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Abstract

In this paper we show that a variant of the long-step affine scaling algorithm ana-
lyzed by Tsuchiya and Muramatsu can have a two-step superlinear convergence prop-
erty for general linear programming problems. Superlinear convergence of the dual
estimate is also established. A plausible explanation is given for why step-size 2/3 is
sharp for convergence of the dual estimates as long as we use fixed ratio step-size.

1 Introduction

The affine scaling algorithm, introduced by Dikin [6] in 1967, is one of the simplest and most
efficient interior point algorithms for solving linear programming (LP) problems. Because
of the theoretical and practical importance, there are a number of papers which study its
global and local convergence [4, 6, 7, 8, 9, 12, 21, 22, 24, 25, 26, 27| as well as its continuous
trajectory [3, 12, 28]. See [1, 2, 5, 14, 17, 18] for experiments and implementation issues of
the algorithm.

Recently, Dikin [8] and Tsuchiya and Muramatsu [25] have succeeded in proving the
global convergence for degenerate LP problems of the long step version of the affine scaling
algorithm [27], that is the version in which the next iterate is determined by taking a fixed
fraction A\* € (0,1) of the whole step to the boundary of the feasible region. Dikin showed
global convergence of the primal iterates and convergence of the dual estimate to the analytic
center of the dual optimal face in the case of A* = 1/2. Subsequent to his work, indepen-
dently, Tsuchiya and Muramatsu obtained an analogous result for A¥ < 2/3 (or AF < 2/3
in revision). They also demonstrated that the asymptotic reduction rate of the objective
function value is exactly 1 — A¥ (if ¥ < 2/3). See the recent paper by Monteiro, Tsuchiya
and Wang for a simplified and self-contained proof of these results [15].
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tDepartment of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona 85721. The
work of this author was based on research supported by the National Science Foundation (NSF) under grant
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In this paper we focus our attention on the local convergence property of the long-step
affine-scaling algorithm. Specifically, we will show that a variant of the long-step affine
scaling algorithm can enjoy a 2-step superlinear convergence property without sacrificing
global convergence by choosing AF carefully. We define a trajectory in the space of always-
active variables on the optimal face which plays a role similar to the central trajectory for
other interior point algorithms, and take a long step as long as iterates stay close to this
trajectory; detecting that iterates are leaving from the trajectory, we take \¥ = 1/2 as a
corrector step.

This paper is organized as follows. In Section 2, we introduce basic assumptions, termi-
nology and define the affine scaling algorithm. Section 3 and 4 are the main part of this
paper. In Section 3, we state several basic results on the affine scaling direction near a dual
degenerate face, which is defined to be a face on which objective function takes a constant
value. This analysis gives a basis for obtaining the superlinear convergence result. Further,
we take up the special case of homogeneous problems with unique solutions, and prove that
the direction of approach to the optimal solution cannot converge to one point if we take
any fraction greater than 2/3. Since dual estimate is a function of the direction of approach
to the optimal solution, this result gives a plausible reasoning for why M\ = 2/3 is sharp
concerning convergence of dual estimates as observed in Tsuchiya and Muramatsu [25] and
Hall and Vanderbei [10] (N. B. the latter result is stronger). In Section 4, we define a new
variant of the affine scaling algorithm which takes either M =1/2 or Ak ~ 1 alternatively,
and show that this variant has 2-step superlinear convergence property with Q-order 1.3
with respect to the objective function value. Superlinear convergence of primal iterates to
an interior point of the optimal face and dual estimates to the analytic center of the dual
optimal face with the same R-order (1.3) is also shown. In Section 5 we prove some technical
lemmas stated in Section 3. Finally, we give a concluding remark in Section 6.

The following notation is used throughout our paper. We denote the vector of all ones by
e. Its dimension is always clear from the context. R", IR} and RY, denote the n-dimensional
Euclidean space, the nonnegative orthant of IR™ and the positive orthant of R, respectively.
The set of all m x n matrices with real entries is denoted by R™*™. Given an index set
J € {1,...,n} and a vector w € R", we denote by wy the subvector of w corresponding
to J. Similarly, if E is an m X n matrix then E; denotes the m x |J| submatrix of E
corresponding to J. For a vector w, we let x[w] denote the largest component of w. The
Euclidean norm, the 1-norm and the co-norm are denoted by ||- I, IIll: and ||-|lco, respectively.
If J is a finite index set then |J| denotes its cardinality, that is the number of elements of J.
The superscript 7 denotes transpose.

2 Affine Scaling Algorithm

In this section, we state the main terminology and assumptions used throughout our paper
and describe the affine scaling algorithm.
Consider the following linear programming problem

minimize ; ¢’z
1
subject to Az =b, z >0, 1)



and its associated dual problem

maximize (5 b7y

(2)

subject to ATy +s=c, s2>0,

where A € R™*", ¢,z,s € R™ and b,y € R™. We will denote by P* and P** the feasible
region and the interior of the feasible region of (1), respectively.
We impose the following assumptions throughout this paper.

Assumption 1: Rank(A) = m;

Assumption 2: The objective function ¢’z is not constant over the feasible region of (1);

Assumption 3: Problem (1) has an interior feasible solution, that is P++ # 0;
Assumption 4: Problem (1) has an optimal solution, where the optimal value is c*.

Given an index set J € {1,...,n}, the subset {z|Az = b,z; = 0,z > 0} of P* obtained by
letting z; = 0, is called a face of Pt if it is not empty. We specify the face with a partition
(N, B) of the index set of the variables, where N consists of the indices for the variables
whose values are always zero on that face and B being its complement. This index set N
is referred to as the always-active index set of the face. In particular, the face is referred to
as a dual degenerate face if the objective function takes a constant value on it. We regard a
vertex also as a dual degenerate face. The always-active index set of a dual degenerate face
is called a dual degenerate index set.

The whole set of the optimal solutions is referred to as the optimal face. We use (NV., B.)
for the partition of the index set to determine the optimal face, where N, is the dual degen-
erate index set for the optimal face and B, is its complement.

The problem is called homogeneous when b is equal to zero. In the case, z = 0 is a dual
degenerate face which is specified by the dual degenerate index set N = {1,...,n}, and we
have B = (. Conventionally, we define Range(Ag) = {0} when B = (), and every quantity
that contains subvectors and submatrices with the index set B is put to zero in interpretating
lemmas, propositions and theorems. This will not cause any inconsistency.

We now introduce important functions which are used in the description and in the
analysis of the affine scaling algorithm. For every z € R}, let

y(z) = (AX24T)1AX%, (3a)
s(z) = c— ATy(a), (3b)
dz(z) = X%s(z)= X[I - XAT(AX?AT)'AX]Xe, (3¢)
dz) = Xs(z)= X"'dz(z) (3d)

where X = diag(z). We note that Assumption 1 implies that the inverse of AX2AT exists
for every z > 0. The quantity s(z) (or the pair (y(z),s(z))) is called the dual estimate
associated with the point z. dz(z) and d(z) are referred to as the affine scaling direction
and the scaled affine scaling direction associated with z, respectively.

The following lemma is well-known, and easily verified.



Lemma 2.1 dz(z) is given as the solution for the following optimization problem
maximize , $1p— %HX'IPH2 (4)
subject to  Ap =0,
where § € ¢ + Range(AT). The search direction is not affected by choice of 3.

We are ready to describe the affine scaling algorithm. For a good motivation of the
method, we refer the reader to Dikin [6], Barnes [4], Vanderbei, Meketon and Freedman [27)
and Vanderbei and Lagarias [26].

