

dling of exceptions in the precompiler ADIFOR.

40

2.9.2 Branching

Conditional (IF) statements in a program, may define functions that are not differ-
entiable or that are not even continuous.

When automatic differentiation is applied to the program that evaluates the func-
tion, the flow of control remains unaltered. Thus, if the original code contains condi-
tional statements, the resulting “differentiated” code will contain corresponding con-
ditional statements as well. When this code is evaluated at a point where a branching
occurs, the computed derivative value, at this point, may be incorrect. The following

examples illustrate this situation.

Suppose that the original evaluation program employs a conditional statement to

compute the absolute value abs(z), for some z € IR, as follows

z if 20
-z if 2<0.

abs(z) = {

Automatic differentiation, applied to the above conditional, would compute

1 ifz>0
abs'(z) = - 2.21
(=) {-1 if 2<0. (2.21)
However, if the function abs(z) is evaluated by the conditional
z ifz>0
b =
abs(z) {—x if 2<0,
automatic differentiation would give
1 fz>0
bs’ = 2.22
abs'(z) {-1 if 2<0. (222)

Finally, another way of computing abs(z) could be

z if 2>0
abs(z) = ¢ —z if <0
0 fz=0,

41

and in this case automatic differentiation would give

1 f z>0
abs'(z) = ¢ =1 if z<0 (2.23)
0 ifz=0.

The three different, but equivalent, ways of computing abs(z) give abs’(0) =1 in

(2.21), abs'(0) = —1 in (2.22), and abs'(0) =0 in (2.23).

Another example is the following. Given z € IR, assume that the function
f(z) = z? is evaluated by the conditional statement

f(z) ={12 ifz=1

otherwise ,

then, automatic differentiation would compute

o) = {0 if z=1

2z otherwise,

which, evaluated at = = 1, would give the incorrect value f'(1)=0.

We should point out that in these two examples, the incorrect results are not due
to automatic differentiation, but to the way in which the functions are defined. The
user of automatic differentiation should be aware of the possibility that conditional
statements can produce incorrect derivative values, if they are evaluated at points

where the branching occurs.

2.10 Future Developments

The chain-rule based technique of automatic differentiation can be a convenient soft-
ware tool. Given the code for evaluating the function, first and higher-order deriva-
tives can be calculated in a completely mechanical fashion. However, even if this
technique has been used in many different fields (see the papers published in the pro-

ceedings [35]), it is not yet considered as a “standard tool” in scientific computations.

42

Aspects such as computational time, storage requirements, and user-friendliness

are being improved in current implementations.

As Iri mentions in his comprehensive survey [43], it is expected that automatic

differentiation software will offer capabilities such as

e rounding error estimation,

o flezibility in choosing among the forward or the reverse mode,
e differentiation of multivariate implicit functions,

o detection and handling of exceptions,

e possibility of integration with special-purpose packages, such as optimization, dif-

ferential equations, or others,
e efficient implementation on high-performance computers,
e portability of the software to different computing environments,
o ability to deal efficiently with large-scale applications,
e efficient utilization of parallelism and vectorization.

The availability of accurate derivatives at a reasonable cost could greatly improve
the design and implementation of algorithms and aid in the modeling and solution
of many large-scale nonlinear problems, in which finite-difference approximations can
not be trusted, and symbolic approaches are infeasible.

Cooperation with compiler developers may be indispensable, in order to enhance
the efficiency in time and space of automatic differentiation. This has been con-
firmed by the successful results obtained with the precompiler ADIFOR (see [6]), a

joint effort between the compiler group and the numerical optimization group in the

43

Center of Research in Parallel Computation, an NSF Science and Technology Center
headquartered at Rice University.

The issue of parallelism has also crucial importance. The works of Dixon [23],
Fischer [28], Bischof et al. [8], and others, deal with this aspect.

To date, automatic differentiation studies have been primarily focused in the evalu-
ation of first and second-order derivatives. However, algorithms designed specifically
for the evaluation of higher-order derivatives have been proposed by Kalaba [49],
Wexler [69], and Neidinger [58], and software for this purpose has been implemented
by Berz [4] and Michelotti [52].

Golman suggests in [31] that a combination between symbolic differentiation and
automatic differentiation could also provide efficient derivative calculation.

It is important to point out that automatic differentiation is more than just “im-
plementing the chain rule.” Even the efficient evaluation of first derivatives is a
hard problem in the sense of computational complexity. The evaluation of second
and higher-order derivatives also poses many questions, whose resolution will require

further research and experimentation in mathematics and computer science.

Chapter 3

Automatic Differentiation and Parameterized
Fixed-Point Iterations

In the previous chapter, we discussed the chain-rule based technique of automatic
differentiation. This technique has proved to be able to compute correct derivatives
for a variety of functions with different degrees of complexity (see for example the
papers in [35]). However, until recently it was not clear if it could be expected to yield
useful derivative values when the evaluation program involves an iterative process
with a variable number of steps. Many functions of practical interest are evaluated
by iterative processes, for example those that are implicitly defined as solutions of
systems of algebraic or differential equations.

In this chapter, we will be concerned with an application of automatic differ-
entiation in which the derivative to be computed is Az.(p)/dp € IR™"*" , where

z = z,(p) € R" is a solution of the system of parame:erized nonlinear equations

f(z,p) = 0,

with f:IR*™"™ — IR",and p € IR" is a vector of parameters.
We will assume that the algorithm employed to solve this system for a given value

of p executes an iterative process of the form
Tkl = ¢k(wk’p) ’ k=012, (31)

We will discuss these “generalized fixed-point iterations” in more detail in Section

3.1.
44

45

We are interested in applying automatic differentiation to this iterative process,
considering the components of the vector p as the independent variables, and the
components of each iterate zx(p) generated by (3.1) as the dependent variables.

For a given value p = p, the “differentiated” code upon execution will generate two
sequences: the sequence of iterates {zx(p)} C IR" and the corresponding sequence of
derivatives {0zx(p)/0p} C IR™*" . Assuming that {zi(5)} converges to a solution
z,(p) of the system, we are interested in whether {9zx(p)/0p} converges to dz.(p)/p.

J. C. Gilbert examined the application of automatic differentiation to parameter-
ized fixed-point iterations in [30]. He identified a class of iterations that satisfy the
following property: under certain smoothness assumptions, if the sequence of iterates
{zx(p)} generated by the algorithm converges to a solution z.(p) of the system, then
the sequence of derivatives {8zx(p)/0p} converges to 0z.(p)/0p . He showed that
this class of iterative processes includes Newton’s method. No experimental results
were provided in this work.

The hypotheses of Gilbert’s convergence theorem do not hold for Broyden’s me-
thod or for some other useful iterative methods. It is still an open question whether a
more general convergence result can be proved for these algorithms. As we will see in
Chapter 4, the numerical results obtained for Broyden’s method are quite promising
in this respect since the sequence of derivatives converged for all the tested problems.

This chapter is organized as follows. In Section 3.1 we present background ma-
terial about some iterative methods for solving systems of nonlinear equations. For
a complete discussion in this area, the interested reader may want to see the book
by Dennis and Schnabel [24]. We will focus in particular on Newton’s method and
Broyden’s method. In Section 3.2 we discuss the application of automatic differenti-

ation to generalized fixed-point iterations and present some convergence results.

46

We will denote by ||-|| the I; vector norm or any matrix norm that is consistent

with the I, norm in the sense that ||Az|lz < ||A]| ||z]lz for each z € R" and

A e mnxn .

3.1 On the Solution of Systems of Nonlinear Equations

Let f:IR"™ — IR" be a mapping with domain and range in IR®, and consider the

problem of finding a solution of the system of n nonlinear equations in n unknowns

fi(z)
f(z) = : =0, (32)

fa(2)
where f;:IR" >R, 1<i<n.

The following are the so-called “standard Newton assumptions” for problem (3.2).

(a) The mapping f is continuously differentiable in an open convex set DcCR".

(b) There is an z, € D such that f(z.) = 0 and f'(z.), the Jacobian of f

evaluated at z, , is nonsingular.

(c) f' is Lipschitz continuous at z, in D, i.e., there exists a constant v € IR such

that
If(z) = f(z)l] < vllz =2 forallzeD.

Assumptions (a) and (b) guarantee that z, is a locally unique solution of system

(3.2). The bound given in (c) is useful in the proofs of convergence for different

methods.

The best known method for attacking problem (3.2) is Newton's method, which

can be formulated as the iteration

Tkl = Tk — f'(wk)'l f(xk), k=012, (33)

47

Under the assumptions (a)-(c) given above, if Newton’s method is started from an
initial point zo which is “sufficiently close” to z, , then it can be shown that
the sequence of iterates {z)} generated by (3.3) is well-defined and converges to
z. g-quadratically. In practice, g-quadratic convergence implies that the number of
significant digits in z; as an approximation to z, at least doubles at each iteration,
once i is near z, (see Dennis and Schnabel [24], Chapter 5).

A secant method is defined by an iteration of the form
Tht1 = Tk — A;l f(zx), k=012, ..., (3.4)

where A, € IR™" is an approximation to f’(zx). At each iteration k , the matrix

A is updated to a matrix Ag41 that must satisfy the so-called secant equation
Ak+1 Sk = Yk,

where
sk = Tkp— 2k and yr = f(zre) — fzk) -
Broyden’s method is defined by an iteration like (3.4), in which the matrices A

are updated by the formula

— Agsy) T
Ao = Ap + LTRSS g g (3.5)
Sk Sk

where the initial matrix Ag is often computed as a finite-difference approximation to
f'(zo) -

Under the assumptions (a)-(c) given above, if the initial iterate zo is “sufficiently
close” to z, , and if the initial matrix Ao is “sufficiently close” to f'(z«) , then it
can be shown that the sequence of iterates {zx} generated by Broyden’s method
is well-defined and converges to z. g-superlinearly (see Dennis and Schnabel [24],

Chapter 8).

48

Broyden’s method is computationally less expensive per iteration (in terms of
arithmetic operations performed) than Newton’s method, and it does not require the
evaluation of the Jacobian, but the price paid is a reduction in the rate of convergence,
from q-quadratic to g-superlinear.

