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Abstract

In this work we demonstrate that the Mizuno-Todd-Ye predictor-
corrector primal-dual interior-point method for linear programming
generates iteration sequences that converge to the analytic center of
the solution set.

1 Int’roduction and Preliminaries

The basic primal-dual interior-point method for linear programming was orig-
inally proposed by Kojima, Mizuno, and Yoshise [6] based on earlier work
of Megiddo [10]. This algorithm can be viewed as perturbed (centered) and
damped Newton’s method applied to the first order conditions for a par-
ticular standard form linear program. They established linear convergence
of the duality gap sequence to zero and an iteration complexity of O(nL)
for their basic algorithm. Soon after Mizuno, Todd and Ye [13] considered
a pre-ictor-corrector variant of the Kojima-Mizuno-Yoshise basic algorithm.
In their algorithm the predictor step is a damped Newton step and the cor-
rector step is a perturbed (centered) Newton step. Mizuno, Todd, and Ye
also established linear convergence of the duality gap sequence to zero; how-
ever they established a superior iteration complexity of O(y/nL) for their
predictor-corrector algorithm.

The literature now abounds with papers concerned with issues related to
primal-dual interior-point methods. Moreover, when we discuss convergence
or convergence attributes (including complexity) of one of these algorithms
we are in general discussing convergence of the duality gap (or some other
measure of residual error) to zero. This interpretation has become standard
in the area even though convergence of the duality gap sequence does not
imply convergence of the iteration sequence. The convergence of the iteration
sequence is certainly an important issue in its own right. Indeed, the earlier
works on fast (superlinear) convergence of the duality gap sequence to zero,
i.e., Zhang, Tapia, and Dennis [25], Zhang, Tapia and Potra [26], Zhang
and Tapia [22], Ye, Tapia, and Zhang [20], and McShane [9], all made the
assumption that the iteration sequence converged.

In some applications, e.g. see Charnes, Cooper, and Thrall [2], it is
important to obtain a solution that is not near the boundary of the solution
set. Hence there is significant value in designing a primal-dual interior-point



method for linear programming that converges to the analytic center of the
solution set.

Tapia, Zhang, and Ye [16] derived conditions under which the iteration
sequence generated by the Kojima-Mizuno-Yoshise primal-dual interior-point
method converged. These conditions were essentially the conditions for fast
(superlinear) convergence established by Zhang, Tapia, and Dennis [25] (see
also Zhang and Tapia [23]). Zhang and Tapia [24] derived conditions under
which this iteration sequence converged to the analytic center, assuming
that the sequence converged. However, these conditions are not completely
compatible with the Tapia-Zhang-Ye conditions for the convergence of the
iteration sequence.

Ye, Giiler, Tapia, and Zhang [19], and independently Mehrotra [12], based
on the work of Ye, Tapia, and Zhang [20], demonstrated that the Mizuno-
Todd-Ye predictor-corrector algorithm in all cases gives quadratic conver-
gence of the duality gap sequence to zero. A highlight of this contribution
was that the assumption of iteration sequence convergence was not needed
(for the first time). Soon after Zhang and Tapia [23] removed this assumption
from the Zhang-Tapia-Dennis theory for superlinear convergence. Quite re-
cently Zhang and El-Bakry [21] were able to show that a modified version of
the Mizuno-Todd-Ye predictor-corrector algorithm had the property that the
iteration sequence that it generated converged to the analytic center. Their
modified algorithm dynamically chose the steplength in the Newton predictor
step so that the corrector step would asymptotically enforce arbitrary close
proximity to the central path.

In this paper we show that the predictor-corrector algorithm as originally
stated by Mizuno, Todd, and Ye has the property that the iteration sequences
(predictor-step sequence and corrector-step sequence) it generates converge
to the analytic center of the solution set.

The paper is organized as follows. In the remainder of this section we
introduce our notation and several fundamental background notions. In Sec-
tion 2 we discuss the primal-dual Newton step and establish some properties
concerning this step. Some mathematical tools concerning projections and
scalings are derived in Section 3. Central path issues are discussed in Section
4. The Mizuno-Todd-Ye predictor-corrector algorithm and some of its prop-
erties are presented in Section 5. In Section 6 we combine all our previous
discussion and in Theorem 6.1 demonstrate that the Mizuno-Todd-Ye algo-
rithm generates sequences that converge to the analytic center of the solution
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set.

