Execution-driven Simulation of
Shared-Memory Multiprocessors

S. Dwarkadas J.R. Jump
R. Mukherjee J.B. Sinclair

CRPC-TR92286
December 1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

To be presented at SCS Western Multiconference in January 1993.

EXECUTION-DRIVEN SIMULATION OF SHARED-MEMORY
MULTIPROCESSORS

S. Dwarkadas, J. R. Jump, R. Mukherjee, and J. B. Sinclair
Department of Electrical and Computer Engineering
Rice University
Houston, Texas 77251-1892

ABSTRACT

This paper describes an efficient execution-driven tech-
nique for the simulation of shared-memory multiprocessors
driven by real programs. Our simulator offers substantial
advantages in terms of reduced time and space overheads
when compared to instruction-driven or trace-driven simu-
lation techniques, without significant loss of accuracy. The
technique produces correctly interleaved address traces at
run time without disk access overhead, allowing accurate
simulation of a variety of architectural alternatives for pro-
grams. We present the results of several validation ex-
periments used to quantify the accuracy and efficency of
the technique for three shared-memory multiprocessors and
several parallel algorithms. These experiments show that
prediction errors of less than 5% and overheads 5 to 25
times lower than those incurred by cycle-level simulation
can be achieved.

INTRODUCTION

In this paper, we present an efficient technique for
the simulation of shared-memory multiprocessors. We also
present the results of several validation experiments per-
formed to evaluate the effectiveness of the approach. The
technique is an extension of execution-driven simulation
(Covington et al. 1988; Covington et al. 1991), which was
originally designed to simulate distributed memory sys-
tems with no cache memory. The extensions described
here add the capability to simulate cache-based and/or
shared-memory systems that require an analysis of the pro-
gram address trace for accurate performance prediction.
We have implemented the new technique as part of the
Rice Parallel Processing Testbed (RPPT) (Covington et
al. 1988), a tool for evaluating the performance of parallel
computing systems.

TRAPEDS (Stunkel and Fuchs 1989) is another ex-
tension of execution-driven simulation that can simulate
systems with cache memory, but does not deal with shared-
memory systems. TRAPEDS also does not model com-
munication accurately, since it does not evaluate the ef-
fects of contention. MPtrace (Eggers et al. 1990) uses
the execution-driven approach to generate a template of
trace information that is used at a later time to generate
an address trace. It has an overhead of 2 to 3 times nor-
mal execution time (excluding trace storage) to generate

This research was funded in part by the Center for Research on
Parallel Computation through NSF Cooperative Agreement No.
CCR-9120008.

this trace template. However, the post-processing phase
needed to construct the actual address trace is extremely
slow, generating about 3000 addresses per second from the
saved template. Link time code modification has been used
to generate long traces on sequential RISC machines (Borg
et al. 1990). ATUM (Agarwal et al. 1986) captures ad-
dress traces using microcode. While this technique is effi-
cient, long traces must be stored on disk and a processor
with user-programmable microcode is needed to run the
system.

Tango (Davis et al. 1990) is a multiprocessor simula-
tion and tracing package based on the execution-driven ap-
proach that concentrates on program data accesses. Tango
originally used UNIX processes to simulate parallelism, re-
sulting in high context switching overhead. A recent ver-
sion of Tango uses light weight processes as in our simula-
tor. PROTEUS (Brewer et al. 1991), another execution-
driven simulation system, also concentrates only on shared
data addresses and instruments the high-level language to
generate the shared data addresses, while profiling at as-
sembly level to extract timing information. Neither Tango
nor Proteus have provided extensive validation results for
shared-memory machines.

EXECUTION-DRIVEN SIMULATION OF
SHARED MEMORY ARCHITECTURES

In execution-driven simulation, the execution of a real
program drives the simulation of an architecture, avoid-
ing the emulation of instructions necessary in more con-
ventional instruction-driven approaches. Execution-driven
simulation modifies the program using a profiler, which
identifies each basic block (i.e., maximal sequence of in-
structions, which when once entered, has every instruction
executed exactly once) of the program and determines the
time required to execute all the instructions in the block.
For non-cache and non-shared-memory systems the simu-
lator need only increment simulation time (by executing
the instructions inserted by the profiler), and execute the
basic block.