(Step 0) Assume z° € P++ is available. Set k :=0.

(Step 1) Choose X* € (0,1), and

dz* = dz(z¥); (5a)

X* = diag(z®); (5b)
/\k

1 = o* k (5¢)

B COR e

(Step 2) k:=k+ 1 and return to (Step 1).

Note that if we choose A¥ = 1, the next iterate is just on the boundary of the feasible
region. Thus the iteration is well-defined as long as we take Ak € (0,1). In the sequel, we
denote by z* the kth iterate generated by the affine scaling algorithm. Given a function f of
z*, we abbreviate f(z*) as f*. Further, we use X and X* to denote diag(z) and diag(z*),
respectively. Similarly, given an index set J and k, we also use convention X and X% to
denote diag(zy) and diag(z). In many of the existing implementation they fix A* to be
a constant throughout the iterations. This type of step-size choice is referred to as a fized
ratio step-size choice in this paper.

3 Analysis of the Affine Scaling Search Direction near
Dual Degenerate Faces

3.1 Preliminary Results

In this subsection we state preliminary results that are basis for deriving the main results
in this paper. In order to make arguments clear, some of their proofs are put off to Section
5. Let us consider a dual degenerate face determined with the dual degenerate index set N
and its complement B, where the objective function value is ¢’. Then there exists (7, ) such
that

ALy +3n =cn, ALy = cB, (6)
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with which we have

Tr—¢ = §£.’L‘N (7)
for all z € P*. Let
Q% ={z] z e P+, Tz - >0} (8)
and
Ot = {z| z e P, Tz — ¢ > 0}. (9)
For z € QF*, we define
u(z) = _d=) (10)

Tz —¢°
The following estimates on u(z) in the vicinity of the dual degenerate face are used in
the consecutive analysis.

Lemma 3.1 We have

lus@) _ lds@Il _ -y ot
lun(@)| ~ lldn()|l — O(II X5 Il X~1))- (11)

n Q?\}'}'.
Lemma 3.2 We have
efun(z) =1+ O(IX5 P XN lon (2)]]) (12)

in Q.

Now we consider the polyhedron

Vi = {vn = 0|Anvn € Range(AB),Ef,vN =1} (13)
and its interior
Vit = {vn > 0|Anvn € Range(AB),Eq,:,vN =1}, (14)
and define, for any z € QF7,
v(z) = L = (15)

Tz —c skzn’

Obviously, vy (z) is a mapping from z € QF* to VT,
We define the analytic center of V; as an optimal point for the problem

minimize — Z logv;, subject to vy € VF, (16)
iEN

which exists if and only if V7 is bounded.
We denote by dvn(vy) the Newton direction at vy € VT for the analytic center of V5.
The direction dvy(vn) is the optimal solution for the following optimization problem:

minimize e7Vyy'py + 3| Vi ' on|I?,

(17)

subject to Axpn € Range(Ag), E%pN =0.
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Here Vy = diag(vn).
The Newton iteration is written as

v}*\} = UN — va(vN), (18)

where v is the next iterate. We define the scaled Newton direction as:
wN(vN) = Vﬁlva(vN). (19)

Note that the (scaled) Newton direction is well-defined even though the polyhedron Vi is
not bounded.

Given an affine scaling sequence {z*} in Qf*, we consider the sequence {on(z¥)} in VE*.
The following results which show that {vn(z*)} is approximately regarded as the sequence
of the Newton iteration for the analytic center of Vj; are the key observation in this paper. A
proof of Theorem 3.3 will be given in Section 5. In the remaining part, we use the analogous

notation to z and zF concerning v and v*, i.e., given an index set J and an iteration count
k, we use V, Vy, V¥, VF for diag(v), diag(vs), diag(v¥), diag(v}), etc.

Theorem 3.3 We have

ﬂl;_jzi_:;l)l—z = wy(vn(z)) + e + rn(2) (20)

in Q%*, where |[rn ()| = OUIX5" I Xn ¥ llow (2)1])-

Theorem 3.4 Let z € Q%F, and let vii(z, ) be vn(z+ (X)), where zt(\) € QF* is the point
obtained with an affine scaling iteration with the step-size A from z. Then we have

A6(u(z))

vf(z,A) = ’UN(x)—i—:m(va(vN(m))+VN7‘N(m))7 (21)
s = Ll | (22)

where rn(z) is the same as in Theorem 3.3.

Proof. We have

:1:'1*\}()\) _ TN
Tzt(\)—¢ cTz—¢
(T2 — ¢)(zn — Maw(2)/x[d(z)]) — 2n(Tz = ¢ — AT dz(z)/x[d(2)])

(Tzt(\) — &) (cTz =)
— ATz = ¢)dzw(z)/x[d(@)] + znAT dz(z)/x[d(=)]
(cTz — ¢ — AcTdz(z)/x[d(z)])(cTz — &)

_ AT dz(z)/x[d(z)] N dzn(z) )

Tz — ¢ — ATdz(z)/x[d(z)] Tz — ¢ cTdz(z)
el g
= oA/ T Tl
= 20y — V). (23)

Aé(u) .
1—Aé(u) fualf?

vk(z,A) — on(2)
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Substituting (20) into the last expression, the theorem is immediate. n

The following lemma is easily verified, and will be referred frequently in the consecutive
analysis.

Lemma 3.5 Let z € Q}", and let z¥(\) € QF is the point obtained with an affine scaling
iteration with the step-size A from z. Then we have

i;%ﬁ = 1= AS(u(z)) > 0. (24)

3.2 Convergence Analysis of the Direction of Approach with
Fixed Ratio Step-size Choices

Now we apply the results in the previous subsection to the case where the dual degenerate

face is chosen to be the optimal face. We denote by N, the dual degenerate index set for the

optimal face of (1) and by B. its complement. Let 5 = (3n,,35.) = (3n.,0) be an interior
point of the dual optimal face. Due to strictly complementarity, we have 5x, > 0 and

Tz — ¢ =355 zn, (25)

for all z € P*. Since 3y, > 0, we may regard vy, (z) as the direction of z in the zy, space
viewed from the optimal face of (1). The vector vn,(z) is an element of the polyhedron

Vi, = {vn. > 0|An.vN, € Range(Ag.), 5n.on. = 1}. (26)

Obviously this polyhedron is bounded. We denote by vy, the analytic center of V¥, and
take
P(on) = (VR) 7 (ow. —op )l (VR, = diag(vy,)) (27)

as a measure for how v}, is close to the analytic center. We easily verify the following
lemmas:

Lemma 3.6 If vy, — vi,, we have

-1
lim lwn, (vn Il lim |(Vwv.) " don, (vn.)|] 1 (28)

ot Plon,) v [[(VR) T o = oR)I
Lemma 3.7 There ezist constants M > 0 and € > 0 satisfying

¥(vn, — dvn,(vn,)) < Myp(vn,)? (29)

and

I(Vr.) ™  dow. (on,)| < 2¢(vn.) (30)

for all vy, satisfying ¥(vn,) < €.




In order to obtain a geometrical image of the analysis, it is useful to consider the following
set

My, = {z € P*d(vn.(2)) =0}
= {z € P*|zn, = pv}, for some p > 0}. (31)

This set is a cross section of P* and the hyperplane
{z € R™|zn, = poy, }- (32)

If the optimal face is a unique point, My, is a line emanating from the optimal solution
tangential to the limiting central trajectory. Generally, the dimension of My, is given by
“(the dimension of the optimal face) +1.”