Given a vector z,d, ¢, the corresponding upper case symbol denotes as
usual the diagonal matrix X, D, ® defined by the vector.

We denote component-wise operations on vectors by the usual notations
for real numbers. Thus, given two vectors u,v of the same dimension, uv,
u/v, etc. denotes the vectors with components u;v;, u; /vi, etc. This notation
is consistent as long as component-wise operations are given precedence over
matrix operations. Note that uv = Uv and if A is a matrix, then Auv = AUv,
but in general Auv # (Au)v.

We frequently use the O(-) and Q(-) notation to express a relationship
between functions. Qur most common usage will be associated with a se-
quence {z*} of vectors and a sequence {u*} of positive real numbers. In this
case z = O(p), or z¥ = O(p*), means that there is a constant K (depen-
dent on problem data) such that for every k € IV, ||z¥|| < Kp*. Similarly,
z = Q(p), or z¥ = Q(p¥), means that there is ¢ > 0 such that for every
ke N, ||lz*|| 2 ex*.

The primal and dual linear programming problems are:

minimize ¢’z
(LP) subject to Az = b
z 2 0,
and
maximize by
(LD) subject to ATy+s = ¢
s 2 0,

where c € R*, b € R™, A € R™*". We assume that both problems have
optimal solutions, and that the sets of optimal solutions are bounded. This is
equivalent to the requirement that both feasible sets have non-empty relative
interiors.

Given any feasible primal-dual pair (%, 3), the problems can be rewritten
as

T

minimize 3§z
(LP) subject to Az = b
z 2 0,



and

minimize Z°s
(LD) subject to Bs = Bc
s > 0,

where BT is a matrix whose columns span the null space of A. Popular
choices for’ BT are an orthonormal basis for the null space of A and B = P4,
the projection matrix into the null space of A.

The feasible sets for (LP) and (LD) will be denoted respectively by P
and D. Their relative interiors will be respectively P° and D°.

The set of optimal solutions for the primal-dual pair of problems con-
stitutes a face F = (Fp, Fp) of the polyhedron of feasible solutions, where
Fp and Fp are respectively the primal and dual optimal faces. By hypoth-
esis, this face is a compact set. It is well known that this face is char-
acterized by a partition {N, B} of the set of indices {1,...,n} such that
Fp={z€P|zy=0}and Fp = {s € D|sp = 0}. In the relative interior
of the face, zg > 0 and sy > 0.

We study algorithms that converge to the optimal face. Our main concern
is with the behaviour of the iterates as they approach the optimal face. We
want this to happen in such a manner that all limit points are in the relative
interior of the optimal face. We shall see later on how this condition can be
enforced.

Given p > 0, p € IR, the pair (z,s) of feasible primal and dual solutions
is the central point (z(u),s(x)) associated with u if and only if

zs = pe,

where e stands for the vector of all ones, with dimension given by the context.
The central path is the curve in JR*" defined on the positive reals by

po— (2(p), s(B))-

Thus (z, s) is a central point if and only if

zs = pe

Az = b

Bs = Be (1)
z,s 2 0,

(9]



where the columns of BT span the null space of A.
The first-order or Karush-Kuhn-Tucker (KKT) conditions for problem

(LP) (or (LD)) are

zs = 0

Az = b
ATy+s = ¢
z,s > 0.

The perturbed KKT conditions, for perturbation parameter y > 0, are

rs = pe
Az = b
ATy+s = ¢ (2)
z,s >0.

Observe that the perturbed KKT conditions are merely the defining re-
lations for the central path and (2) can equivalently be written as (1). Es-
sentially all primal-dual interior-point methods for problem (LP) consist of
some variant of the damped Newton’s method applied to the perturbed KKT
conditions (1) or (2). -

2 Newton Steps

When dealing with an iterative procedure we will use the superscript 0 to
denote the previous iterate, no superscript to denote the current iterate, a
subscript of + to denote the subsequent iterate. In two-step algorithms like
the Mizuno-Todd-Ye algorithm described in Section 4 this notation will apply
to the current iterate, the intermediate iterate, and the final iterate.