To simulate parallel computers, we must also simulate
the movement of data between the modules of the sim-
ulated architecture whenever one module communicates
with another. We call these points process interaction
points. In order to keep the actions of the different ar-
chitectural modules interleaved properly according to pro-
gram dependencies, it is necessary for each processor to
delay by an amount equal to the accumulated cycle count
of the processor each time it reaches a process interaction
point.

Shared-memory and /or cache-based systems result in every
memory access being a potential process interaction point.
This means that execution-driven simulation of these sys-
tems will incur more overhead than for message-based sys-
tems, since the simulator must trace addresses and simu-
late memory accesses and cache misses to accurately model
program behavior. The overhead is still less than for cycle-
level simulation, which incurs the extra overhead of a de-
tailed emulation of each instruction in addition to that for
memory simulation.

. We have extended the execution-driven simulator im-
plemented in the RPPT to deal with both shared mem-
ory and caches. The extensions conmsist of two main ad-
ditions. First, we modified the profiler to generate mem-
ory addresses. For those addresses that are not known
until run time, the profiler inserts code into the program
to generate them dynamically during the simulation. A
detailed description of some of these techniques and prob-
lems encountered in implementing them can be found in
(Dwarkadas et al. 1989). The program may be modified
to generate all instruction and data addresses, or to gen-
erate only instruction or only data addresses. Second, we
developed simulation models for shared memory and cache
memory that accounted for the delay due to address con-
flicts and cache coherency protocols.

Figure 1 illustrates the mechanism by which traces
are generated. The profiler must instrument the program
to generate address traces for cache/shared-memory simu-
lation. It does this by constructing an address trace tem-
plate for each basic block. Since instruction addresses are
known to the profiler, it can insert them directly into the
corresponding template. When an address must be deter-
mined dynamically at run time, the profiler inserts code
in the basic block at the point of the access to extract the
address at run time and places a marker in the template
that indicates that a reference will be inserted later.

Basic Block Contents of Basic Block Dynamic Address Address
Sequence j (after profiling) Trace Template
i instruction address <+— address
instruction address <e— address
/* compute address */

memory reference address marker
j <= inamction address <= address

/* compute address ¢/ _L.
memory reference address marker
k instruction address <e——1 address
instruction address <— address

FIGURE 1: Address Trace Generation

In the case of systems with private caches and no
shared data (e.g., a message-based system with private
caches), cache accesses do not constitute potential pro-
cess interaction points. Hence, the entire basic block ad-
dress trace may be processed together at the end of the
basic block. For shared-memory systems, every access to
a shared address must be treated as a potential process
interaction point. The cache simulation routine must be
called for each memory access (this may be restricted to
only shared data accesses when there is local memory for
private data) generated to determine when misses occur
and to simulate the coherence mechanism. This will force
the simulator to delay the process reading a shared location
until all processes that could alter the data at that address

have done so. This guarantees that the addresses gener-
ated by different processes will be interleaved correctly in
simulation time. Maintaining correct interleaving of mul-
tiprocessor address traces is very difficult when the traces
are saved and processed later.

EVALUATION

We have conducted extensive experiments to validate
the execution-driven approach to simulation. These experi-
ments were designed to measure the accuracy and overhead
of the technique. The accuracy is evaluated by simulating
the execution of several parallel programs on parallel com-
puters and comparing the performance predictions with
timing measurements obtained from executing the same
programs on the real systems. The overhead is computed
as the ratio of the time required to simulate the execution
of a program to the time to execute it as a multithreaded
program on a uniprocessor. This comparison provides a
measure of the extra work required to simulate the move-
ment of data between the modules of a parallel system.