The role of My, in the local analysis of affine scaling algorithm is similar to the role of
central trajectory in the local analysis of many other interior point algorithms. Intuitively
speaking, as long as we are approaching the optimal face from the direction of M., the
affine scaling algorithm can enjoy a nice local convergence property.

Lemma 3.8 Let {z'} be a sequence on QfF. If

. I _
lll}g UN,(-T ) - |N*" (33)

every accumulation point of {vn.(2")} is an interior point of Vi,

Proof. By assumption, we have
lim uly, = lim V} sn.(2') = lim Sh.vk. = © , (34)
l—o0 * l»00 * l—oo * F lN*l

where Sk, = diag(sn.(z"). Let 9y, be an accumulation point of {vl.}. Since the function
s(z) is bounded over the feasible region (cf. Lemma of [26](page 118) or Proposition 2.8 of
[15]), the sequence {s'} is bounded as a whole sequence. Surpassing a subsequence {z'}ieL
if necessary, we may assume that the sequence {'va,}zeL is convergent to oy, > 0, while
{sh.}ieL is convergent to an accumulation point 3n. of {sly.}. Then we have

R S S R S
lllEI}JlSNtan - SN’UN‘ - |N'|’ (35)

where Sy, = diag(3n.). Since there exists a constant M, such that
llsw. Il < Mo (36)

for all I, we have
(37)

1
min9; > ————.
1EN. - MolN*I
Since the last inequality holds for any choice of On,, we see that every accumulation point
of {vl.} is in the interior of V{,. This completes the proof.
]
Now we are ready to analyze the direction of approach to the optimal set under fixed

ratio step-size choices.



3.2.1 Homogeneous Case

In [25], Tsuchiya and Muramatsu proved that for general LP problems, dual estimates con-
verge to the analytic center of the dual optimal face if A* < 2/3, and gave an example to
show that A*¥ = 2/3 is sharp on this property as long as we take fixed ratio step-size. More
strongly, Hall and Vanderbei [10] demonstrated that A¥ = 2/3 is the largest fixed ratio step-
size choice that can ensure convergence of dual estimates to one point. They both obtained
these results by constructing small examples of homogeneous LP problems, and the basic
observation that leads to their results is that the sequence cannot have the limiting direction
of approach to the optimal solution if we take \* = A > 2/3. Here, on the basis of the
relationship between {z*} and {vn.(z*)} obtained in the last section, we give a plausible -
explanation for why 2/3 is sharp on convergence of dual estimates.

Let us consider a homogeneous problem with a unique optimal solution; i.e., b = 0 and
the point z* = 0 is the unique point where cTz* = 0 (cTz > 0 for any other feasible solution
z). This is an LP problem whose feasible region is a cone, where the origin is a unique
optimal solution. We note that in the case we have N, = {1,...,n} and B, = 0. Recall
the rule stated in Section 2 that every quantity that contains subvectors and submatrices
with B, component, | Xs, ||, say, is put to zero in interpreting the lemmas and theorems in
Section 3.1, if B. = 0. Then (12), (20) and (21) become

ofu=eluy, =1, (38)
un, (z) _ u(z) = o (o (2 .
lu(z)]2 ~ Jlu()]2 N.(vn.(2)) + e, (39)
and
’U]-\*}. (Z, /\) = UN, (1') - %dvﬁh (vN.(a;)), (40)
respectively.

Below we demonstrate that the sequence {v%, } converges quadratically to the analytic
center if we take \* = 1/2, and {vk } has at least two different accumulation points if
A = X > 2/3 (except for the special case where v};, happens to be v}, for some k). Since
the dual estimate s(z) is a function of the direction vy, (z) of approach to z*, it is likely that
s(z*) do not converge if v, (z*) has more than two different accumulation points. Thus the
next theorem gives a nice geometrical explanation for why 2/3 appears in the bounds for
convergence of dual estimates. We note that Dikin analyzed the same situation in (8] with
A¥ =1/2, and showed convergence of v, to v}, by observing the reduction of the Karmarkar
potential function [11] associated with this problem.

Theorem 3.9 Let (1) be a homogeneous problem with a unique optimal solution z* = 0, t.e.,
N. ={1,...,n} and let {z*} be the sequence obtained by the affine scaling algorithm with fized
step-size \F = A > 0, and assume also that vl # vy, for all k. Then, (I) if A =1/2, {v&.}
converges to v}y, quadratically; (II) if A > 2/3, {vg,} has at least two different accumulation
points.

Proof. Due to (38), we have

§(uk) = ||lu¥|| = (41)

L
v



Using Lemma 3.5, we have, for all k,

CT($k+l _ IE*)

A
i S R, Yy <1 - —= 42
T — o) 1-X(u") L1 (42)

b

vn

which immediately implies that the sequence converges to the unique optimal point z* = 0.
Due to (40), the iterative formula for v, is written as follows:

k+1 ok A8

i doy, (v,) (43)

N TN
First, we show that {v%,} converges to the analytic center v}, quadratically if A =1 /2.
It is shown in Lemma 4.1 of [15] that {uf,} converges to e/|N.|. Applying Lemma 3.8, we
see every accumulation point of {vf,} is in V{F. From (39), we see limg—.co wh, = 0. Since
vk, is a unique interior point in V3. such that wn,(vn,) =0, {v%.} converges to vy, .
To see quadratic convergence, it is enough to show that

k
o = 1+ Ollvk, = k) (44)
Indeed, we have
I R U L A
o R T A P i P ()

Since vk, — vj,, due to Lemma 3.6,

l|wk. || < 1.19(vx,) (46)

holds for sufficiently large k. The two relations above immediately implies (44).

Now we deal with the case of A* = X > 2/3.

Assume by contradiction that {v%, } converges to a point 9, of Vi.. Since {v},} con-
verges to one point while we have

My/INA| A6
A S To00 (47)

for all k, as is seen from (41), we see that dvn, (vk,) tends to zero.

First, we assume that 9, is an interior point of V. and derive a contradiction. Since
v}, is the unique interior point of V., where dun.(vn.) = 0, this implies v&, — vj,. Then
applying (39), we see 6¥ — 1 as k — oo, and this implies that

0<
1

< ) A6*

gl vl (48]
if A > 2/3. Now (43) becomes exactly identical to the Newton iteration with step-size
greater than 2, and the iterates cannot be convergent to vj, except for the special case
where vk = v}, takes place for some &, which is the contradiction.

10



Hence, 9y, has to be on the boundary of V¥ . We observe that this also leads to a
contradiction. To this end, we use the following property of the scaled Newton direction for
the analytic center.

(Property of the Newton direction for the analytic center)
Let oy, be a point on the boundary of Vi, and J be the index set corresponding to o;
whose value is 0 at Oy,. Then we have wy(vy,) — —e as vy, — Un, -

This fact is implicitly used to analyze quadratic convergence of Iri and Imai’s algorithm
[23]. For the sake of completeness, we provide a proof in the appendix.

We apply this fact letting o, = On,. In view of the Newton iteration (18), the property
means that the values of variables v; (7 € J) increase by the iteration of the Newton method
at any interior point of V¥, sufficiently close to ®y,; thus iterate cannot converge to o,
which is a contradiction, and completes the proof.