Given a strictly feasible pair (z,s), we shall define three parameters:

u(z,s) = sTz/n,
w(z,s) = sz/pz,s),
B(z,s) = 1\w(z,s).
The first two parameters will be extensively studied below. The parameter

¢ has no special meaning, and is introduced because it will simplify many
formulas in the text. When no confusion can arise, we drop the reference to



the variables, and continue to use other symbols in a consistent manner. For
example @ = w(Z, 3) or ¢° = ¢(z°, s°).

Given a strictly feasible pair (z, s), we are interested in finding (z*,s%) =
(z,8) + (u,v) that solves (1) or (2) with 4 = yu(z,s), where v € [0,1]. The
Newton equation for (1) at (z,s) with u replaced by yu can be written

Tv+su = —zs+yu(z,s)e
u € N(A) 3)
v € R(AT).

where as usual AV denotes null space and R denotes range space. The solution
of (3) is obtained by scaling the equations. Define the scaling matrix by

d = \/z/s, D = diag(dy, ..., ds), and the scaling
(%,3) = (d"'z,ds).
The relationship between d and the vector ¢ defined above is

PR ANV (4)

s JVE s
When applied to the original pair (z,s), the resulting scaled pair will be

(#,3) = (Vzs,Vzs). (3)

After scaling, the system (3) becomes
Fo+30 = —I5+pe
@ € N(AD) (6)
7 € R(DAT)

Since > 0, the first equation can be multiplied by Z7!, leading to

b+u=—5+yuz",
and the solution is simply the orthogonal decomposition of the vector —3 +
yuz~! along N(AD) and its orthogonal complement. Let P4p be the pro-
jection matrix into N (AD), and Pap = I — Pap:

[~ ]

= -{DAD("g + 7/‘5-1) (7)
= Pap(—3+ypz™").
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The Newton step in original coordinates is given by v =d™'0 and u = da.
A convenient formulation is obtained by substituting d = —}—Ez¢ andd™! =

Ol

1
W
u = zdPaxed (—ij + ‘76)

v = =Puxed (—ﬁ + ‘76)
¢ [z
We now describe two alternative ways of writing the expression for u (the
expressions for v are similar).
Using the definition of w,

u = —z¢Paxad(w — 7€), (9)

Observing the symmetrical formulation of (LD), we see that for any two
feasible dual slacks s!,s%, Papds' = P4pds® = Papdc. In particular, we can
choose a fixed dual slack and use it in (8). We shall choose s, the analytic

center of the dual optimal face, and write

(8)

u = —dPspd(s” —ypz™?).
By the same process as above,

Ts

u=—z¢Paxod (—l;: - “le) . (10)

The original pair satisfies zTs = np, from the definition of p = u(z, s).
The new duality gap is
(z+u)(s+v) = 2Ts+zTv+sTu+vu
But vTu = 0, and multiplying the first equation in (3) by eT, we get
zTs + zTv+ sTu= nyy.

It follows that
(z + u)T(s +v) = nyp, (11)
or still,
p(z*,st) = u(z, ).

8



Two special cases of problem (3) have been studied extensively in the
literature. They are
(1) v = 0: The resulting directions (hl,Al) are called the primal-dual affine
scaling directions.
(ii) v = 1: The resulting directions (h2,h2) are called the constant gap
centering directions.

The first equation of the Newton system (3) can be rewritten as

zu+ su=—(1—7)zs + y(—zs + pe). (12)

This is a combination of the solutions of two systems with"

zul +su! = -zs
zu? +su? = —zs+ pe, (13)
where p = p(z,s). The complete solution is given by
(u,v) = (1 —7)(u!,v") + v(u?,v?). (14)

It is quite common to use these two directions separately, possibly as a way
to simplify the analysis. This is done by the predictor-corrector algorithms
that we study in this paper.

3 Mathematical Tools

In this section we state some lemmas on projections and scalings that will
be useful in the analysis below.

3.1 Properties of Scaled Projections

In this subsection we slightly extend results published by Megiddo and Shub
[lllbonsider the primal feasible set for (LP),

P={z€ R"| Az =b,z > 0}
and the map

de R:,d#0;p € R* — h(d,p) = Papp, (15)

9



where P4p represents the projection matrix into the null space of AD.

We study the behaviour of this map when d > 0,d — d and p — j, where
d>0,d#0,and p € R".

Given d, we define the index sets B = {i = 1,...,n | di > 0} and -
N={i=1,...,n]| d; = 0}. The variables with indices in B are called
the large variables, and the other small variables. It is difficult to describe
the behaviour of the small variables hn(d, p) of the scaled projection defined
above; the theory of Megiddo and Shub concerns the large variables kp(d, p).
We shall describe these results conveniently extended to fit our needs.