We presented validation results for the basic
execution-driven technique applied to distributed-memory,
message-based architectures in previous papers (see, for
example, Covington et al. 1991). In this section, we ex-
tend those results to shared-memory systems. To this end,
we present the results of validation experiments on two
commercial shared-memory multiprocessors, the Sequent
Symmetry® (Lovett and Thakkar 1988) and the BBN But-
terfly GP1000 (BBN Laboratories 1985). We also present
comparisons of the execution-driven testbed with a cycle-
level simulator of a hypothetical single-bus multiprocessor
based on the SPARC architecture (Ross Technology Inc.
1990).

The Sequent Symmetry

The Sequent Symmetry is a single-bus, shared-
memory multiprocessor with a two-way set-associative
cache private to each processor. The coherence protocol is
write back with invalidation of other copies when the data
is shared. A cache that supplies the dirty copy of a cache
line also invalidates its own copy regardless of whether the
request was for a read or a write access. Coherence is
maintained by using the bus’ snooping ability. The bus
uses split transactions.

The validation experiments were driven by parallel
versions of a radix 2 Fast Fourier Transform (FFT) pro-
gram on 8192 points, a Gaussian Elimination (GAUSS)
program on a 96x96 matrix, and a Subgraph Isomorphism
(ISO) program that found 6840 subgraphs isomorphic to a
particular 3-node subgraph within a 20-node graph. These
programs were chosen as representative of a range of nu-
meric and non-numeric programs.

Figure 2 demonstrates the accuracy of the Sequent
simulations, which are within 5% in most cases. More ex-
tensive results can be found in (Dwarkadas et al 1992). For
these experiments, error is defined as the percentage dif-
ference between the prediction of execution time and the
measured execution time. The errors remain fairly con-
stant as the number of processors increases, indicating that

*Use of the Sequent Symmetry S81 was provided by the Depart-
ment of Computer Science at Rice University under NSF CISE
Infrastructure (II) Grant CDA-8619393.

contention on the Sequent bus is modeled accurately. The
inaccuracies and variations that do exist can be partly at-
tributed to errors in real time measurement and the fact
that the time taken by certain instructions (especially float-
ing point instructions) is data-dependent and cannot be
predicted exactly prior to execution. Also, FFT and ISO
make a number of calls to process scheduling routines that
were not accurately modeled in the simulation.

10 v
1SO —~—
GAUSS —
FFT -»—
St 4
-3
(]
g ot]
R
4
StH 4
.__.-—\
\/
-10

0 2 4 6 8 10 12 14 16
NUMBER OF PROCESSORS

FIGURE 2: Sequent - Errors

S —
["Algorithm _ [Average Overhead]
Subgraph Isomorphism (ISO) 639x
Fast Fourier Transform (FFT) 505x
Gaussian Elimination (GAUSS 598x

TABLE 1: Sequent - Overheads

Table 1 shows the overheads incurred. Most of this
overhead is due to the need to simulate the movement of
data between processors and memory. This, in turn, de-
pends on the characteristics of the program that determine
the amount of data moved. For example, the increased
overhead of ISO relative to the other two programs is due
in part to the absence of floating point code resulting in an
increase in the ratio of communication to computation.

The BBN Butterfly

The BBN Butterfly is a shared-memory multiproces-
sor that is quite different from the Sequent Symmetry. The
Butterfly is a non-uniform-memory-access (NUMA) archi-
tecture with memory physically distributed among the pro-
cessors. Therefore, the distribution of data among the dif-
ferent modules is a major factor in the performance of the
system. The Butterfly does not have cache memory. Fi-
nally, the Butterfly uses a multistage interconnection net-
work to connect the processors, while the Sequent uses
a single shared bus to connect all processor and memory
modules.

We used the same set of benchmarks for the evalua-
tion of the Butterfly architecture as for the Sequent Sym-
metry. Due to problems in porting the run time parallel
environment, we simulated the equivalent sequential pro-
grams run on a single processor but with all global data
placed on remote nodes to force the programs to make
remote accesses across the network. This allowed us to
evaluate the accuracy of the Butterfly architecture model.
All programs were run with several data sets of varying
sizes. The FFT data ranged from 1024 to 32,768 points,

the GAUSS program was applied to matrices ranging from
50x50 to 175x175, and the ISO program was used to find all
subgraphs of 15- and 18-node graphs that were isomorphic
to given 3- and 4-node graphs.