]

3.2.2 General Case

We can extend a similar argument for general cases. However, it turns out to be difficult to
duplicate completely analogous simple results here, since we have %, # 0 for general cases
and effects of this term on vk, is difficult to estimate. We restrict ourself to the case of
M =1/2, and show how this analysis above is extended for general case; the result plays an
important role in the next section.

Theorem 3.10 If we take fized ratio step-size \F = 1/2 for general problems, we have
Y(vx,) = O((c"z* = ¢)?). (49)

Proof. Due to Theorem 1.1 of [25], {z¥} converges to an interior point of the optimal

face. Let .
Ck = w(vN.) (50)

(cTz" _ cnx)?

for all k. By contradiction, we assume that there exists a subsequence {z*}rex such that

Jlim (F =00 and ¢* < (¢*?! forall ke K. (51)

Due to Lemma 4.1 of [15] and (11), we have uk, — e/|N.| and uf, — 0. Applying Lemma
3.8, we see every accumulation point of {v¥ } is in VT
Since Vi, is bounded, ||vk || is bounded and ||zf,|| = O(cTz* — c*). Hence we have
NCXED) (XK ) vk |l = O((cTz* — ¢*)?). Together with this fact, Theorem 3.3 implies
that
Irk || < Mo(cTz* - ¢)? (52)

for sufficiently large k, where M, is a positive constant, and hence that

Jlim wy, = 0. (53)

11



Since v}, is a unique interior point in V{. such that wn, (vn.) = 0, {vf,} converges to vy,.
Then we have ¥(vk,) < € if k is sufficiently large, where ¢ is the constant in Lemma 3.7.
Since AF = 1/2, we have, due to Theorem 3.4 and Lemma 3.7 that,

SOk = (Vi) ok, — i, — (L= n")(dvk, + Vi)
(use Theorem 3.4)
< (Vi) ok = vh, — dof )N+ M (VR T doR D+ (V) IV e,
< Mp(vh)? + 2t (k) + 2Moll (Vi) VAl (eTa® =€),
(use Lemma 3.7 and (52)) (54)
where 5 /2
k—q__ 912 -
n"=1 =573 (35)

Since 6 — 1, we see n*¥ — 0 as k — co. On the other hand, we have, as shown in Theorem
1.1 of [25] (see also Theorem 4.2 of [15]),

T~ 1 .
ke ) (56)
Then it follows that, for k¥ € K sufficiently large,
k< ¢ < 41MCFp(vk,,) +2 - 410 CF + My, (57)
where My = 2Mo||(V%.) 2|l V.|l Dividing this inequality by ¢k, we have
M -
1 < 4.1Myp(vk) +8.20" + -C—kl (38)
for sufficiently large k, which, however, is a contradiction, because ¢(v}{,‘) — 0, 7* — 0 and
¢k — oo as k — oo (k € K). This completes the proof. n

4 A Superlinearly Convergent Affine Scaling Algo-
rithm

In this section we will demonstrate global and superlinear convergence of the following variant
of the long-step affine scaling algorithm.

Algorithm SLA
(Step 0) Assume z° € P*¥ is available. Set k := 0.
(Step 1) Compute dz* = dz(z*) and &* = d(z*) according to (3c) and (3d), respectively,

and let
N* = The index set consisting of ¢ such that zf < y/|eTd|, (59a)
k k |er§Vk|2 =
g© = Nk| = ——=— 59b

12



(Step 2) If

gk < IerchO.QS’ (60)

then (Predictor step)
AF = max(0.5,1 — |eTd*|*?) (61)

else (Corrector step)
AF = 0.5. (62)

(Step 3)
dz*
k+1 _ k _ \k

=z =) . 63
x[d*] (%3)

(Step 4) k:=k +1 and return to (Step 1).

Since the step-size is ensured to be greater than 0.5, convergence of the sequence is
immediately seen from Lemma 1.2 of Tsuchiya and Muramatsu [25] (see also Theorem 2.6
of Monteiro et al. [15]). Specifically, we have the following lemma.

Lemma 4.1 {z*} converges to an interior point of a dual degenerate face determined by
a dual degenerate index set N. Further, if we denote by c® the limiting objective function
value, we have a constant M > 0 such that

k
ko _ N Vi
Uy = —__cTzk — oo < Me (64)

for all k.

With this lemma, the following lemma is obvious.

Lemma 4.2 We have
IXE) T IXE vk = O(Tz* = =), I(XE)2MNXKIP vkl = O((Tz* — c*)?).  (65)

Lemma 4.3 We have, for all k,
lu¥|| < 2. (66)

Proof. Applying Lemma 3.5, we have

0<1— oty = 1= 3P o ki <1 - Lty (67)
- x[u¥] = -2
from which the statement immediately follows. n
Lemma 4.4 We have
eTd* Tk
lim ——— = limeu =1. (68)

k=oo cTzk — ¢ k—o00
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Proof. From Lemma 3.1, Lemma 4.1 and Lemma 4.3, we have
lubl| < O(Ta* - ). (69)
On the other hand, from Lemma 3.2 and Lemma 4.2, we have
eTuf, =1+ O((cTzF — ¢*)?). (70)
From these relations, the lemma holds. n
Lemma 4.5 We have limg_oo |€Fd*| = 0.
Proof. Immediate from the previous lemma. n
Lemma 4.6 We have N* = N for sufficiently large k.

Proof. Due to Lemma 4.1 and Lemma 4.4, we have zf < M(cTzk —c®) < 1.1MeTd* <

\/|eTd¥| for all i € N and k sufficiently large, while z% is uniformly bounded away from zero.
The lemma is immediate from these facts. ]

Now we show global convergence of the algorithm.
Theorem 4.7 {z*} converges to an interior point of the optimal face of (1).

Proof. We assume z* is not in the interior of the optimal face and derive a contradiction.
If the condition (60) is satisfied at most finite number of iterative steps, global conver-
gence follows from Theorem 1.1 of Tsuchiya and Muramatsu [25]. Hence the condition (60)
is satisfied infinitely many times. In the case, we have a subsequence {g*}kex such that
limgex gF = 0. We have

(Tak) ()
fim e = i e = IV ()
We show that .
ook & sk
,lcler}l(uN— ik IEIG%'U,B 0. (72)

The second relation has been already obtained in the proof of Lemma 4.4. To show the first
relation, let us take an accumulation point 4y of {uk }rex, which exists due to Lemma 4.3.
Taking note of (70), (71) and the second relation of (72), we have

eTan =/INI, llanl =1, (73)

where @y = in/||in]||- It immediately follows iy = e/+y/|N|. Since eTiny = 1 holds by
Lemma 4.4, we see the first relation of (72).
Surpassing a subset of K if necessary, we may assume that

ko X,’i,sN(:c")

v = =" Vk .
2|N|e SUN = Tk g eK (74)
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Clearly, this relation implies that s > 0 for all k¥ € K. Hence, it follows from Lemma 4.1
that

e Xk sk XE||s% —

TN < cT:z:’iV—-Ncw < cﬂxlj"ﬂ é‘; < Msk, VkeK. (75)
Since the function s(z) is bounded (cf. Lemma of [26](page 118) or Proposition 2.8 of [15]),
the sequence {s*} has an accumulation point s* such that s} > 0 due to (75). It is known
that X*s* = 0 (see, e.g., Proposition 2.3(c) of [15] for a proof; we change step-size in the
iterations, but the proof there is substantially extended easily to this case) and zj > 0.
Hence, z* and s* satisfies the strictly complementarity condition. This implies that z* is a
point lying in the relative interior of the optimal face and contradicts our assumption. =

Thus, the limiting point exists in the interior of the optimal face. We provide a few more
preliminary lemmas for the superlinear convergence result.