By definition of projection, h(d, p) solves the problem

minimize ||hy — pn|* + [|h5 — pB|°

subject to AgpDphg = —ANnDnhn. (16)
Assume now that hn(d, p) is given. Then hp(d, p) solves
minimize ||hg — pBl| (17)
subject to ApDphp = —AnDnhn(d, p).

We shall study the point to set mapping

de R',pe R~ 0(d,p) = {hs € R®'| ApDphp = —AnDnhn(d, p)};
) (18)
near a pair d,p as described above. Note that at this point, 0(d,p) =
N(AgDpB).

Lemma 3.1 The map defined above is continuous at (d, p)

Proof.
(i) Upper semi-continuity: consider sequences df — d, p* — p and (hf)
such that AgD5h% = —AnDihn(d*, p*) and (k%) converges to some point

hg. We must prove that ApDghg = 0.

The sequence hn(d*, p*) is bounded, because dy — 0 and hn(d*, pF)|| <
llo* |, since h(d*, p*) is a projection. Hence ApD%h% — 0 and consequently
ApDghg = 0, completing this part of the proof.

(ii) Lower semi-continuity: Consider now an arbitrary point kg € N (ApDp).
Given arbitrary feasible sequences d* — d, p* — p, we must construct (h%)
such that ABDgth = —ANDlﬁ,hN(dk,pk) and hg — I-ZB.

10



Consider arbitrary sequences & — d, p* — p such that d* > 0 for
k=1,2,... and define k%, = hn(d*,p¥). For each k let k% be a minimum-

norm solution of AgD5hg = —AnDXh%. Then A% — 0, since DX h% — 0.
Construct L 3

hg = (Dg)-lDBhB + hg (19) .
Then

" ApD%hk = ApDphp + ApDihY = —ANDYRY,

since kp € N(ApDg). Thus hY € 6(d*,p*). Since Df — Dp > 0 and
h% — 0, it follows that k% — hp, completing the proof. |

Lemma 3.2 Consider the map d, p — h(d, p) and the points d and p defined
above. Then when d € RY, d — d and p — p,

(1) hB(d’ p) - PABDBP-B'

(i) If pv = 0 then hy(d,p) — 0.

Proof.

(i) The map d, p — min{||hs —psll | ks € 8(d, p)} is continuous at d,pas
a consequence of the continuity of the map 8 (see for example Hogan [4]). It
follows that ||hg(d, p) — p8l| — \ks — psll, where hp = hp(d,p) = Payp,PB-
Since kg is the unique minimizer of ||hg — pg|| in 6(d, p), we must have (i).

(ii) Here we follow a similar proof in Megiddo and Shub [L1]. Assume
that gy = 0 and by contradiction that for some sequence d* —d, p* — p we

have hn(d¥, p¥) — hy # 0. Define € = ||hy]||* > 0. We have:
1h(d*, p*) = p*|I? = lIhs(d*, p*) — P3II* + llhn(d*, p¥) = oilI*.
By (i), hp(d*, p*) — hp, where hg = P4_p,ps. For sufficiently large &,
Iks(d*, p*) — p3lI* < s — B5II* + €/2. (20)
Now construct the following sequence:
ht = (D%)'Dghs , hn=0.

It follows that k% — hp, and h* € N'(ADF), since AD*h* = ApDghp = 0.
Comparing this with (20), for k sufficiently large ||h* — p¥|| < ||h(d*, p*) -

p*|| and k* € N(ADF), contradicting the definition of h(d*,p*) = Pypsp*

and completing the proof. i
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3.2 Shifted Scalings

This subsection contains some useful consequences of scalings on projections
and norms. The first lemma concerns projections and slightly shifted scalings.

Lemma 3.3 Let ¢ € R™ be such that ||g—e|l,, < a, where a € (0,0.25),
and consider the projections h = Pap, h = qPagqp. Then |k = R < 3allhl|-

Proof. Note that since p = h + ATw for some w € IR™,
gp = qh + (AQ)Tw

and thus )
Piqqp = Paqqh

It follows that )
g 'h = Paqqh

On the other h:;nd, by definition of projection,
gh = Paqh +y,
where y € R(QAT). Merging the last expressions,
gh =g 'h+y,

where ¢~'h € N(AQ) and y € R(QAT). Subtracting q-'h € N(AQ) from
both sides, ) )
(' —qh=q'(h—h)+y,

and from the orthogonality of the right-hand side terms,
(g™ = Il > llg™*(h = B)I.