In both methods, convergence is guaranteed only when the starting point o
is a good approximation to z,. For this reason they are called local methods. To
facilitate the convergence from poor starting points, these methods are augmented
by the so-called globalization strategies. The two main approaches are the line-search

methods and the trust-region methods (see Dennis and Schnabel [24], Chapter 6).

Newton’s method is an example in a class of iterative processes which are known

as fized-point iterations. The iterative processes in this class are defined by iterations
of the form

i = Hze), k=0,1,2 (3.6)
The mapping ¢ : IR® — IR™ is called an iteration function, and it is chosen so that
any solution of the equation

z = ¢(z),

called a fized point, is also a solution of the original system f(z) =0. For a detailed
discussion about fixed-point iterations, the reader is referred to the book by Conte

and de Boor [19].

If the iteration function ¢ is continuous and if the sequence {z;} generated by
(3.6) is well-defined and converges to a point ¢ € IR™, then ¢ is a fixed point of
#(z) , since

¢ = Jim e = Jim dla) = ollirg =8) = #(8)-

49

Notice that Newton’s method, defined by the iteration (3.3), is a special case of

(3.6) in which the iteration function ¢ is given by

(z) =z — fl(2)7! f(z). (3.7)

Clearly, if z, is a fixed point of the iteration function ¢(z) in (3.7), then it is also a
solution of the equation f(z) = 0, since f'(z) is continuous at z, and f'(z,) is
nonsingular (under the “standard Newton assumptions”).

On the other hand, iterative processes of the form (3.4) cannot be described by
(3.6) because the iteration function ¢, depends on the choice of the matrix Aj,
which may not be a function of the iterate z; alone, as in the case of Broyden’s

method.

A more general iterative process, which encompasses iterations of the form (3.4)

and (3.6), is given by
Tky1 = ¢k($k), k=012 ..., (38)

where ¢, : IR® — IR", for all k. We will call (3.8) a generalized fized-point iteration.

Any point ¢ € IR™ such that
£ = ¢x(§) foralk,

is called a fixed point of the sequence {¢i} .

Let us consider the generalized fixed-point iteration given by
Tpy1 = ¢>k(:ck) = T — A;l f(:ck), k=012 ..., (3.9)

where the matrices A; € IR™*" are nonsingular.
Notice that Newton’s method can be regarded as a particular instance of (3.9)

taking Ar = f'(zx), for all k. Clearly, Broyden’s method is also an example of this

50

kind of iteration, with the matrices A; updated by formula (3.5).

Now, one may wonder what condition can be imposed on the sequence of matrices
{Ai} in (3.9) so that, if the generated sequence {zx} converges to a point, this point

is a solution of the original system (3.2). Here, we prove a theorem that states one

such condition.

Theorem 3.1

Given a sequence of nonsingular matrices {Ax} € R™", assume that the
sequence {zx} generated by (3.9) converges to a point T, € IR" . Then,
if the sequences {Ax} and {A;'} are uniformly bounded, f(z.) = 0.

Proof

By the Bolzano-Weierstrass Theorem, since the sequence {Ax} is uniformly bounded,
it has a convergent subsequence, say {Akj} . Thus, there exists a matrix A, € R™*"

such that
lim Ay; = As.

J—0
Since the matrices Ay; are nonsingular for all j, we can consider the corresponding

subsequence of inverse matrices {A;jl} , which is uniformly bounded, because {A71}

is uniformly bounded.
Again, by the Bolzano-Weierstrass Theorem, {A,:J.l} has a convergent subse-

quence, say {A;ﬁ} . Thus, there exists a matrix B, € IR™™ such that
. -1 _
Illglo Akiz = B..
Now, since
-1 _
Ag,, Ak:‘: =1, foralll,
it follows that

I = lim(A, AL

51

= (Jim Ay,) (Jim Ax;)

—+00

= A, B,.
Similarly, we can obtain that
I = B, A..

Hence, A, is nonsingular and B, = A;' .
By hypothesis the sequence {zi} generated by (3.9) converges to z.. Thus, any
subsequence of {z;} also converges to z,; in particular {zj;} convergesto z. .

The elements of this subsequence are defined by the iteration (3.9). Therefore,
Thj41 = Tk, — AL‘J f(zy,), forallj.
Hence,
oy = lim 2k 4
= Lim éx; (2x,,)
= Jimlen, — 45! S50
= z, — A]! f(z.).
Since A, is nonsingular, from the above equation it follows that

f(x*) =0.

O

In the next section, we will discuss the application of automatic differentiation to
a generalized fixed-point iteration of the form (3.9) that depends on a given vector of

parameters.

52

3.2 Differentiation of Parameterized Fixed-Point Iterations

In this section we will consider the problem of finding a solution of the system of

parameterized nonlinear equations

fi(z,p)
f(z,p) = : =0, (3.10)

fu(,p)
where f:IR™" — IR" satisfies some smoothness assumptions, p = (p1,---> pn,)T €
IR™ is a given vector of parameters, and z = (21,...,2,)7 € IR™ is the vector of

unknowns, to be determined for a fixed p.

Notice that for a particular value of p (3.10) determines a system of n nonlinear
equations in n unknowns: the components of the vector = .

Let us assume that a sequence of nonsingular matrices {Ax} € IR™*" is provided,
such that both {Ax} and {Aj'} are uniformly bounded, and let us consider the
generalized fixed-point iteration (3.9) given in the previous section. For problem

(3.10), this iterative process becomes
Tkl = ¢k($k,p) = T — A;l f(mk,p), k=012, (3.11)

Let us assume that the sequence of iterates generated by (3.11) converges to a
point z,.(p) € R™. By Theorem 3.1, the fact that both {Ax} and {A;'} are
uniformly bounded guarantees that this limit point is in fact a solution of (3.10).

Notice that the iterates z; generated by (3.11) depend on the parameter vector

p,that is zx = zi(p), forall k. The initial iterate o may also be considered as a

function of p, even if it is just the constant function zo = zo(p) -

Let us consider an algorithm A that executes such an iterative process.

Algorithm A

e Given pe IR™ , and zo = zo(p) € R".

53

e Repeat for k=0,1,2,...
1. compute Ag,
2. zry = k(2 p) = 2k — AL f(zh D),
until “stopping criterion” is satisfied.

Iterative algorithms for solving systems of nonlinear equations usually require
as input some other user-supplied quantities (for example, tolerances related to the
stopping criterion), but we will not consider them in our study. We will be mainly
concerned with the parameter vector p and with the sequence {zx(p)} generated by
A.

Given an input value for p, say p = p, let us assume that A upon execution
generates the iterates z;(p),...,z.(p) , such that the last computed iterate z,(p)
solves (3.10) according to the stopping criterion. Thus, z,(p) = z«(p) is the computed
solution of the system, for the given value 5. The execution of this process is described

by Figure 3.1.

input compu(tf;ion of output
> Tk\P >
To, P=P k=1, ..,r z-(p) = z+(P)

Figure 3.1: Execution of the algorithm A

Let us assume that automatic differentiation is applied to A regarding p € IR™
as the vector of independent variables and each iterate zx(p) € IR" as the vector of

dependent variables. The result will be a “differentiated” algorithm, say A’, that for

54

the same input value p = j will generate upon execution the sequence {zr(p)} C R"
and the corresponding sequence of derivatives {0zk(p)/8p} C R™" .

Recall from Chapter 2 that automatic differentiation does not alter the origi-
nal sequence of computations in an algorithm, but rather it extends it by adding
the required derivative computations. In our case, since A generates the sequence
z1(p),- - - »2+(P) , then A’ will generate the same sequence, and additionally the se-
quence of derivatives 9z1(p)/0p,. .. ,0z,(p)/0p . Of course, we are assuming that
A’ is started from the same initial point zo = zo(p) used to start A. Figure 3.2

describes the execution of this process.

input computation of output
— zk(p) , Ozx(P)/Op e
To, pP=DP k=1, ..r z.(p) = z.(P)
0z-(p)/Op

Figure 3.2: Execution of the “differentiated” algorithm A’

We are interested in studying how the convergence of {zx(f)} to z.(p) in A’
affects the behavior of the sequence of derivatives {9z (p)/0p} . Does {0zx(p)/0p}
converge to 0z,(p)/0p when {zi(P)} converges to z.(p) ?

Notice that the derivative 8z.(p)/0p can be computed by solving the so-called
implicit gradient equation. This equation is obtained by applying the chain rule on
the original system (3.10). For p = p this gives

9z(p)

fx(x7ﬁ) : _%_ + fp(z’ﬁ) = 0, (312)

39

where f(z,p) € R**", 8z(p)/0p € IR™*"*, and f;(z,p) € IR**"*. The derivatives
fs and f, in (3.12) could be computed by automatic differentiation, as discussed in
Chapter 2.

Assuming that f; and f, are available and that the solution z.(p) of the system

has already been computed, then the evaluation of (3.12) at z.(p) gives

el 8) - L = —fy(au(0).). (3.13

This system of linear equations may be solved for 0z.(p)/dp by Gaussian elimination,

or by some other method. We will denote the solution of (3.13) by

0z4(P) _ O0Tuso
Op ~ 0p’

where the subscript “IG” stands for “Implicit Gradient”.
It is important to distinguish between this solution, and the last derivative value
computed by automatic differentiation, that is 9z,(5)/0p . We will denote this

derivative by
a:l,‘,. (ﬁ) — ax*AD
op ~ Op’

where the subscript “AD” stands for “Automatic Differentiation”. This matrix may

not necessarily be equal, or even close, to 0%,;/9p .

One important consideration here is that the application of automatic differentia-
tion to A involves the propagation of the derivatives throughout the entire algorithm,
which may include a matrix factorization and the solution of a linear system of equa-
tions (as in the case of Newton’s method or Broyden’s method). For this reason, the
resulting “differentiated” algorithm A’ may be considerably more expensive, in terms
of arithmetic operations performed, than the original algorithm A.

Another important point is that if A involves the computation of the Jacobian

matrix fz(z,p) (as in the case of Newton’s method), then the application of automatic

56

differentiation to A will involve the computation of second-order derivatives of f.
These derivatives will show up implicitly in .A’. However, the use of second derivatives
should not be necessary. It is clear from equation (3.13) that the solution 0z4,5/0p
is defined in terms of first derivatives of f alone, and does not depend on second
derivatives.