Lemma 4.8 We have
lwi. |l = ¢* + O(cTz* — ¢). (76)

Proof. By using Theorem 3.3 and Lemma 4.2, we see
Il = O((e"a* — e)?). (77)

Further, from Lemma 3.2 and Lemma 4.2, we have

efuy, = 1+0((c"e" = ¢)?), (78)
”—u;v—” < 2N (79)

for sufﬁcieﬁtly large k. On the other hand, Lemma 3.1 and Lemma 4.1 imply that

lug. |l _ Jlus. |
ekl = llukel

Below we use Theorem 3.3. With the help of the relations obtained above, we have

= O0(cTzF - ¢). (80)

k

k k12 UN, 2
wy, + 7l = | —efl
” N. N, ” ”uknz
(use Theorem 3. 3 )
”UN.”2 T N
= lowl?_per S
17 (s ]2
1 ||us.]|? T UK,
— _ - 2 Vs + IN |
7% | ]2
1 1 |up. || T, k
- —— 4N, - —9 —1
T TN ||uk||2( k]~ 2 e~ 1)
= + | N + O((cTz* — ¢*)?) (81)

e "ll2
(use (79), (80) and (78).)
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if k is sufficiently large. From this relation and (77), we have

1
[[w*]?

2= (IN.| - ) + O(('z* = ¢)?).- (82)

llwi.,

From Lemma 4.6, we have

(6Td7vk)2 _ (erk‘)z
T A
(e"u,)?
[lw*]]?
1 (eTuk ) —1
[[w*]|? [[u¥1?
i + O = <)) (83)
(use (78) and (79).)

for sufficiently large k. From (82) and (83),
( T 7k

(B ook - ) = (") 4 0T =) (84)

IlekV.”2 =|N.| - EE

holds when k is sufficiently large. Then it easily follows that
lwk. Il = ¢* + O(cTz* — &) (85)
u

Lemma 4.9 Let {zF}rex be a subsequence of {z*} such that limkekx |wk. || = 0. Then we
have limgex v, = Vi, -

Proof. Since v}, is the unique interior point of Vj;, where wn.(vn,) = 0 holds, we are
done if we can show that every accumulation point of {vk. }rek is an interior point of VF..
By using Lemma 3.2, Theorem 3.3 and Lemma 4.2, we have

. (eTuk)? _
lim AT = |N.]. (86)

Then, making the same argument as the one when we obtained (72) from (71), we have

€

|V

(87)

ok
MR N =
Applying Lemma 3.8, we see that every limit point of {vf,} is an interior point of Vi,. =

Lemma 4.10 We have
0<6(ur) <l (88)
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Proof. 1t is enough to show the second equality. Let Z be the point obtained if we take
M = 1. Since ¢T# — ¢* > 0, we may apply Lemma 3.5, to have

Tz _
0< =27 —1-§(ub), (89)

- CT:Ek —c*
then the result is immediate. =

Now, we are ready to prove the main theorem.

Theorem 4.11 The algorithm SLA generates a sequence of the objective function values that
converges 2-step superlinearly to the optimal value with Q-order 1.3. The primal iterates z*
and the dual estimates s* converge 2-step superlinearly with the same R-order to an interior
point of the optimal face and the analytic center of the dual optimal face, respectively.

Proof. The basic idea of the algorithm is as follows; If the iterate is sufficiently close to
M., we can expect large reduction in the objective function value, hence take a long step
(~ 1); This long step may sacrifice closeness to My, but it can be recovered by taking
1/2 in the next step which tends to bring the iterates close to the My,, as is expected
from Theorem 3.9 and Theorem 3.10. The quantity g*¥ measures closeness to My, in the
algorithm, namely, we take a long step if g is sufficiently small; otherwise we use step-size
1/2. The iteration with a long step is referred to as a predictor step, and with step-size
1/2 is referred to as a corrector step. Roughly speaking, our goal is to show that we have a
predictor step at least every one of two succeeding iterations asymptotically.

First we show that a predictor step is taken infinitely many times. Suppose that we
have at most finite number of predictor steps. Let ko be the last iteration count where the
predictor step occurs. Due to Theorem 3.10,

B(oF) < O(Ta* - ') (90)
This implies that

g < k)l + Mo(c"z* — <)
(use Lemma 4.8.)

< 1.1%(vF) + Mo(cTzk = ¢*)
(use Lemma 3.6.)
S O.Q(CT:L'k _ c*)0.95
< lerlclo.Qs (91)

(use Lemma 4.4.)

if k is sufficiently large, where M, > 0 is a constant, that is, the condition for another
predictor step is satisfied again, which is a contradiction. Thus we have an infinite number
of predictor steps.

Now we analyze what occurs at each predictor and corrector step asymptotically.

(I)Analysis of each predictor step
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We surpass the subsequence {z*}k,, where K is the set consisting of all k¥ where a
predictor step is taken. The condition (60) is satisfied for all k € K;. Due to Lemma 4.8,
we have

k|| — My(cTe* — ") < g* < |eTd* P, (92)
where M is a positive constant. Since we have
lerk |0.95 S l.l(CTxk _ c*)0.95 (93)

for sufficiently large k because of Lemma 4.4, the relation (92) implies that

Ml(CTxk _ C*) + IerkIO.QS

My(cTzF —c*) + 1.1(cTzF — ¢*)*

1.2(cTzk = ¢)*%® (94)

llwi, |

IAN N IA

holds for sufficiently large £k € K;. As shown in Lemma 4.9, limkex, w}‘v. — 0 implies
limgex, vk, = vj.. Then we have, from Lemma 3.6 and (94),

(vh,) < LAk || < 14(e7" — ) (95)
for sufficiently large k € K;. Thus limkek, ¥(vy,) =0 and
Y(vp) <€ (96)

hold for sufficiently large k € Ki, where ¢ is the constant appeared in Lemma 3.7.
Next we show

1-— Mg(CT:Bk _ c~)0.95 < 6(uk) = ”'ukll!:2
x[u*]

when k € K is sufficiently large, where M, > 0 is a constant. From Lemma 3.1, Lemma 3.2
and Lemma 4.3, we have
x[w¥] = x[uf.] (98)

as k — co. Due to Lemma 4.2, we see that rf, appearing in Theorem 3.3 is bounded by

Irfk || < Ma(c'z® —¢7)? (99)

S 1+ MQ(CTIBk _ c*)0.95 (97)

when k is sufficiently large, where M3 > 0 is a constant. Applying Theorem 3.3 taking (95)
and (99) into account, we see

'U,k 'U.k uk
:sl‘k B |>|<~¢£'°||]2 = ﬁikllvl'?] = Xljpajpl = Xle * wh, + k] =1+0(c'z" — )%, (100)

from which (97) immediately follows for all k € K, sufficiently large.
With (97) and the relations

A= 1—|eTd*|?, (101)

Tot - AkgE (cf. L
—CT;I‘———E:— = 1- (C . Lemma 35), (102)
0.9(cTz* — c*)*? < |eTd*|*® (cf. Lemma 4.4), (103)
0 < 6(uf) < 1 (cf. Lemma 4.10) (104)
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which hold when k is sufficeintly large, we have