Figure 3 shows that the accuracy of the Butterfly sim-
ulations vary from +10% for GAUSS to a little less than
-10% for ISO. The differences in error between the differ-
ent programs is partly due to the different amounts of net-
work traffic they generate. The percentage of data accesses
that were remote was approximately 5% for ISO, 50% for
FFT and 62% for GAUSS. Another source of error is that
the simulation model for the interconnection network was
based on a number of simplifying assumptions to reduce
the simulation time to a manageable level.

Average simulation ‘overheads for the three programs
are given in Table 2. Once again, the differences are largely
due to the different amounts of network traffic generated by
the three programs. Since most of the simulation overhead
is due to the time required to simulate the movement of
data through the network, the increased network traffic of
GAUSS and FFT resulted in increased simulation overhead
compared to ISO.

10
I - —tr 1
5 FIT ——
GAUSS —3—
Q
[[- »r
] hd »
= 5 N
W 9/’
-10 3 ./.)/
-15 $ $ + i
FFT I‘K Z‘K AIK SIK 16K 32K

GAUSS 50 75 100 125 150 175

ISO 2730 5040 11880 32760 73440

FiGure 3: Butterfly - Errors

e s
[Algorithm [Average Overhead]

Subgraph Isomorphism (ISO) 150x
Fast Fourier Transform (FFT) 780x
Gaussian Elimination (GAUSS 1200x

TABLE 2: Butterfly - Overheads
Single Bus SPARC Architecture

This section evaluates execution-driven simulation rel-
ative to cycle-level simulation. This is done by simulating a
hypothetical single-bus SPARC-based multiprocessor with
both types of simulators and comparing their execution
time predictions and overheads. The cycle-level simulator
used is derived from MPSAS (Federwisch and Ball 1990;
Greenwood 1992), a multiprocessor simulator developed by
Sun Microsystems.

We simulated a system consisting of 20 MHz SPARC
processors with a 10 MHz, non-split transaction bus. We
associated a 64 KB, 32 bytes/line, direct-mapped cache
with each processor. The cache protocol was write through

with no write allocate, similar to the CY605 (Ross Tech-
nology Inc. 1990). Shared copies were invalidated on a
write. The bus used a round robin arbitration scheme.

The simulations were driven by parallel versions of
a Matrix Multiply (MM) program and a Successive Over-
Relaxation (SOR) program, both applied to a 128x128 ma-
trix. The results of these experiments are shown in Figure
4, which plots error (% difference between the execution
times predicted by the two simulators) against the number
of processors in the system. The larger errors for SOR may
be attributed to the effect of different data placements in
the direct-mapped cache by the two simulators.

10 ——e —
MATMULT —~—
SOR —
5-
z N—/
S
go
®
st
10 e
0 2 4 6 8 10 12 14 16
NUMBER OF PROCESSORS

FiGure 4: SPARC MP - Errors

Algorithm | Execution-Driven | Cycle-level Overhead
Overhead Overhead

SOR 1354x 7682x
MM 487x 12740x

TaBLE 3: SPARC MP - Overheads

The measured overheads for the two simulators are
given in Table 3. These results demonstrate the added
overhead of emulation in the case of cycle-level simulation.
They show that the execution-driven simulator is approx-
imately 6 times faster than the cycle-level simulator when
running SOR, but about 26 times faster for MM. This dif-
ference is due to the way the simulators treat memory ac-
cesses. The MM program has far fewer memory writes than
the SOR program, and the execution-driven simulator only
incurs a high overhead on data writes, while the cycle-level
simulator incurs this overhead on all instruction and data
accesses. The overhéads for the execution-driven simula-
tor for the SOR algorithm are somewhat higher than they
were when simulating the Sequent Symmetry. This is be-
cause the simulated SPARC system used a write-through
protocol, resulting in a larger number of bus accesses than
with the write-back protocol used in the Sequent.