Therefore, the reader may wonder which of the two approaches mentioned above

may be more convenient, namely :

1. computing 8z,,,/0p by applying automatic differentiation on the original

iterative algorithm, or
9. computing 9z,,;/0p by solving the system (3.13).

The first approach will be tested in Chapter 4. We will show that if the iterative
algorithm employed to solve (3.10) is either Newton’s method or Broyden’s method,
then the resulting derivative computed by automatic differentiation, i.e. 9z.,; /0p,
is very close to the solution z.,;/dp of (3.13) in some appropriate norm.

The second approach seems to be more straightforward than the first and does
not involve second-order information about the function. However, equation (3.13)
requires the evaluation of the derivatives f; and fp, which may not be practical.
For example, in certain applications there is no explicit formula or computational
code for evaluating f because this function is implicitly embedded by the iterative
algorithm that solves (3.10). In such a case, it is not possible to compute explicitly
the derivatives f, and f,. Notice also that in order to solve (3.13) it is necessary
to compute beforehand the solution z.(p) of (3.10), with p =7, by executing the
original algorithm.

Each of the two approaches mentioned above has advantages and disadvantages. It

will depend on the given application problem which approach may be more convenient

in terms of computational efficiency.

J. C. Gilbert studied in [30] the application of automatic differentiation to fixed-

point iterations of the form
Tky1 = H(zk,p), k=0,1,2, ..., (3.14)

with ¢ : IR®*™ — IR". Under some smoothness assumptions on ¢, he proved that
for a given value p = p the convergence of the sequence of iterates {zx(p)} to z«(p)
implies the convergence of the corresponding sequence of derivatives {9z:(p)/dp} to
0%,,;/0p. He showed that this property holds for the iterates generated by Newton’s
method. Theorem 3.2 was and Corollary 3.1 summarize these results. The proof of

Theorem 3.2 can be found in [30]. Here we provide a proof for Corollary 3.1.

Theorem 3.2 (Gilbert [30])

Let S, CIR" and S, C IR™ be open sets. Assume that

¢:S; xS, CIR™" — IR" is continuously differentiable, and that ¢' is
Lipschitz continuous at the point (z,,p) € Sz X Sp .

If the following conditions hold:

(i) the initial iterate zo in (3.14) is a differentiable function of p on
Sp;

(i) for a fized p € S,, the sequence {zx(Pp)} defined by (3.14) converges
to z, € S;;

(iii) the spectral radius p of ¢z(z.,P) (the partial derivative of ¢ with

respect to z), satisfies

p(¢z(z4,0)) < 7 <1, forsome 7 € R;

then

58

o {zx(p)} converges to z. g-linearly, i.e., there erxists an indez ko

such that

leks1(P) — 2ll < 7llza(B) —ull, forall k 2 ko

o {9zx(p)/Op} converges to Oz.,;/0p -

Corollary 3.1

If the mapping f given in (8.10) is twice continuously differentiable in
Sy x S, € R™™ , and if there exists z. € S; and p € S, such that
f(z4,D) = 0 and fo(z.,p)7" is nonsingular, then the iteration function
defined by Newton’s method for problem (3.10) satisfies the ﬁypotheses of
Theorem 8.2 in a neighborhood N, C S: of . .

Proof
The iteration function defined by Newton’s method for problem (3.10) is given by

é(z,p) = z — fo(z,p)”" f(z,p), (3.15)

Since f is twice continuously differentiable in S; x Sy, , the function ¢ defined by
(3.15) is continuously differentiable in S; x Sj .

Now, we will prove that ¢’ is Lipschitz continuous at z. in a neighborhood
N, = {z€8::||z—= <r}, for some r € R.

Differentiating ¢ with respect to z in (3.15), we obtain
¢,(z,p) = fz(:l:,p)-l fzz(z,P) f,;(:z:,p)-l f(x,p) . (316)
Hence, for all z € NV, and p = p, we obtain

¢2(2,8) — $x(zw DI < N fel2,0)™" foal, B) fo(z, B) I f (2, D) (3.17)

59

since ¢g(zx,p) = 0 because f(z.,p) = 0.
Since the product of derivatives in (3.17) is a continuous function and N, (the

closure of A,) is compact, then there exists a constant M € IR such that

1fo(2,5)™" foal,P) folz,)| < M, forallz€N,.
By the continuity of f’, there exits a constant v € IR , such that
1£ (@Bl = IIf(z,5) = fl@ud)l < vle—a.l, forallzeN,..
Combining these two bounds in (3.17) we obtain

l¢=(z,5) — da(z D)l < Mylle — 2.l

= mllz -z, (3.18)

for all z € N, where v1 = M 7. Therefore, ¢z(z,p) is Lipschitz continuous at z.

in N, .
On the other hand, differentiating ¢ with respect to p in (3.15), we obtain

p(z,0) = fo(2,P)* foplz,p) fo(z,)" f(=,p) — fol=,P) - (3.19)

Using the fact that f(z.,p) = 0 and applying the triangular inequality, we obtain

that
62(z,8) — be(zes D)l < N fe(2:0)™ fon(2,) £o(z,B) I 1f (2, D) +
”fp(maﬁ) - fP(x*v ﬁ)" ’ (320)

for all z € N,.
Again, by compactness of N, , there exists a constant M’ € IR such that

llfx(xaﬁ)-l fep(z, D) fz(x,ﬁ)-ln < M, foralze N..

60

By continuity of f’, we have that
1f (@ d)ll = IIf(@5) - fleup)ll < vlz—a, forallze N

Finally, since f is twice continuously differentiable, then f, is Lipschitz continuous

in N, , which means that there exists a constant 7’ such that
| fo(z, D) — fo(ze DIl < v |l =zl for all z € N,
Combining these three bounds in (3.20), we obtain

”¢$(zap) - ¢1‘(m*al5)” < M Y Hil! - :L‘*” + 7’ ”:27 - IB*”

= yllz—=z., forallzeN, (3.21)

where v, = M'~ + 7' . Therefore, éo(z,p) is Lipschitz continuous at z, in M.

From (3.18) and (3.21), it follows that ¢' is Lipschitz continuous at . in N,

Now, it is not difficult to see that Newton’s method satisfies the hypotheses (3)-(iii)

of Theorem 3.2.
First, notice that the initial iterate zo in Newton’s method can be chosen as a
differentiable function of p, for example the constant function zo = zo(p) -
Second, if zo “sufficiently close” to z., then we know that the sequence {zx()}
generated by Newton’s method is well-defined and converges to . q-quadratically.

Finally, evaluating ¢-(z,p) at ¢ =z. and p=p in (3.16), we obtain
¢z(z+,P) = 0,

which implies

P(¢z(af'*,p)) = 0.

61

Thus, if f is twice continuously differentiable, the hypotheses of Theorem 3.2 are
verified for Newton’s method, and the sequence of derivatives {0zx(p)/dp} will

converge to 0z.,,/0p .

On the other hand, in Broyden’s method the iterates are defined by the iteration

Ty = ¢k(zk,p) = T} — A;lf(:zk,p), k=012, ...,

where Ay is updated by formula (3.5). The update of each Ay is a function of all the
previous points z; and of the initial choice Ao, and this functional dependence is not
necessarily smooth. It is well-known that even if the sequence {zx(p)} converges to
z,, the updates Aj are not guaranteed to converge to fz(z., p) or to any other limit
(see Dennis and Schnabel [24]). Therefore, the iteration function given by Broyden’s
method does not satisfy the required smoothness hypothesis in Theorem 3.2, even if
the function f is sufficiently smooth.

Even if Broyden’s method does not fit in the class of iterative processes defined by
Theorem 3.2, the results that will be presented in Cha.pter 4 show that the convergence
property for the derivatives is verified in practice for this method, when the derivatives

are computed by automatic differentiation.

Chapter 4
Numerical Results

The purpose of this chapter is to show the numerical results obtained by applying the
automatic differentiation tool ADIFOR on two iterative algorithms that execute a

generalized fixed-point iteration of the form
Tesr = Ok(zk,p) = 7% — Af f(zip), k=012 ...
to calculate a solution z = z.(p) € R" of the system
f(z,p) =0, (4.1)

where f : R™" — IR" is a continuously differentiable mapping, and p € IR™
is a vector of parameters with fixed value p. Basically, one of the algorithms is an
implementation of Newton’s method and the other is an implementation of Broyden’s

method.

For the given value p = p, each of the “differentiated” codes produces upon
execution a sequence of derivatives {8z«(p)/0p} C IR*" .
In Section 4.1 we will see for all the test problems considered that the generated

sequence of derivatives converges to the correct value z = dz,,,/9p , a solution of

the implicit gradient equation
fz(x*7 p) Tz = —fp(m*’ ﬁ) (42)

corresponding to problem (4.1), for the given value p = p. We will analyze the results

obtained by employing the “differentiated” algorithms.
62

63

In Section 4.2, we will show the results obtained by employing these “differen-
tiated” algorithms in a code for solving parameter identification problems via the
so-called Black-Box method. In this context, we will compare the performance of

using automatic differentiation versus using forward finite-difference approximations.

4.1 Differentiating LMDER and HYBRJ via ADIFOR

In this section we will show an application of the automatic differentiation precompiler
ADIFOR on two iterative algorithms for solving systems of nonlinear equations:
LMDER and HYBRJ, obtained from the MINPACK-1 software library (see More
et al. [55], [56]).

LMDER implements a modification of the Levenberg-Marquardt algorithm, pro-
posed by Moré in [54]. HYBRJ implements a modification of Powell’s hybrid method
[61], and it uses Broyden’s update. Close to the solution of the system, LMDER is
expected to behave like Newton’s method, and HYBRJ like Broyden’s method. In
order to facilitate convergence from poor starting points, both algorithms implement
a trust-region technique. LMDER uses a full trust-region approach and HYBRJ
uses a dogleg step. For background material about these methods, the reader is re-
ferred to the book by Dennis and Schnabel [24]. A detailed description of the codes
LMDER and HYBRJ is given in the technical report by Moré et al. [56].

In what follows, we will adopt the following naming convention. By
“«I, MDER.test” and “HYBRJ.test” , we will denote the iterative solvers before the
application of automatic differentiation. The only difference between these two codes
and the “original” codes, LMDER and HYBRJ as provided in MINPACK-1, is
that some set up was necessary in order to tailor these subroutines to our application.
By “LMDER.ad” and “HYBRJ.ad”, we will denote the “differentiated” codes,
obtained by applying ADIFOR to LMDER.test and HYBRJ.test, respectively.