0.9(cTz* — )03 < |eTd*|*3
= 1=\
< 1= 2F6(ub)
Tkl _ o
= Ta—e
< 1—(1—|eTd* > (1 = My(c'zk — c*)°%)
(use (97).)
< 1—(1-=0.9(c'zF — )23 (1 — Ma(c'z* — ¢*)>%)
= 0.9(cTzk _ c*)o.s(l _ M2(cT:rk _ c.-)o.ss + 0.9—1M2(chk _ c*)o.ss)
< (cTa:k _ c*)0.3 (105)

for sufficiently large k¥ € K;, namely, we obtain

O.Q(CT.’Ek _ C*)1.3 < CT.’Ek+1 —c* < (CT:Bk _C*)1.3. (106)

(IT) Analysis of each corrector step

Now, we show that we cannot have two consecutive corrector steps after a sufficiently
large number of iterations. In view of (106), this gives 2-step superlinear convergence of the
objective function value. Surpass a subsequence {z*}ick, where kth iteration is predictor
step but (k + 1)st iteration is a corrector step. Obviously K; C K;. We show that at
(k 4+ 2)nd iteration the condition (60) is satisfied to take another predictor step again if
k € K, is sufficiently large. In the analysis below, we assume k € K is large enough so that
the relations obtained in (I) and

(chk _ cx.:)0.65 < (107)

¢
2
holds.

(i) Change in the objective function value in the kth iteration
Since kth iteration is a predictor step, (106) is satisfied.

(ii) Change in the objective function value in the (k + 1)st iteration
Since (k + 1)st iteration is a corrector step where A¥*! = 0.5, we have, from (104) and
(105), that

T k42 _ ox §EH1 T+l _ o

T k_ #03 ST _ T,k _ x\03
045(6.’17 —C) ScT—xk—-_c_:._(l— ) )CT:L'k—C* S(C(B —C) y (108)
or equivalently,
0.45(cTzk — ¢*)1? < (Tzk*? — ¢*) < (Ta* — )2 (109)

(iii) Change in the measure of centrality % in the kth iteration
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We apply Theorem 3.4. Due to (96), we can use Lemma 3.7. By using (101), (102),
(103), (104) and (99), #(v¥+1) is bounded from above as follows for sufficiently large k € Ko:

_ cx)l.OS)

.o . /\ké‘k
Yt = (V&) (on, — vk, = /\kék(de +Varn))ll
(use Theorem 3.4.)
* \— * Aké‘k *
= 1057 o = v = g o Aokt Vi)
. 2A’°6’° /\'°6'c .
1 . N
< 1—_—A—kn(VN.> ok, — vkl + Tyl (Vi) Aok, + Vi)
(use0<5’°<1and0<Ak<1)
S Tdklos('l’(vzv )+ 1(Va) T Aok I+ VR VA e 1D
(use 1 — AF = |etd¥|2.)
1 * - * 9 *
< oo s k) + MY+ 2Mal (V) IR —
(use (103), Lemma 3.7 and (99).)
1
<
= 0.9(cTzk — c*)03
(14(F 2k — )09 + 143 (T 2k — P M + 2Msl| (Vi) VAL NI(e" 2" — e)")
(use (95).)
(chk _c*)0.65 _ Tk
= 55 (1.4 +1.4%(Tzk = )M + 2Ms||(VX)THNIVAL (e =
< 2(chk _ C*)O.SS.

(holds when & is sufficiently large.)

(iv) Recovery in the measure of centrality ¥ in the (k + 1)st iteration
Since (110) and (107) holds, we have

( k+l)<€

In the similar manner as we obtained in (97), we have

1— M ( T .k _ -)0.65 < 6k+1 . ” k+1”2 1+M *10.65
for sufficiently large k € K3, where M4 > 0 is a constant. Then, letting
nk+1 _ 5k+1/2
- 1 — 5k+1/2’

20

(110)

(111)

(112)

(113)



we have
nk+1 S Ms(CT.'Ek _ c*)O.GS’ (114)

where M5 > 0 is a constant. Again we apply Theorem 3.4 and Lemma 3.7, and obtain

YN = (VR (RE? = vl
= (V&)™ l(vlc+1 v, = (1= ") (doft? + ViHrth) |
(Vi) (ont! = o, = o)1+ 7" HI(VR,) ™ 1le'“’lll +IVR)THIVAF R,
Myp(oxt?)? + 20" (05 + (V) VA
(apply Lemma 3.7.)
(4M + 4Ms)(c"z* — )2 4+ 2|(V,) T IVRL | Ma(eTe® — ¢)?,
(use (110), (114) and (99).)
5(M+M5)(6Txk _C*)1.3
(holds if & is sufficiently large.)
5(1‘2.15M5)(6Tzk+2 — &)
(use (109).)

k+2

IN A

IN

IN

IN

= Mg(cTz"? - "), (115)

where Mg = 5(M + M5)/0.45.

(v) Relationship between g¥*? and |eTd*+?|
From (115), we have ¥(vit?) — 0 as k € K, tends to infinity. Using Lemma 3.6 and
(115),
[wkt2|| < 1.19(vk+?) < 1.1Mg(cT2*? — ¢7) (116)

for sufficiently large k¥ € K. By using Lemma 4.8, we have
gF*? < My(T2k? — ¢, (117)
where M- is a constant. On the other hand, due to Lemma 4.4,
0.9(cTeh+? — ¢*)095 < [T dk+2|0s (118)
for sufficiently large k. Comparing (117) and (118), we see
g2 < My(TzhF+? — ¢*) < 0.9(cT 242 — *)095 < | T gh+2|09s (119)

is satisfied if ¢7z¥*t2 — ¢* is sufficiently small, i.e., k¥ € K is sufficiently large. This means
that (60) is satisfied at (k + 2)nd iteration to take another predictor step again if £ € K3 is
sufficiently large, and we are done.

(III) Superlinear convergence property of the sequence

Now, we know that every one of two consecutive steps is a predictor step asymptotically.
Then 2-step superlinear convergence of the objective function value with Q-order 1.3 is seen
from (106). R-superlinear convergence of z* with R-order 1.3 follows easily from Theorem
2.6 of [15]. Finally, we show that R-superlinear convergence of s* to the analytic center
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of the dual optimal face. Since we have (95) and (110), it is not difficult to see that vy,
converges 2-step superlinearly to vy, with R-order 1.3. By using the relation s* = (V* )‘1u"
and Theorem 3.3, we see the limiting point s* of sk is,

5" = (shr58.) = (V&) e/ IV, 0)- (120)

It is not difficult to check that this point is the analytic center of the dual optimal face
(cf. Section 4 of [15]). Due to Theorem 3.3, Lemma 4.2, Lemma 3.1, we have

s = s = (V&) un., = she (VE) ug, — 0l

= (V) Pk, — (VR) T e/ IV, (VE)up )

< (V) uk, — (VAT e/ IV, (VE) " up)l
HI(VE ) e/INL = (V) e/ INUI
Mg(cTz* — )+ Mo (vE,), (121)

IN

where Ms and My are positive constants, from which R-superlinear convergence of ||s* = s*||
with R-order 1.3 follows. u

5 Technical Lemmas

In this section we prove lemmas and theorems mentioned at Section 3.1. We use the same
notations as in Section 3.1.
We start with the proof of Lemma 3.1.

Proof of Lemma 3.1 Since § = (5v,0) € ¢+ Range(AT), we know from Lemma 2.1 that
dz(z) solves problem

maximize , 35NDPN — | X pl? (122)
subject to  Ap=10.

It follows that dzp(z) solves the problem

minimize g %||X1'§1p15||2 (123)
subject to  Appe = —Andzn(z).