CONCLUSIONS

Execution-driven simulation can be an effective per-
formance evaluation tool for shared-memory multiproces-
sors. Although it is not as efficient as it is for message-
based architectures, it is 5 to 25 times faster than cycle-
level simulation and has an error of less than 5% for most
simulations. Predictions of relative performance metrics
such as speedup tend to be even more accurate, making
this technique especially attractive for comparative inves-
tigations of parallel system designs.

REFERENCES

Agarwal, A.; Sites, R.L.; and M. Horowitz. 1986. “ATUM:
A New Technique for Capturing Address Traces Using Mi-
crocode.” In Proceedings of The 13th Computer Architec-
ture Symposium (June). Vol 14. Pages 119-127.

BBN Laboratories. 1985. “Butterfly (TM) Parallel Pro-
cessor Overview” (Version 1).

Borg, A.; Kessler, R.E.; and D.W. Wall. 1990. “Gen-
eration and Analysis of Very Long Address Traces.” In
Proceedings of the 17th Computer Architecture Symposium
(May).

Brewer, E.A.; Dellarocas, C.N.; Colbrook, A.; and

W.E. Weihl. 1991. “PROTEUS: A High-Performance
Parallel-Architecture Simulator.” Technical Report
MIT/LCS/TR-516. Laboratory for Computer Science,

Massachusetts Institute of Technology, Cambridge, MA
(September).

Covington, R.G.; Madala, S.; Mehta, V.; Jump, J.R,;
and J.B. Sinclair. 1988. “The Rice Parallel Processing
Testbed.” In Proceedings of the ACM SIGMETRICS Con-
ference (May). Pages 4-11.

Covington, R.G.; Dwarkadas, S.; Jump, J.R.; Madala, S,;
and J.B. Sinclair. 1991. “Efficient Simulation of Parallel

_Computer Systems,” International Journal of Computer

Simulation. (June) Vol 1, No 1. Pages 31-58.

Davis, H.; Goldschmidt, S.R.; and J. Hennessy. 1990.
“Tango: A Multiprocessor Simulation and Tracing Sys-
tem.” Technical Report, Computer Systems Laboratory,
Stanford University.

Dwarkadas, S.; Jump, J.R.; and J.B. Sinclair. 1989. “Ef-
ficient Simulation of Cache Memories.” In Proceedings of
the Winter Simulation Conference (invited paper). (De-
cember. Pages 1032-1041.

Dwarkadas, S.; Jump, J.R.; Mukherjee, R.; and J.B. Sin-
clair. 1992. “Execution-Driven Simulation of Shared-
Memory Multiprocessors.” Technical Report 9204. De-
partment of Electrical and Computer Engineering, Rice
University.

Eggers, S.J.; Keppel, D.R.; Koldinger, E.J.; and H.M.
Levy. 1990. “Techniques for Efficient Inline Tracing on
a Shared Memory Multiprocessor.” In Proceedings of the
ACM SIGMETRICS Conference.(May).

Federwisch, M.; and L. Ball. 1990. “MPSAS: A Program-
mer and User Manual.” Sun Microsystems.

J. Greenwood. 1992. “The Design of a Scalable
Hierarchical-Bus, Shared-Memory Multiprocessor.” M.S.
Thesis. Department of Electrical and Computer Engineer-
ing, Rice University. (May).

Lovett, T.; and S. Thakkar. 1988. “The Symmetry Mul-
tiprocessor System.” in Proceedings of the International
Conference on Parallel Processing. (August). Pages 303-
310.

ROSS Technology Inc. 1990. SPARC RISC User’s Guide,
2nd Edition.

Stunkel, C.B.; and W.K. Fuchs. 1989. “TRAPEDS: Pro-
ducing Traces for Multicomputers Via Execution Driven
Simulation.” In Proceedings of the ACM SIGMETRICS
Conference. (May). Pages 70-78.