64

The reader may relate the .test and .ad codes with the iterative algorithms A and
A’ respectively, discussed in Chapter 3.

For the numerical tests, we considered six problems of the form (4.1). They were
provided to us by Dr. Karen Williamson (Center for Research in Parallel Computation
and Department of Computational and Applied Mathematics, Rice University), and
they originated from the discretization of the systems of parameterized first-order
ordinary differential equations given in Appendix A. For a complete discussion about
the discretization scheme used the interested reader may see the work of Dennis et
al. [23].

Two versions of problem 6 were implemented : the original one and an “extended”
version, denoted with the suffix “(ext).”, for which the dimension n, is increased.
The generation of “extended” problems from the original ones is explained in Section
4.2.

We applied the precompiler ADIFOR to LMDER.test and HYBRJ.test, con-
sidering p as the vector of independent variables, and each iterate zx(p) generated
by the algorithm as the vector of dependent variables. Upon execution, for an in-
put p = p, each of the “Jifferentiated” codes produced two sequences: the orig-
inal sequence of iterates {zi(p)} , and the corresponding sequence of derivatives
{0z(p)/0p} . Our results show that, whenever the sequence {zx(p)} converged to a
solution z.(p) of (4-1), then {dzx(p)/Op} converged to 0z, (p)/0p = 0%.;/0p,
the corresponding solution of (4.2), for all the test problems.

Tables 4.1 — 4.7 show the convergence of the sequences {zk(p)} to z.(p), and
{8zk(p)/Op} to O8z./0p, for all the problems. The tests were performed on a
SPARC Station 2.

In each table, the first column gives the current iteration k of the algorithm. The

second column gives a measure of the function value at the current iterate zx(p) -

65

The third column gives the relative error (RE) in zx(p) with respect to the solution
z.(p) of (4.1), that is

lz(P) — 2«(P)l2
[ENGI R

where ||.|2 denotes the Euclidean, or I, norm. Finally, the fourth column gives

RE(zk, :I:*) =

the relative error in the derivative dz(p)/0p computed by automatic differentiation,

with respect to the derivative 0z,,;/0p computed by solving (4.2), that is

Ozy 8:5*,G) - ”axk(p)/ap_ ax*fc/ap”F
Op’ Op 1025/ 9pllF

RE(

where ||.]|F denotes the Frobenius norm (see Dennis and Schnabel [24)).
The results show that the sequence of derivatives {9zx(p)/0p} , computed by
automatic differentiation, converged to the correct value dz.,;/0p for all the tested

problems. Notice that in all the cases the derivatives converged slower than the

iterates.

Table 4.1: Problem 1

n,=2,n=40, p=(107%, 10-6)T

iter. k| |If(ze,P)ll2 | RE(zx,z.) | RE(B2, Za)

1 0.26 x 10+°2 | 0.12 x 10+°1 | 0.10 x 10+

LMDER.ad| 2 0.22 x 10+91 | 0.95 x 107°1 | 0.36 x 107
3 0.18 x 10-°! | 0.46 x 10793 | 0.26 x 10~

4 0.63 x 10% | 0.79 x 107% | 0.18 x 107"

5 0.72 x 10713 0.00 0.18 x 10~14

iter. k| |f(ze D)z | RE(zx,2.) | RE(%%, 50

1 0.26 x 10+°2 | 0.12 x 10*°! | 0.10 x 10"

2 0.22 x 1091 | 0.95 x 107°1 | 0.36 x 107%

3 0.21 x 10+% | 0.48 x 107°2 | 0.12 x 107

HYBRJ.ad| 4 0.82 x 10~°2 | 0.23 x 107°% | 0.14 x 107
5 0.57 x 10~°3 | 0.11 x 107%¢ | 0.11 x 10~%

6 |0.65x10-% |0.12x10"% | 0.19 x 107%

7 0.18 x 10~ | 0.30 x 107% | 0.62 x 107%®

8 0.39 x 10~% | 0.79 x 1071 | 0.19 x 107

9 0.10 x 107°° 0.00 0.53 x 1011

LMDER.ad

HYBRJ.ad

Table 4.2: Problem 2

n,=2,n=80,75= (3,47

iter. k

|| f(zk, D)2

RE(zk,)

RE(2z:, £ua)

9p ' dp

1 0.12 x 10%°! | 0.75 x 10190 0.10 x 10%%1

2 0.74 x 10714 | 0.35 x 10-14 0.27 x 10714

3 0.25 x 10714 0.00 0.12 x 10714
iter. & | /(@) | RE(ex,z.) | RE(3, 5529)
1 0.12 x 1019 | 0.75 x 10190 0.10 x 1001

2 0.54 x 10714 0.00 0.31 x 10~

66

Table 4.3: Problem 3

LMDER.ad

HYBRJ.ad

np=3,n=80,;3=(2,4,4)T

iter. k| ||f(ex, D)2 | RE(zs,2.) | RE(3Z:, S5
7 10.38 x 107! | 0.59 x 107° | 0.19 x 10*%°
8 |0.30x107° |0.41x10792| 0.23 x 10~
9 |021x107%|0.20x10"%| 0.16 x 10
10 | 0.57 x 107%8 | 0.52 x 10~% | 0.57 x 107
11 | 047 x10™1 0.00 0.12 x 10~

iter. k | ||f(zx,)llz | RE(zs,z) | RE(3Z, Z518)
16 | 0.31 x 10792 | 0.79 x 1079 | 0.25 x 10~
17 10.98 x 1079 | 0.25 x 107° | 0.77 x 10~
18 | 0.27 x 1079 | 0.49 x 10~% | 0.15 x 10~
19 | 0.62 x 107 | 0.14 x 107°* | 0.63 x 10~%
20 | 0.24 x 10-% | 0.62 x 10 | 0.22 x 107%
21 | 0.64 x 107° | 0.14 x 107% | 0.55 x 10~
22 | 0.11 x 107% | 0.18 x 10~% | 0.12 x 10~%
23 | 0.31 x 10-% | 0.36 x 10~°7 | 0.32 x 10~
24 |0.12 x 10-% | 0.22 x 1077 | 0.11 x 107
25 | 0.20 x 107°7 | 0.46 x 10~°® | 0.40 x 107
2 | 0.33 x 10-% | 0.29 x 107% | 0.27 x 10~
97 |0.61 x 10~ 0.00 0.69 x 10~

67

Table 4.4: Problem 4

n,,=3,n=80,[)=(6,4,1)T

iter. £ | If(ze,P)z | RE(zx,z.) | RE(%, 551e)
1 | 0.65 x 10+% | 0.34 x 10+ | 0.10 x 10+%
9 10.96 x 1079 | 0.68 x 1071 | 0.29 x 10*%°
LMDER.ad
LMDER.ad| 5 |39 x10-92|0.31 x 10~°2 | 0.21 x 10~%
4 0.11 x 10-% | 0.68 x 10~° | 0.83 x 10=*
5 |0.75 %101 | 0.26 x 1071 | 0.60 x 10~%°
6 |0.17 x 10" 0.00 0.11 x 104
iter. & | |f(ze,p)ll2 | RE(zs,z.) | RE(%, "—5&
1 10.65x10%% | 0.34 x 10%% | 0.10 x 10
9 1096 x10-° | 0.68 x 107° | 0.29 x 10*°
3 |0.26 x 10-° | 0.21 x 10~° | 0.11 x 10+
HYBRJ.ad| 4 |031% 10792 | 0.20 x 107°% | 0.14 x 10~
ZXDRSAL 5 1048 x107% | 0.26 x 1079 | 0.20 x 107
6 1032x10"%0.15x10"%| 0.13x107%
7 1041 x10-% | 0.22 x 107% | 0.21 x 10~
8 |026x10-% |0.12x10"% | 0.13 x107%
9 0.14 x 107°7 | 0.58 x 1008 0.73 x 10797
10 | 0.77 x 107 0.00 0.34 x 10~°8

Table 4.5: Problem 5

LMDER.ad

HYBRJ.ad

n,=4,n=80,p= (10,10, 30, 30)T

iter. k| If(ze,P)llz | RE(ex,z.) | RE(32:, 5529)
1 0.39 x 10791 | 0.30 x 10+00 0.10 x 10191
2 0.54 x 10714 | 0.55 x 10°15 0.20 x 10~14
3 0.26 x 1014 0.00 0.59 x 1015

iter. k | ||f(zx,D)ll2 | RE(zk,z.) | RE(Z, 9—25*-1{-@)
1 0.39 x 1071 | 0.30 x 10100 0.10 x 10%01
2 0.43 x 1014 0.00 0.23 x 1074

68

Table 4.6: Problem 6 p
1074,0.28 x 1072,0.46 x 10~*)T

LMDER.ad

HYBRJ.ad

n,=5,n=200, p=(0.58 x 107*,0.26 x 107*,0.16 x

iter. k

I1f (2, D)l

RE(.’Ek, 1:*)

RE(%2z:, 1)

dp ' 9dp

1 0.14 x 10192 | 0.37 x 10~°* | 0.10 x 101%™

2 0.40 x 10712 [0.78 x 1075 | 0.61 x 10~¢

3 0.29 x 10~12 0.00 0.21 x 10~14
iter. k | ||f(zx,P)ll2 | RE(zx,2.) | RE(%, Zua)
1 0.14 x 10%°2 | 0.37 x 10~°* | 0.10 x 10*°!

2 0.35 x 10712 0.00 0.10 x 10-13

Table 4.7: Problem 6 (ext.)

LMDER.ad

HYBRJ.ad

n, =10, n =195, p = (0.58 x 107%,0.26 x
10~4,0.16 x 107%,0.28 x 10~3,0.46 x 10~*,0.10 x 10*2,0.0,0.0,0.0,0.0)7

iter. k | ||f(zk,P)ll2 | RE(zk,2+) | RE(3Z, =
1 0.14 x 10%°2 | 0.38 x 107°* | 0.10 x 10%°!
2 10.39x10°12|0.95x 10715 | 0.55x 10~1*
3 029 x 1012 0.00 0.19 x 10~

iter. k | [|f(ze,p)ll2 | RE(zs, z.) | RE(3%,ZS)
1, |0.14 x 10*°2 | 0.38 x 10~°! | 0.10 x 10*°
2 10.34 x 1012 0.00 0.20 x 10-13

70

Notice that for problems 1, 3, and 4, the final derivative values obtained with
HYBRJ.ad are not so accurate as the ones obtained with LMDER.ad. This
is because LMDER.ad was able to get closer to the solution of the system than
HYBRJ.ad, as can be observed from the values given in the second column of
Tables 4.1 — 4.7.