Now, since Appp = —Andzn(z) has a solution dzp(z), it should have a solution pp € RIBI
such that

I8l < Cllden(2)| (124)

where C is a constant independent of z. Hence, we have

lld ()| X5 dzp()ll

| X5 pll

I X5 78l

X5 ICldzn ()l

ClIX5 NI Xw Il XN den ()]

CIXz I Xwlldn(2)Il- (125)

A IAINIA
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The lemma immediately follows from this result. m
Now we prove Lemma 3.2 and Theorem 3.3. Let us consider the LP problem

minimize ;, ¢’z

| (126)
subject to Anzy + Apzp =0, zny >0,

obtained by removing the constraint zg > 0 from (1). Due to the relation (7) and AgZg = b
for some Z on the dual degenerate face, this problem can be written in the following form:
minimize , 57,\;3:1\;

| (127)
subject to Anzn € Range(Ag), zn > 0.

An auxiliary search direction, called the homogeneous affine scaling direction, plays an im-
portant role in the proofs. The homogeneous affine scaling direction dzy(zy) is defined as
the affine scaling search direction for the problem (127) as follows:

maximize ,, 55ypn — 3| X5'pN |

(128)
subject to ANnpNn € Range(Ap).
We define in(2)
- N\Z
= . 1:
in(z) Ty (129)

In the remaining part of this section, we concentrate our efforts to prove the following
three lemmas.

Lemma 5.1 We have 3
in(z)

———— = wy(vn(z))+ e (130)
llan(z)|?
n Q"A',"'.
Lemma 5.2 We have
eTin(zn) =1 (131)
in QFT.
Lemma 5.3 We have
in(z) = un(z) + n(a), (132)

where Fy(z) = O(| X5 [P XN Pl (2)) in Q-

Befor going into their proofs, we give the proofs of Lemma 3.2 and Theorem 3.3. Lemma
3.2 is immediate from Lemma 5.2 and Lemma 5.3. We prove Theorem 3.3 below.

Proof of Theorem 3.3 In view of Lemma 5.1, it is enough to check that

un(z)  dn(z) 1 "
[u@)? ~ Jlan(z)]? +O(I(Xa) T IPIXN I o, l)- (133)
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Using Lemma 5.3, we have

un(z)  _ in(z) + Fn(z)
[|u(z)||? llu(z)||?
in(z) n(z)

= T@E " @I

in(z) |lan(@)|® | Fn(e)

T TP R TG . |
— ﬁN(x) un(z alz z) — rn(z
= @ T Ta@E PV e (134)
where
_an@N2 _ _ lan@)l lun(@)|> llun ()12
o) = | = Ton() + P @ = @~ Ton P + s

Due to Lemma 5.2 and Lemma 5.3, we have

1 :
Tan P < 2|N|, e ( Tan (@ < 2|N| + O(l(Xa) M IPI XN P llon(@))- - (136)

From these relations, we see the last term 7n/||ul|® in (134) is a quantity of O(||(XBs)

I XN llon (2))-

It is remaining to show that the term

e

N (o(2)B(z) - :
ey @8E@ = (137

is a quantity of O(J|(Xz) M I XN I llon()I)-
Because of (136), it is enough to show

a(z)B(z) = 1+ O(I(Xa) " IPI XN Pllon (2)1)- (138)
Taking the relation
Lo Bl oy (139)
Isnll = Snz

into account, we have

llin ()] 1

) = [ine] + WG S T T@I @y~ | O =)
(140)
and
z) = llun ()| _ 2 -1)12y — 2 -1 r
8(2) = bl — oI = THOUX P n2nvw((llnl>).

This completes the proof. =

Now we are going to prove the three lemmas stated above.
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Proof of Lemma 5.1 The linear space
{z|AnzNn € Range(Ap)} (142)

is rewritten as _
{z|AnzNn = 0} (143)

with an appropriate row full rank matrix An.
Then dzn(z) is written as the optimizer of

maximize ,y 5PN — 3| XN pnl|? (144)
subject to ZNpN =0,
whereas dvy(vn(z)) is written as the optimizer of
minimize o, €T Vyqn + 1|V gn]|? (115)
subject to /ZNpN =0, §§q1v =0,
where Vy = diag(vn(2)). .
It is not difficult to see that the explicit representation of dzn(z) is given by:
%N(m) = XN(I - XNA’E(AVNvagg)_IZNXN)XN§N, (146)
and hence o B B
in(z) = (I — VWAL(ANVEAL) T ANVN) V. (147)

As to dun(vn), by taking note of 5x ¢ Range(An), Anvy = 0 and 55vn = 1, we have

~ _ A'N[/ZA’T A'N[/ZEN ! ZN
—_ ‘/ ‘/ T NN N ‘I
donlon) = N(I— N(AN SN)(E%VM}‘G SNVR3N )N °

~ _ ;{NVZAT ZNVZEN - 0
_ _ T NAN N
= w0 ) (AR B ) (S

~ a
= wv—Vn ( 4% 5N)<5) (148)
where a, 3 are the solutions of the equation
ANVI%E% /ZNV]?,.'S'N ) _ 0 (149)
sRVEAL 4 Visn B 1)
By block manipulation of the matrix, we see that

= —(ANVRAR)TANVESNB, (150)
1
§%VN (I - VNgﬁ(.ZNVX,A'%)'IANVN) VNEN.
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From this result, it is easy to see that

VN (] - VNET(ZNV,?,Kﬁ)‘l/?NVN) VN3N

dun(vn) = vN — — — — . (152)
wlow) = o =0 (I = VwAR(ANVAAR)™ AnViv) Vivsw
Now substituting the definition of 4n(z), we see that
un(z
d’UN(‘UN(:I:)) = 'UN(:B) - VN(x)]_]lL_l_ (153)

|an(2)|?’
from which the desired result immediately follows. m

Next we prove Lemma 5.2 and Lemma 5.3.

Proof of Lemma 5.2 Since dzn(z) solves problem (128), it must_ satisfy the optimality
conditions for (128). That is, there exist ) = 7i(z) € R™ and dzp = dzp(z) € R Bl such that

sy — Xyldan(z) — AN = 0, (154)
Andzn(z) = —Apdzs, (155)
ALi = 0. (156)

Let # be an arbitrary point of the dual degenerate face. Then, Zy = 0 and hence ApZp = b.
Thus, if z € P we obtain

Anzny = b— Apzp = ApZp — ApTB = Ap(Zp — zB). (157)
Using this relation and relation (154), we obtain
T(Xn) ' don(z) = 55an — e § AT = shan — (88 — z8)T AR = LN (158)
where the last equality follows from relation (156). Using relations (158), we obtain

_ eT(XN)“IIrN(z)
5%:31\/

=1. (159)

The following result provides a preliminary relation between the affine scaling direction
dz(z) and the homogeneous affine scaling direction dzn(z).

Lemma 5.4 The vector (pB,pn) = (dzs(z), dzn(z) —dzn(x)) is the unique solution of the
following QP problem:
minimize (pppy) 31 X5 PBI + X5 ewl?