_Now use the following facts: ||(h — Bl < llglleollg™t (A — )| and ||(¢~! —
@&l < 1I(g7* = g)llel|Bl|. Combining these three expressions leads to

1A = k|| < llgllollg™ = alloolI]l-

But ||q]leollg™ = glleo < (1 + ) (—‘—- —-(1- a)) < 3a which is easily verified

l-a

for a € (0,0.25), completing the proof. |

12
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Our second lemma concerns scaled norms. Given a vector z € IR}, the
following map defines a norm:

h € R* — ||k]l: = ||z A.

This is the Euclidean norm of the vector corresponding to h after a scaling
h = z-1h. This norm is very usual in interior point methods, because it
characterizes the proximity from a point to a central point in the following
sense: let z(u) be the primal central point associated with the parameter
p>0. If ]z — z(u)]l- < 8§ <1 then a Newton centering iteration from z
produces an efficient centering step (which is usually imprecisely stated as
being in the region of quadratic convergence of Newton’s method).

The following lemma relates the scaled norms for different reference points.

Lemma 3.4 Considerz,y € RY,, h € R*, a € (0,1). If either ||z —y||2* <
a or ||z —ylI° < o, then

1
< —
Ialle < ——IIAll,
Proof. To begin with
h

T

yh
Ty

y

T

<

IRl =

[I2l5-

=]

If |z — || < a, then |(z; — yi)/zi|l < @, or 1 —yi/z; 2 a, which implies
yi/zi < 14+a < 1/(1—a). In the other case, |(z;—y:)/yi| < o, or [y 2 1-q,
which implies y;/z; < 1/(1 — @), completing the proof. |

4 Trajectories, Centrality and Proximity

The primal-dual central path defined above crosses the set of interior points
and ends at a point (z*,s") in the relative interior of the optimal face. This
point is the analytic center of the face. See problem (24) for an equivalent
characterization.

In this section we study (primal-dual) proximity criteria that describe
how far a pair (z, s) is from the primal-dual central path, then study (primal)
proximity criteria to evaluate how far a point in the optimal face is from its
analytic center.

13



4.1 Primal-Dual Proximity

Given an interior pair (z,s) and a parameter u > 0 (not necessarily equal to
p(z, s)), the proximity of (z, s) in relation to (z(p),s(p)) is measured by

——e

§(z, 5, 1) = l“;f . (21)

When g = p(z, s), this is the proximity with relation to the central path,

TS

u(z,s)

Let us compute the proximity at the pair (zt,s*) resulting from the
" Newton step described in (3), with p = u(z,s). We have

§(z,s) =

= |lw(z,s) —ell. | (22)

— €

ztst = (z+u)(s+v)
= zs+ IV +su+uv
= ~ype+ uv.

But p(z*+,st) = yu from (11), and thus

ztst .= uv
p(zt,st)  wulzt,st)

or
uv uv

TH p(zt,st)
A fundamental result on the effect of the Newton step on proximity is given

in the following lemma. This result is due to Mizuno, Todd, and Ye and can
be found in [13].

§(z*,s) =

. (23)

Lemma 4.1 Consider an interior pair (z,$) and a parameter p* > 0. If
§(x,s,ut) =86 <0.5, then §(z+,s*) < §2/V/2.

The primal-dual affine-scaling directions are the solution of (3) with v =

0. These directions associated with each interior feasible pair (z,s) generate
a continuous vector field, which extends continuously to the boundary.

14



This vector field was thoroughly studied by Adler and Monteiro (1], who
describe the trajectories generated by it and the derivatives of these trajec-
tories. The trajectories are parameterized bu y, and there is one trajectory
passing through each interior pair (z, s).

For each interior pair (z,s), we defined the vector w(z,s) = zs/pu(z,s).
Each trajectory is associated with this vector in the following two ways:

(i) The trajectory associated with w > 0 is composed of the pairs (z, s)

such that
Ts

=w
p(z,s)
In particular, the central path is the trajectory associated with w = e.