Tables 4.8 and 4.9 summarize the results obtained for all the test problems. The
first column gives the problem number. The second column gives the dimension n,
of the vector of parameters . Notice that the problems are ordered by increasing
values of n, . The third column gives the dimension n of the system.

The fourth column gives the number of iterations required by the algorithm to
achieve convergence to a solution z.(p) of (4.1).

The fifth column gives the norm of the residual in the implicit gradient equation

(4.2) for the last derivative value computed by automatic differentiation: Oz.,,/0p,

1.e.,
0T+ ,p,

116 res lp = || elenB) - =522 + folan?) I

Here, “IG res.” stands for “Implicit Gradient residual”.
The sixth column gives an estimate of the relative error of 0z, ,,/0p in (4.2).

This estimate is given by

RE(ax*An) ~ || IG res. HF) IC(j;z(a:*,ﬁ))
op I fo(ze D) I - | 525 Il

where K(fz(z+ 5)) denotes the condition number of the Jacobian fi(z.,p) (see
Stewart [65]).

The seventh column gives the run-time ratio between the “differentiated” (.ad)
algorithm and the corresponding “undifferentiated” (.test) one. This ratio indicates

the overhead with respect to the original function evaluation involved in the derivative

calculation.

71

Finally, the eighth column gives an estimate of the run-time ratio between calcu-
lating dz.,,/dp, and approximating 0z.,,/0p by forward finite-differences. In order
to get this estimate, we assumed that the run time for computing the approximation
is about (n, + 1) times the run time for evaluating the original function, which is

the .test code.

Table 4.8: LMDER.ad - Final Results

prob. |n, | n |iter. | ||IG res.|F RE(B—?;}D-) .ad/.test | .ad/f.d.
1 2|40 | 5 |4.77x107%® | 3.99x1071¢ 6.26 2.09
2 2|8 | 3 |[4.83x107'¢|1.77x10"1® 7.32 2.44
3 3180 | 11 |2.98x107' | 4.60x10~1® 9.55 2.39
4 3 | 80 6 |1.97x1076 | 1.46x10718 9.21 2.30
5 4 |8 | 3 |1.71x107'® | 1.35x107'¢ 10.89 2.18
6 51200| 3 |4.29%x107% |2.88x10"1¢ 12.74 2.12
6 (ext.) | 10 | 195 | 3 |4.05x107%° | 2.65x1071¢ 21.65 2.16

Table 4.9: HYBRJ.ad - Final Results

prob. | n, | n |iter. | ||IG res.||F RE(a—xa’i:D-) .ad/.test | .ad/f.d.
1 2140 | 9 |2.26x107% | 1.14x1072 7.77 2.59
2 2|8 | 2 |1.06x1071 |2.29%x10716 7.49 2.52
3 3| 80 | 27 {2.85x107% | 2.40x10~% 11.04 2.76
4 3|80 | 10 |9.69x107% | 3.38x1071° 11.05 2.76
5 4|8 | 2 |4.02x107%|2.88x10°17 12.67 2.53
6 51200| 2 |1.04x107% |4.78x1071® 14.39 2.40

6 (ext.) | 10 [195 | 2 |1.06x107% | 6.76x1071° 23.65 2.36

From the above tables we can observe that, for all the test problems, the quantities
RE(dz,,,/0p) computed by LMDER.ad are of the order of the machine precision.
Therefore, the obtained derivative values are very accurate in this case. The deriva-

tives generated by HYBRJ.ad also achieve high accuracy, except for problems 3 and

-1
8]

4. As mentioned earlier, this is related to the fact that LMDER.ad was able to get
closer to the solution of the system than HYBRJ.ad.

Due to the small size of the relative errors in 9%« ,p /dp we can conclude that auto-
matic differentiation computed the correct derivative values, for all the test problems
considered.

On the other hand, the ratios displayed in the seventh and eighth columns of
Tables 4.8 and 4.9 reveal that the cost involved in computing the derivatives by
automatic differentiation can be significant.

Each value in the seventh column indicates that the “differentiated” (.ad) algo-
rithm took about that number of times longer to execute than the corresponding
«yndifferentiated” (.test) code. This cost in the derivative calculation compared to
the function evaluation is related to the fact that automatic differentiation propa-
gates the derivatives over the entire sequence of elementary operations involved in
the original algorithm. In the case of LMDER.ad and HYBRJ.ad, most of the
overhead arises probably from the matriz factorization, which is “differentiated” in
both cases. Notice also that the ratios displayed in this column increase when the
number of independent variables n, increases. This is related to the fact that the
precompiler ADIFOR mainly implements the forward mode of automatic differen-
tiation (it uses the reverse mode only to compute derivatives of expressions in the
right-hand sides of assignment statements). Recall that the time required to compute
derivatives in the forward mode is proportional to the the number of independent
variables, as explained in Section 2.4.

Finally, the ratios in the eighth column estimate that computing the derivatives
by ADIFOR is about 2.5 times slower than approximating them by forward finite-
differences. These ratios keep more or less constant even if the number of independent

variables n, increases. The number 2.5 probably arises from the fact that, as a

73

consequence of the chain rule, the application of automatic differentiation approx-
imately doubles the number of multiplications executed in the original code, (i.e.,
v; = vj, X v;, implies v} = v} X v;, + v; X v},).

Notice that the run-time ratio between approximating derivatives by central dif-
ferences and approximating them by forward differences is about 2 (see Section 2.1),
which is comparable to the run-time ratio of 2.5 between computing derivatives by
ADIFOR and approximating them by forward finite differences.

Even though the approximation of derivatives by forward or central differences
may be faster than using ADIFOR, the derivative values computed in this way are
less accurate.

One alternative to improve the computational time required by the .ad codes
would be to start them from an initial point zo that is a better approximation to
the solution z, of the system. This approximation could be obtained, for example,
by a first run of the corresponding .test code. The iterations performed by the
.ad algorithm, from the new initial guess, would aim only to achieve convergence
in the derivative values. In this case, an adequate stopping criterion related to the

derivatives may be employed. This possibility is discussed by Griewank et al. in ([7]).

4.2 Application to the Solution of Parameter Identification

Problems

In this section, we will show that the subroutines LMDER.ad and HYBRJ.ad
tested in the previous section can be successfully employed in the context of solving
parameter identification problems by the Black-Box method. We will compare the
results obtained by using automatic differentiation versus employing forward finite-

difference approximations.

T4

The code used was developed by Dr. J. Dennis, Dr. K. Williamson and Dr. G. Li
(Center for Research in Parallel Computation and Department of Computational and
Applied Mathematics, Rice University) for solving parameter identification problems.
We will refer to the particular code that we employed for our numerical experiments

as the “PID” code.

The algorithm implemented in PID has been designed to solve parameter identi-

fication problems of the form

minimize g(p) = 1R(p)TR(p)

P (4.3)
subject to

y' = F(t,y;p) » Y(to;p) =0,

where ¢ :IR™ — IR is the objective function, p € IR™ is a vector of parameters to

be identified, and
y' = %3;'- = F(t,y;p)

is a system of parameterized first-order ordinary differential equations, or ODE’s.
Here ¢ € IR is the independent variable, usually thought of as time, and y(%; p) €
IR™ denotes the solution of the system, which must satisfy the initial condition
y(to;p) = yo - The residual R : IR — IR™ gives a measure of how the solution
y(t; p) fits some given data points. The goal is to find a vector of parameters p. such
that y(t;p.) “best fits” the given data. Both F and R satisfy some smoothness
assumptions. A detailed description of this problem is given in the paper by Dennis
et al. [23]. Here, we present only the general ideas, since we are mainly concerned
with the implementation aspects.

Notice that the minimization problem in (4.3) has a nonlinear least-squares struc-

ture. The first and second derivatives of the objective function g(p) are given by

Vy(p) = J(p)"R(p),

~1

(@]

and

Vig(p) = J(P)TI() + 3 Rilp) - VRilp),

i=1

where J(p) € R™*™ is the Jacobian of R(p). The i** component of R(p) is the
scalar function R;(p), with R; : R™” - IR (1 < i< n,). V2?Ri(p) denotes the
matrix of second derivatives of R;i(p).

In order to solve problems of the form (4.3), PID employs a Black-Boz approach.
The name is derived from the fact that the optimization algorithm that minimizes
the objective function g(p) treats the numerical solution of the system of ODE’s
as a “black box”. Basically, the pro.vcedure is the following. Starting from an initial
approximation po to a minimizer p, of g, the optimization algorithm generates a
sequence of iterates {pr} that is intended to converge to p,.. At each iteration &,
the current iterate p; is passed as input to the “black box” which returns to the
optimizer the computed values for the solution y(t;pr) needed for the evaluation
of the residual R(p:), and possibly its Jacobian J(px) (both depend on y(t;p)).
Then, the optimizer either computes a new iterate px4; and repeats the above steps,
or exits if the stopping criterion is satisfied. The following diagram describes this

interaction between the optimizer and the “black box”.

76

Black Box approach

optimization algorithm

minimize g¢(p) = %R(P)TR(P)
p

Pk U, TT y(t; Pr)

black box - system of ODE’s

solve y' = F(t,y;p) , y(to;Pk) = Yo
for y(t; px) -

The code PID employed in our tests has this structure. The optimization part is

executed by the subroutine NL2SOL, given by Dennis et al. in [21] and [22]. In the

“plack box” of PID, the system of ODE’s is discretized using a collocation scheme.
A detailed description of this scheme is given by Dennis et al. in [23].
For each iterate py given by NL2SOL, the system of ODE’s

y' = F(t,y;px), y(toipk) = Yo (4.4)

is discretized by approximating the solution y(t;pr) Wwith a piecewise polynomial

function whose coefficients are unknown. Replacing y(t;px) by this approximation
transforms the system of ODE’s into a system of parameterized nonlinear equations
of the form

f(z,px) = 0, (4.5)
where f: R"*™ — IR", pr € IR™ is fixed, and the unknowns z= € IR™ are the

variables that arise from the discretization of (4.4). Notice that this system is of the

7

form (4.1), considered in the previous section. Therefore, it can be solved using the
iterative algorithms LMDER.test or HYBRJ.test, as before.