. (160)
subject to Apps + ANDPN = —Andzn(z).
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Proof. The vector (dzp(z), dzn(z) — dzn(z)) is clearly feasible for problem (160). To

prove that (dzp(z), dey(z) — dzn(z)) is optimal for (160), it is sufficient to show that there
exists y € R™ such that

Xg2dzp(z) — ALy = 0, (161)
X2 (dzn(z) — dzn(2)) — ARy = 0. (162)

We already know that dzy(z) and some 7 € R™ satisfy (154) and (156). Since dz(z) solves
problem (4) (with § = 5§ we know that there exists n = n(z) € R™ such that

Xzldzp(z) — ALy = 0, (163)
iv + Xjtdzn(z) — ARn = 0. (164)

Combining relations (154), (156), (163) and (164), we obtain

Xp’dep(z) — Ap(n — 1) = (165)
X3 (dzn(z) — dzn(z)) = Aj(n —7) = 0 (166)
which gives relations (161) if we define y = n — 7. "

Now, we are ready to prove Lemma 5.3. For the purpose of simplifying notation, we
define 3 _
dn(z) = X§'dzn(2). (167)

Proof of Lemma 5.3 Fix z > 0 and define 7y = dzn(z) — dzy(z). Clearly, ATy €
Range(Ag). The system Appp = —AnTn has a solution pp = 7 such that

sl < Cll7wl. (168)
Define dz(z) = dzp(z) — 5. Then, it is easy to see that
Apdzp(z) = —Andzy(2). (169)

This relation implies that (ps,pn) = (dzs(z),0) is feasible to problem (160). Using Lemma
5.4, we obtain

1X5 dzs(z)|® + | X5 (dzn(2) — dzn(2))|I* < | X5 dz ()| (170)
Hence, we obtain

ldw (2) — dn ()|

IX5" (den(z) — den(2))|?

< |1X5'dzs(z)|? - | X5 dzs(2)]?
= [X5'(dza(z) + dzp(2))|T[X5 (dza(z) — dzp(z))]
< || X5'(dzs(z) + dzs(2))l| X5 (dza(z) — dzp(z))]l.  (171)

We now bound each of the terms of the last expression in (171).
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In view of Lemma 2.1, we may replace ¢ with § in the definition (3c) of d(z). Taking
note of 35 = 0, we have

()|l < I XnSnll- (172)

Similarly, we obtain ;
ld(=)|| < I Xn3nl- (173)

Using relations Lemma 3.1, (172), (173) and (168), we obtain

I1X5 (dzs(2) + dep(@)l < |12X5'dza(2) — X5 73]

< 2||dp(e)ll + I X5 7l
< 201 X5 XN lldn (@)1 + Clln I X B
< CIXz IXnl2lldn ()l + lldn(2) = dn ()]
< 4C|IXE XN XNEN]- (174)
We also have that
|X5" (des(z) — dzs(2))ll < X5 |llldzs(z) = dzp ()|
< |IX5 sl
< CIXF Il
< C| X5 Ildzn(z) — dzn(2)ll
< X5 Xl lldn(2) = dn(=)ll- (175)

Combining relations (171), (174) and (175), we obtain
lldn(z) — dn(2)|I? < 4C? I X5 IPIX NI | XnSwlllldn (=) — dn(2)|l. (176)

Since Tz — ¢ = Eg,xN, we obtain the desired relation (132) by dividing both sides by
T /
(T2 = )lldn(z) — dn ()l w

6 Concluding Remarks

So far, we demonstrated that the affine scaling algorithm can have superlinear convergence
property with an Q(R)-order 1.3. Practical efficiency of this algorithm is not clear at this
moment, but we believe that this result has some interest in its own right, since this is an
unexpected result in view of the nature of the affine scaling algorithm as a steepest descent
method. Now we conclude this paper with some remarks for further research.

One interesting problem is to improve the order of convergence. The order 1.3 is not
tight in this paper and we can obtain a better bound even without changing major part of
this algorithm. However, if we want to come up with any convergence order less than or
equal two as many primal-dual algorithms (e.g. [29] and [13]) and Iri and Imai’s algorithm
[23] enjoy, it would be necessary to make some more devices, even if it is possible.
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This analysis can be directly applied to the long-step variant of Karmarkar’s algorithm
[11] analyzed in [16]. It should be possible to show that Karmarkar’s algorithm can enjoy
superlinear convergence as well without sacrificing its polynomial complexity by adopting
the step-size choice proposed here (with a slight modification).

Another algorithm that is related to this analysis is Todd’s low complexity algorithm
[19]. Todd’s low complexity algorithm uses the affine scaling direction with step-size shorter
than 1/2 in its predictor step (it uses the step-size 1/5 in terms of the ellipsoid in the scaled
space). As we showed in the paper, the affine scaling direction can work as a kind of corrector
step towards the central trajectory when A* < 1/2, and this may give a good explanation for
why the algorithm does not need corrector step asymptotically (cf. [20]). It looks possible
to apply our analysis to modify this algorithm so that it can have superlinear convergence
property without sacrificing good polynomial complexity. This is an interesting topic for
further research.

Appendix

The notations in this appendix has local meaning. Let A € R™*", b € R™, and consider
a bounded polyhedron 7 = {z € R"|Az = b, z > 0} whose interior is nonempty. The
analytic center is the optimal solution for the following problem:

minimize — Y ;_; ,log z;. .
subject to Az =05, = >0. (177)

The Newton direction dz(z) for the analytic center of 7 at an interior point z is given by
the optimal solution for the following problem:

minimize , fz(p)

(178)
subject to Ap =0,
where 1
folp) = TX P+ 51X, (179)
X = diag(z). The Newton iteration is written as
zt =z — dz(z), (180)
where zt is the next iterate. We define the scaled Newton direction as:
d(z) = X 'dz(z). (181)

Under these settings, we prove the following proposition. We think that this proposition
is enough to understand “(Property of the Newton direction for the analytic center)” in page
11.

Proposition Let Z be a point on the boundary of T, and let N, B be the indez sets where
Zny =0 and Zg > 0. Then we have

lim dy(z) = —e. (182)

r—T
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Proof. It is well-known that |ld(z)|| < +/n for any interior point of 7. By contradiction,
assume that (182) does not hold. Then we can take a sequence {z'} of interior points of
T, where limj—co ¥’ = Z,liMi—oo d(z') = —d and dy # e. We simply denote d' = d(z') and
dz' = dz(z'). Let

1l -
Now) = X3'pv+ 'é'”XNle'P’ (183)
| S
fB(ps) = €' X5'pe+ §||X31PBH2- (184)
Then, we have
fo(p) = Y (on) + £ (pB). (185)
Since d' converges to —d, each function has its limiting value as [ — oo. Let
N = lim fY(dey), S = [im 2 (dzp)- (186)
Since dh # €, we see 1
£ > —5INl. (187)

Now, it is easy to check (zl, (zly — &p)) is a feasible solution for (178). Hence, dzjg —
¢, — Zg) sasisfy the following equation with respect to 75:
B g P

Aptg = —Andzh + Anzy. (188)
Obviously, this equation has a solution 75 such that
1751 < C(lldaill + llzivll) < C(Vr + Dllzyll, (189)

where C is a constant determined only from A (and the partition (N, B)) and we used the
inequality

daly < [IXKlllld'll < vallzill (190)
Now, letting . _
dzy = -z, dzp= b + dzlg, (191)

we easily see that 3z is a feasible solution for (178) where
-~ 1 . —1
FY(@y) = —5IN|, fim fA(dzp) = £ (192)

The limit in the second relation holds since Zp > 0, limi—co 75 = 0 due to (189). In view of
(187), this means that for sufficiently large [, we have

fu(d2) < fu(dz)), (193)

which, however, is a contradiction to the definition of dz'. This completes the proof.
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