Assuming that the solution of (4.5) exists, it is given by the implicit function

= z(px) € IR, which provides the desired coefficients for the piecewise polynomial

approximation to y(t;px) . This approximation replaces y(t;px) when the residual
R(p) or its Jacobian J(pi) are evaluated in the optimization algorithm. Since both R
and J depend on y(t; px) and therefore on z(pi), we can denote R(px) = R(z(pk), Pk)
and J(px) = J(z(pk),px) -

The interaction between the optimizer NL2SOL and the iterative solver

(LMDER.test or HYBRJ .testj in the code PID can be visualized as follows
PID code

optimization procedure (NL2SOL)

minimize g(z(p),p) = %R(-’E(P), p)T R(z(p), p)
P

Pk U« TT R(z(pk),) Pk ll ﬂ J(z(px), Px)

computation of computation of
R(z(px), px) J(z(px), x)

Pk ~U' ﬂ z(pk)

iterative solver (LMDER / HYBRJ)

solve f(z,px) = 0
for z(pk)-

78

Now we will present our numerical results. Four different versions of the param-
eter identification code PID were implemented and tested. All of them employ
NL2SOL as the optimization algorithm. Basically, the four codes differ in the it-
erative solver employed to compute the solution z(pr) of (4.5) and in the way the
Jacobian J(z(pk),px) is evaluated. We point out that NL2SOL does not require the
evaluation of the Jacobian every time that the residual R is evaluated. The following

two approaches were implemented to compute J(z(pk), D) -

1. Forward finite differences.

Approximating J(z(pk),px) column by column using forward finite-differences
requires the evaluation of the residual R at n, points of the form px + A;
(1 £ j < np), where A; denotes the finite-difference step used for the j*
column of the Jacobian. Notice that each evaluation of R(z,px + A;) involves

the solution of the system f(z,pr + 4A;) = 0, to compute z = z(pk + ;) -

9. Automatic differentiation.

Notice that the chain rule applied on R(z(p),p) gives

J(z(p),p) = aR(g(; 1p) aR(g(f he) 3:;;1)) (4.6)

Evaluating J(z(pk),px) by formula (4.6) requires the computation of z(px) by

solving system (4.5), and the computation of the derivative dz(px)/dp , which
can be done by applying automatic differentiation on the iterative algorithm
employed to solve (4.5) (using the same approach as in Section 4.1). We assume
that the partial derivatives R/0p and OR/dz are available, which is the case

of all the test problems considered.

Here, will use the same notation as in the previous section. By LMDER.test and

HYBRUJ.test we will denote the iterative solvers before the application of automatic

79

differentiation. In the tests, these solvers were used to compute the solution z(px)
of the system (4.5). By LMDER.ad and HYBRJ.ad, we will denote the corre-
sponding “differentiated” (by ADIFOR) codes, which were employed to compute
the derivative O0z(px)/0p .

We will refer to the four implemented versions of the code PID by PID-L.fd,
PID-L.ad, PID-H.fd, and PID-H.ad. Here, the “L” and “H” after “PID” stand
for “LMDER” and “HYBRJ”, respectively. The terminations “.fd” and “.ad”
stand for finite differences and automatic differentiation, respectively. The differences
between these four implementations of PID can be summarized as follows.
PID-L.fd: z(px) computed by applying LMDER.test on (4.5), and J(z(p), px)
approximated by forward finite-differences.

PID-H.fd: z(px) computed by applying HYBRJ.test on (4.5), and J(z(pk),px)
approximated by forward finite-differences.

PID-L.ad: z(pi) computed by applying LMDER.test on (4.5), and J(z(px), px)
evaluated as in (4.6), with 0z(pi)/0p computed by LMDER.ad.

PID-H.ad: z(p:) computed by applying HYBRJ.test on (4.5), and J(z(p«), px)
evaluated as in (4.6), with O0z(px)/Op computed by HYBRJ.ad.

Tables 4.10 — 4.21 display the results obtained by employing these four codes to
solve the set of parameter identification problems given in Appendix A. For each test
problem, two cases were considered: (1) the vector of initial values yo € IR"™ was
fixed during the solution of the parameter identification problem and (2) the initial
values were treated as variables and included as parameters in the problem. In this
case, the dimension of the vector of parameters p was increased to n,+n, to include
the initial values (see Dennis et al. [23]). These “extended” problems are identified

in the tables with the suffix “(ext.)”.

80

In each table, n, denotes the dimension of the vector of parameters p, n denotes
the dimension of the system (4.5), and po denotes the starting point for NL2SOL.

The following information is displayed. The first column gives the name of the
tested code. The second column gives the total number of iterations executed by
NL2SOL. The third column gives the total execution time (in seconds). The fourth
column shows the termination message returned by NL2SOL. “Y” denotes that
NL2SOL converged to the solution px of the parameter identification problem.
while “N” denotes that NL2SOL failed to converge. The fifth column gives the
run-time ratio between the parameter identification code that employed automatic
differentiation to compute the Jacobian and the corresponding code that employed
forward finite-differences.

Finally, table 4.22 summarizes the results for all the test problems . Notice that
the codes that employed automatic differentiation (PID-L.ad and PID-H.ad) took
about three times longer to execute than the codes that used forward finite differences
(PID-L.fd and PID-H.fd), upon successful termination.

For all the problems, PID-L.ad and PID-L.fd achieved convergence. On the
other hand, PID-H.fd failed to converge in three cases: problems 1,1 (ext.),and 5
(ext.), for which PID-H.ad succeeded.

For problems 1 and 1 (ext.), the failure of PID-H.fd occurred because at a
given iteration k the finite-difference approximation to the J acobian J(z,px) could
not be computed (HYBRJ.test was not able to calculate the solution of one of the
corresponding systems of nonlinear equations). In the case of problem 5 (ext.), PID-
H.fd failed because the optimization algorithm NL2SOL stopped with a termination

message of “false convergence”, which means that the generated sequence of iterates

{pr} was converging to a noncritical point of the objective function g .

81

Therefore, for all the problems in which PID-H.fd failed, PID-H.ad terminated
successfully. The failures in PID-H.fd originated from the inaccuracies involved in
the finite-difference approximations to the Jacobian.

Thus, in return for the overhead in run time, PID-H.ad seems to be more robust

than PID-H.fd.

Table 4.10: Problem 1 n,=2,n =40, po = (107%,107%)7

code iter. | run time | conv. | time ratio

PID-L.fd | 12 13.20

PID-L.ad | 12 36.15 2.74

PID-H.fd | 2 6.04
PID-H.ad | 12 17.36

<2Z <K=

Table 4.11: Problem 1 (ext.) n,=3,n=39, po=(107%,107%,0)

code iter. | run time | conv. | time ratio

PID-L.fd | 11 51.31 Y

PID-L.ad | 10 84.99 1.66

Y
PID-H.fd | 2 5.04 N
PID-H.ad | 10 16.56 Y

Table 4.12: Problem 2

np=2,n=80,po=(3,4)T

code iter. | run time | conv. | time ratio
PID-L.fd | 10 15.01 Y
PID-L.ad 9 35.95 Y 2.39
PID-H.fd 9 11.34 Y
PID-H.ad | 9 29.63 Y 2.61
Table 4.13: Problem 2 (ext.) np,=4,n=78,po= (3,4,1,0)T
code iter. | run time | conv. | time ratio
PID-L.fd 9 20.55 Y
PID-L.ad 9 43.87 Y 2.13
PID-H.fd | 10 19.70 Y
PID-H.ad | 9 43.59 Y 2.21
Table 4.14: Problem 3 n,=3,n =280, po = (2,4,4)7
code iter. | run time | conv. | time ratio
PID-L.fd 8 24.70 Y
PID-L.ad 8 129.29 Y 5.23
PID-H.fd 8 16.29 Y
PID-H.ad 8 70.92 Y 4.35

Table 4.15: Problem 3 (ext.)

n,=5,n=78, po= (2,4,4,1,0.3)7

code iter. | run time | conv. | time ratio
PID-L.fd 8 33.55 Y
PID-L.ad 8 187.13 Y 5.58
PID-H.fd 8 22.32 Y
PID-H.ad | 8 95.34 Y 4.27

Table 4.16: Problem 4

n,=3,n=80, po=(6,4,1)7

code iter. | run time | conv. | time ratio
PID-L.fd 6 15.82 Y
PID-L.ad 6 62.47 Y 3.95
PID-H.fd 7 12.53 Y
PID-H.ad | 7 39.36 Y 3.14

Table 4.17: Problem 4 (ext.)

n,=5,n="18, po=(6,4,1,1,0)T

code iter. | run time | conv. | time ratio
PID-L.fd 6 20.79 Y
PID-L.ad 6 80.08 Y 3.85
PID-H.fd 7 16.71 Y
PID-H.ad 7 49.72 Y 2.97

Table 4.18: Problem 5

n,=4,n=280, p = (10,10,30,30)7

code iter. | run time | conv. | time ratio
PID-L.fd 7 18.77 Y
PID-L.ad 7 42.93 Y 2.29
PID-H.fd 7 16.79 Y
PID-H.ad | 7 38.98 Y 2.32

Table 4.19: Problem 5 (ext.)

n,=6,n="T8, po=(10,10,30,30,1,0)T

code iter. | run time | conv. | time ratio
PID-L.fd | 11 36.13 Y
PID-L.ad 7 54.09 Y 1.50
PID-H.fd 9 34.78 N
PID-H.ad 7 49.10 Y —

83

84

Table 4.20: Problem 6 n,=35,n=200, po= (0.58 x 10~*,0.26 x 107*,0.16 x
10-4,0.28 x 1072,0.46 x 107%)T

code Tter. | run time | conv. | time ratio
PID-L.fd 6 263.22 Y
PID-L.ad 6 609.50 Y 2.31
PID-H.fd 6 230.91 Y
PID-H.ad | 6 571.22 Y 2.47

Table 4.21: Problem 6 (ext.) n,=10,n=195,po = (0.58 x 1074,0.26 x
10~4,0.16 x 1074,0.28 x 10~3,0.46 x 1074, IOO,O,O,O,O)T

code iter. | run time | conv. | time ratio

PID-L.fd 6 449.17 Y

PID-L.ad | 6 932.60 Y 2.08
PID-H.fd | 6 392.43 Y
PID-H.ad | 6 883.76 Y 2.25

Table 4.22: Time ratios

85

PID-L.ad vs. PID-L.fd

PID-H.ad vs. PID-H.fd

problem | np | n
1 2 | 40 2.74 PID-H.fd failed. PID-H.ad conv.
1 (ext.)| 3 | 39 1.66 PID-H.{fd failed. PID-H.ad conv.
2 2 | 80 2.39 2.61
2 (ext.) | 4 | 78 2.13 2.21
3 3 | 80 5.23 4.35
3(ext.)| 5 | 78 5.58 4.27
4 3 | 80 3.95 3.14
4 (ext.) | 5 | 78 3.85 2.97
5 4 | 80 2.29 2.32
5 (ext.)| 6 | 78 1.50 PID-H.fd failed. PID-H.ad conv.
6 5 | 200 2.31 2.47
6 (ext.) | 10 | 195 2.08 2.25

Chapter 5

Concluding Remarks

In this work, we presented a survey of the theory and implementation of autorﬁa.tic
differentiation, and we showed an application of this technique in the context of
solving systems of parameterized nonlinear equations, and parameter identification
problems. Our application was particularly interesting because the two “differenti-
ated” computer programs were implementations of Newton’s method (LMDER) and
Broyden’s method (HYBRJ), respectively. The automatic differentiation software
used in our experiments was the FORTRANTT precompiler ADIFOR.

First, we tested the “differentiated” codes on a set of problems that are systems
of parameterized nonlinear equations that originated in the discretization of systems
of parameterized first-order ordinary differential equations. Automatic differentiation
was employed to compute the derivatives of the iterates generated by the original al-
gorithm (i.e., Newton’s method or Broyden’s method) with respect to the parameters.

We saw that whenever the sequence of iterates generated by the original algorithm
converged, then the corresponding sequence of derivatives, computed by automatic
differentiation, also converged, and it converged to the correct value, for all the test
problems considered.

Even though the theory developed so far supports the convergence of the deriva-
tives only for Newton’s method and not for Broyden’s method, our results indicate
that the derivatives achieved convergence in both cases. Therefore, we conjecture
that there is a more general class of iterative processes for which this property holds,
and that this class includes Broyden’s method, and maybe other secant methods as
well. The proof or refutation of this conjecture provides a field of future research.

In the context of this application, we estimated that automatic differentiation
takes about 2.5 times longer to compute derivatives than approximating them by
forward finite-differences, and this ratio does not depend on the number of indepen-
dent variables. However, the use of finite differences would probably involve some

inaccuracies in the computed derivative values.

86

37

Finally, we showed that the “differentiated” versions of Newton’s method and
Broyden’s method were successfully employed in the the solution of parameter iden-
tification problems via the so-called Black-Box method.

We compared the performance of two parameter identification codes that com-
puted derivatives by automatic differentiation versus similar codes that employed
forward finite-difference approximations. The codes that employed automatic differ-
entiation took longer to execute but were more robust than the other ones. More
specifically, the parameter identification code that employed Newton’s method pro-
duced correct results using automatic differentiation and finite differences. The code
that employed Broyden’s method succeeded for all the problems using automatic dif-
ferentiation but failed in three of the problems using finite differences. Of course, the
price paid for the robustness offered by automatic differentiation was a considerable

increase in the execution time.

Appendix A

Test Problems

Problem 1: Bellman’s Problem
(Bellman et al. [3])

y, = pi(126.2 —1)(91.9 — 31)* — pavi -

t 10] 20 30] 40 50| 6.0 7.0| 8.0
vnp| 00| 14| 63104 14.2 | 17.6 | 21.4 | 23.0
¢]10.0]| 12.0 | 15.0 | 20.0 | 25.0 | 30.0 | 40.0
y1 | 27.0 | 304 | 34.4 | 38.8 | 41.6 43.5 | 45.3

Table A.1: Data for Problem 1

Problem 2: First-order Irreversible Chain Reaction
(Tjoa and Biegler [5])

Yy, = —Nhlx

Yy, = P1y1— P2y2
100701 102 |03 |04 [05 |06 [07 [08 [09 [1.0
v | 1.0 | .606 | 368 | 223 | .135 | .082 | .050 | .030 | .018 | 011 | .007
v | 0.0 | .373 | 564 | .647 | .669 | .656 | 624 | .583 | .539 | 494 | 451

Table A.2: Data for Problem 2

88

Problem 3: Barnes’ Problem
(Van Doomselaar and Hemker [66])

Problem 4: Catalytic Cracking of Gasoil (Tjoa and Biegler [5])

Yy = Piy1— P21Y2
Yy = D2Y1y2 — PaY2

t [00[.50[1.0]15]|20(25({3.0(3.5|4.0]4.5]|35.0
vy [10]11|13|11}.90]|.70|.50|.60|.70 | .80 | 1.0
vz | .30 | .35|.40 | .50 | .50 | .40 | .30 | .25 | .25 | .30 | .35

Table A.3: Data for Problem 3

y1 = —(;m + p3)ys
yé = Plyf*szz

t 10.0].025[.050[.075|.100 | .125 | .150 | .175 | .200 | .225 | .250
y1 | 1.0 |.741 | .588 | .488 | .417 | .364 | .323 | .290 | .263 | .241 | .222
y2 | 0.0 |.199 | .281 | .307 | .307 | .292 | .271 .247 | 223 | .200 | .178
t |.300] .350 [.400 | .450 | .500 | .550 | .650 | .750 | .850 | .950
v | 192 | .169 | .151 | .137 | .125 | .115 | .099 | .087 | .078 | .070
y2 | .140 | .110 | .086 | .068 | .054 | .043 | .029 | .020 | .014 | .011

Table A.4: Data for Problem 4

89

Problem 5: First-order Reversible Chain Reaction
(Tjoa and Biegler [5])

Yy, = —Py1+ P2y
v, = pyr— (p2+p3)y2+ pa(y1(to) — ¥1 — ¥2)
t 0.0 .05 .10 15 .20 .25 .30 .35 40 45 .50
1 | 1.0 824 | 685 | .575 | .487 | .417 | .361 .316 | .281 | .253 | .230
y2 | 0.0 094 | .135 | .165 | .190 | .209 | .225 237 | 247 | .255 | .261
t .55 .60 .65 .70 .75 .80 .85 90 95 1.0
v | -213 198 | .187 | .178 | .171 | .165 | .161 157 | .154 | .152
y2 | -266 | .270 273 | 276 | .278 | .279 | .281 | .282 283 | .283
Table A.5: Data for Problem 5
Problem 6: Thermal Isomerization of a-Pinene
(Tjoa and Biegler [5])

y1 = —(pm+p2)n

ys = P

Y3 P21 — (p3 + Pa)ys + Psys

ys = PaYs

yg = DP4Y3 — P5Ys
t 0.0 | 1230. [3060. | 4920. | 7800. | 10680. 15030. | 22620. | 36420.
1 | 100.0 88.35 76.4 65.1 50.4 37.5 25.9 14.0 4.5
Y2 0.0 7.3 15.6 23.1 32.9 42.7 49.1 57.4 63.1
Y3 0.0 2.3 4.5 5.3 6.0 6.0 5.9 5.1 3.8
Yg 0.0 0.4 0.7 1.1 1.5 1.9 2.2 2.6 2.9
Us 0.0 1.75 2.8 5.8 9.3 12.0 17.0 21.0 25.7

Table A.6: Data for Problem 6

90

1]

2]

3]

[4]

[5]

(8]

Bibliography

F. L. Bauer. Computational graphs and rounding errors. SIAM Journal on
Numerical Analysis, 11:87 — 96, 1974.

L. M. Beda, L. N. Korolev, N. V. Sukkikh, and T. S. Frolova. Programs for
automatic differentiation for the machine BESM. Technical Report, Institute for
Precise Mechanics and Computation 'Techniques,'Acé.demy of Science, Moscow,
USSR, 1959. (In Russian).

R. Bellman, J. Jacquez, R. Kalaba, and S. Schwimmer. Quasilinearization and

the estimation of chemical rate constants from raw kinetic data. Math. Biosci.,
1:71-76, 1967.

M. Berz. Forward algorithms for high orders and many variables with appli-
cation to beam physics. In A. Griewank and . F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application. SIAM,
Philadelphia, PA, 1991.

L. T. Biegler and B. Tjoa. Simultaneous solution and optimization strategies
for parameter estimation of differential-algebraic equation systems. Ind. Eng.
Chem. Res., 30, 1991.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR: Gen-
erating derivative codes from Fortran programs. Scientific Programming, 1(1),
1972.

C. Bischof, G. Corliss, A. Griewank, and K. Williamson. Automatic differentia-

tion of iterative nonlinear solvers. In preparation.

C. Bischof, A. Griewank, and D. Juedes. Exploiting parallelism in automatic
differentiation. Preprint MCS-P204-0191, Mathematics and Computer Sciences
Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL
60439-4801, 1991.

91

92

[9] C. Bischof and J. Hu. Utilities for building and optimizing a computational graph
for algorithmic decomposition. Technical Memorandum ANL/MCS-TM-148,
Mathematics and Computer Sciences Division, Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439-4801, April 1991.

[10] Christian Bischof. Issues in parallel automatic differentiation. In Andreas
Griewank and George F. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application. SIAM, Philadelphia, PA,

1991.

[11] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception
handling. Technical Memorandum ANL/ MCS-TM-159, Mathematics and Com-
puter Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Ar-

gonne, IL 60439-4801, 1991.

[12] D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional
analysis approach. J. Math. Phys., 22(12):2794 - 2802, 1981.

[13] D. G. Cacuci. Sensitivity theory for nonlinear systems. II. Extension to additional
classes of responses. J. Math. Phys., 22(12):2803 - 2812, 1981.

[14] S.L. Campbell, E. Moore, R. T. Hood, and Z. Yangchun. Utilization of automatic

differentiation in control algorithms.

[15] B. W. Char. Computer algebra as a toolbox for program generation and manip-
ulation. In A. Griewank and G. F. Corliss, editors, Automatic Differentiation of
Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia, PA,

1991.

[16] B. W. Chur, G. J. Fee, K. O. Geddes, G. H. Gonnet, and M. B. Monagan. A
tutorial introduction to MAPLE. Journal of Symbolic Computation, 2(2):179 -
200, 1986.

[17) T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse
Jacobian matrices. ACM Trans. Math. Software, 10:329 — 345, 1984.

[18] T.F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM Journal on Numerical Analysis, 20:187 — 209, 1984.

93

[19] S.D. Conte and C. de Boor. Elementary Numerical Analysis. McGraw-Hill, New
York, 1980.

[20] A. Curtis, M.J.D Powell, and J.K. Reid. On the estimation of sparse Jacobian
matrices. IMA Journal of Applied Mathematics, 13:117 - 120, 1974.

[21] J. E. Dennis, D. Gay, and R. E. Welsch. Algorithm 573. NL2SOL — An adaptive
nonlinear least-squares algorithm. ACM Trans. Math. Software, 7:369 — 383,
1981.

[22] J. E. Dennis, D. Gay, and R. E. Welsch. An adaptive nonlinear least-squares
algorithm. ACM Trans. Math. Software, 7:348 — 368, 1981.

[23] J. E. Dennis, G. Li, and K. A. Williamson. Optimization algorithms for param-
eter identification. In preparation, Rice University, Dept. of Computational and
Applied Mathematics, 1992.

[24] J. E. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[25] L. C. W. Dixon. Automatic differentiation and parallel processing in optimisa-
tion. Technical Report No. 180, The Numerical Optimisation Center, Hatfield
Polytechnic, Hatfield, UK, 1987.

[26] L. C. W. Dixon and M. Mohseninia. The use of the extended operations set of
Ada with automatic differentiation and the truncated Newton method. Technical
Report NOC TR176, The Numerical Optimisation Center, Hatfield Polytechnic,
Hatfield, UK, April 1987.

[27] H. Fischer. Automatic differentiation: How to compute the Hessian matrix.
Report No. 26, Schwerpunktprogramm der Deutschen Forschungsgemeinschaft
Anwendunsbezogene Optimierung und Steurung, 1987.

[28] H. Fischer. Automatic differentiation: Parallel computation of function, gradient
and Hessian matrix. Parallel Computing, 13:101 — 110, 1990.

[29] H. Fischer. Special problems in automatic differentiation. In A. Griewank and
G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Imple-
mentation, and Application. SIAM, Philadelphia, PA, 1991.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

94

J. C. Gilbert. Automatic differentiation and iterative processes. Optimization

Methods and Software, 1(1):13 - 21, 1992.

V. V. Goldman, J. Molenkamp, and J. A. van Hulzen. Efficient numerical pro-
gram generation and computer algebra environments. In A. Griewank and G. F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementa-
tion, and Application. SIAM, Philadelphia, PA, 1991.

A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors,
Mathematical Programming: Recent Developments and Applications, pages 83 —
108. Kluwer Academic Publishers, 1989.

A. Griewank. Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Preprint MCS-P228-0491, Mathematics
and Computer Science Division, Argonne National Laboratory, 9700 S. Cass
Ave., Argonne, IL 60439-4801, 1991.

A. Griewank and S. Rees. On the calculation of Jacobian matrices by the
Markowitz rule. In A. Griewank and G. F. Corliss, editors, Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application. SIAM,
Philadelphia, PA, 1991.

Andreas Griewank and George F. Corliss, editors. Automatic Differentiation of
Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia, PA,

1991.

Andreas Griewank, D. Juedes, and J. Srinivasan. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. Preprint MCS-P180-
1190, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 S. Cass Ave., Argonne, IL 60439-4801, 1990.

A. C. Hearn. REDUCE User’s Manual, Version 3.3. The Rand Corporation,
Santa Monica, CA, 1987.

[38] K. E. Hillstrom. User’s guide for JAKEF. Technical Memorandum ANL/MCS-

TM-16, Mathematics and Computer Science Division, Argonne National Labo-
ratory, 9700 South Cass Ave., Argonne, IL 60439-4801, 1985.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

95

J. E. Horwedel, R. J. Raridon, and R. Q. Wright. Sensitivity analysis of
AIRDOS-EPA using ADGEN with matrix reduction algorithms. Technical Mem-
orandum ORNL/TM 11373, Martin Marietta Energy Systems, Inc., Oak Ridge
National Laboratory, Oak Ridge, TN 37830, 1989.

J. E. Horwedel, B. A. Worley, E. M. Oblow, and F. G. Pin. GRESS version
1.0 users manual. Technical Memorandum ORNL/TM 10835, Martin Marietta
Energy Systems, Inc., Oak Ridge National Laboratory, Oak Ridge, TN 37830,
1988.

J. E. Horwedel, R. Q. Wright, and R. E. Maerker. Sensitivity analysis of EQ3.
Technical Memorandum ORNL/TM 11407, Oak Ridge National Laboratory, Oak
Ridge, TN 37830, 1990.

M. Iri. Simultaneous computation of functions, partial derivatives and estimates
of rounding errors — Complexity and practicality. Japan Journal of Applied
Mathematics, 1(2):223 - 252, 1984.

M. Iri. History of automatic differentiation and error estimation. In A. Griewank
and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, PA, 1991.

M. Iri and K. Kubota. Methods of fast automatic differentiation and applications.
Research Memorandum RMI 87 — 02, Department of Mathematical Engineering
and Information Physics, Faculty of Engineering, University of Tokyo, 1987.

M. Iri and K. Kubota. Padre2, version 1 — user’s manual. Research Memorandum
RMI 90 - 01, Department of Mathematical Engineering and Information Physics,
Faculty of Engineering, University of Tokyo, 1990.

M. Iri, T. Tsuchiya, and M. Hoshi. Automatic computation of partial derivatives
and rounding error estimates with applications to large-scale systems of nonlinear
equations. Journal of Computational and Applied Mathematics, 24:365 — 392,
1988. Original Japanese version appeared in Journal of Information Processing,
26 (1985), pp. 1411 - 1420.

D. Juedes. A taxonomy of automatic differentiation tools. In A. Griewank
and G. F. Corliss, editors, Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia, PA, 1991.

96

[48] H. Kagiwada, R. Kalaba, N. Rasakhoo, and Spingarn K. Numerical Derivatives
and Nonlinear Analysis, volume 31 of Mathematical Concepts and Methods in

Science and Engineering. Plenum Press, Inc., New York, 1985.

[49] R. Kalaba, Leigh Tesfatsion, and J.-L. Wang. A finite algorithm for the ex-
act evaluation of higher-order partial derivatives of functions of many variables.
Journal of Mathematical Analysis and Applications, 12:181 - 191, 1983.

[50] L. V. Kantorovich. Ob odnoi matematicheskoi simvolike, udobnol pri provedenii
vychislenif na mashinakh. Doklady Akademii Nauk SSSR, 113(4):738 — 741, 1957.

[51] G.Kedem. Automatic differentiation of computer programs. ACM Trans. Math.
Software, 6(2):150 — 165, June 1980.

[52) L. Michelotti. MXYZPTLK: A C++ Hacker’s implementation of automatic dif-
ferentiation. In A. Griewank and G. F. Corliss, editors, Automatic Differentiation
of Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia,
PA, 1991.

[53) W. Miller. Software for roundoff analysis. ACM Trans. Math. Software, 1(2):108
- 128, 1975.

[54] J. J. Moré. The Levenberg-Marquardt algorithm: implementation and theory.
In G. A. Watson, editor, Numerical Analysis, pages 105 — 116. Lecture Notes in
Math. 630, Springer Verlag, Berlin, 1977.

[55] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Implementation guide for
MINPACK-1. Technical Report ANL-80-68, Mathematics and Computer Sci-
ences Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne,
IL 60439-4801, 1980.

[56] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User’s guide for MINPACK-1.
Technical Report ANL-80-74, Mathematics and Computer Sciences Division,
Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4801,
1980.

[57] I. M. Navon and U. Muller. FESW — A finite-element Fortran IV program for
solving the shallow water equations. Advances in Engineering Software, 1:77 —
84, 1970.

[58]

[59]

[60]

[61]

97

Richard D. Neidinger. An efficient method for the numerical evaluation of partial
derivatives of arbitrary order. Preprint, Davidson College, Davidson, NC 28036,

1990.

G. M. Ostrovskii, J. M. Wolin, and W. W. Borisov. Uber die Berechnung
von Ableitungen. Wissenschaftliche Zeitschrift der Technischen Hochschule fir
Chemie, Leuna-Merseburg, 13(4):382 — 384, 1971.

R. Pavelle and P. S. Wang. MACSYMA from F to G. Journal of Symbolic
Computation, 1(1):69 — 100, March 1985.

M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, ed-

_ itor, Numerical Methods for Nonlinear Algebraic Equations, pages 87-114. Gor-

[62]

[63]

[64]

[65]

[66]

[67]

don and Breach, London, 1970.

L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120
of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

Louis B. Rall. Differentiation in Pascal-SC: Type GRADIENT. ACM Trans.
Math. Software, 10(2):161 — 184, June 1984.

B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Al-
gorithms. PhD thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana-Champaign, IL 61801, January 1980.

G.W. Stewart. Introduction to Matriz Computations. Academic Press, New
York, 1973.

B. Van Domselaar and P. W. Hemker. Nonlinear parameter estimation in initial
value problems. Technical report, Mathematisch Centrum, 1975.

R. E. Wengert. A simple automatic derivative evaluation program. Comm. ACM,
7(8):463 — 464, 1964.

[68] P. Werbos. Applications of advances in nonlinear sensitivity analysis. In Systems

Modeling and Optimization, pages 762 — 777, New York, 1982. Springer Verlag.

[69] Anthony S. Wexler. An algorithm for exact evaluation of multivariate functions

and their derivatives to any order. Computational Statistics and Data Analysis,
6:1 — 6, 1988.

98

[70] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer.
Addison-Wesley, Reading, MA, 1988.