(ii) The trajectory associated with w > 0 is composed of the minimizer
pairs of the parameterized primal-dual penalized function

n n
zTs—pd wilnz; —p)_ wilns;.

i=1 =1

Each trajectory is composed of interior points, and ends in the relative inte-
rior of the optimal face.

;From here on, we assume that the vectors w(z, s) are always in a compact
set defined by
w(z,s) —el| < e,

where a € (0,1).

When the weight vectors w are in a compact set bounded away from the
boundary of the positive orthant, the trajectories end in the relative interior
of the optimal face. Specifically at the minimizers of the parameterized
barrier function,

z*(w) = argmin {— ) wilnz;|z € Fp}
i€B

s*(w) = argmin {—)_ w;lns;|z € Fp}.
iEN

In particular, the central path ends at the analytic center of the optimal face

(z%,57) = (z*(e), s"(e))-
The sets of end points of all trajectories for such weights w are sets of
minimizers of parameterized continuously differentiable functions, and are

15



compact. It is easy to see that the nonzero variables are all bounded away
from zero, because the compact sets are in the relative interior of the optimal
faces. This is also clear from the fact that the barrier functions become
arbitrarily large as the boundaries of the faces are approached.

Similarly, all the trajectories in the bundle associated with this compact
set of parameter vectors are in the relative interior of the feasible set, and
bounded away from the non-optimal faces.

4.2 Primal Proximity

We shall summarize some facts about the analytic center of a polytope, and
derive properties of descent methods for finding the center.
Consider the primal centering problem

minimize p(z) = —X,In(z;)
subject to Az = b (24)
z > 0,

where b € R™, A € R™*", such that S, the closure of the feasible set is
compact with a nonempty set S° of interior points. The analytic center of §
is the unique optimal solution of (24),

x = argmin p(z).
. z€S°

The -analytic center was defined by Sonnevend [15]; see also McLinden [8].
Its properties and the description of the Newton primal centering algorithm
(SSD algorithm) are described in Gonzaga [3]. The following facts come from
this latter reference.

Given a point z € S°, the Newton centering direction from z is given by
h(z) = zh(z), where

h(z) = —Paxe

is the centering direction after scaling the problem so that the point z is
taken to e.
The (primal) proximity of z in relation to x, defined above, is given by

§(z) = IIh()ll = I1A(2)ll=, (25)

where || - || is the norm relative to z.

16



The following important results are described for example in [3]. Let
z € S° be such that §(z) = § < 1, then

1-§ (26)

The first result above gives an upper bound for ||z — x||z. We shall also need
a lower bound for this distance, and this will be provided by the next lemma.

Lemma 4.2 If§(z) =6 < 0.5, then

1-26
- > =26
Iz = xlls 2 756

In particular, if § < 0.09, then ||z — X"z € [0.96,1.16].

Proof. Let z+ = z + h(z). We know that ||k(z)||- = §, and that §(z*) <
§2. 1t follows from (26) that

2

”$+ - X"l"" S _ 52,
and hence N 5
+ < z —_
l=* = xle < | 5| =
But z+/z = e + h(z)/z, and thus
+
all IEPSTN LGl PN
T | T
It follows that
+ <(1+49) & = &
”.’E X”t_( 1_52-1_6'
Finally,
lz=xll-: = lle—z*+2z% = xl:
> |z -zt = llz* = xllz
. 52
> §5—
2§ 1-6
1-26
= T3 6.

17



The numeric values are obtained by substitution, completing the proof. 1§
This lemma shows that when the proximity measure is small, it is indeed a
good approximation to the actual scaled distance to the center. The values
§ < 0.09 will be quite reasonable for our analysis below.

One final technical result also will be useful below. It reproduces the
bounds above using the norm relative to x.

Lemma 4.3 If§(z) =6 <0.1, then forz*t =z + h(z),

let —xllx < 1.088
lz —xllx = 0.756.

Proof.

(From (26), ||+ — xllz+ < 82/(1 — 6%), since é(z*) < §2. Using Lemma
3.4 with a = 62/(1 — 62), we obtain ||+ — x|lx < 8*/(1 - 262). The first
result in the lemma follows from this with § = 0.1.

;From Lemma 4.2, ||z — x||- > 6(1 —26)/(1 - §). From (26), ||z — xll= <

1/(1 — §). Using Lemma 3.4 with a = 1/(1 — §), we get lz = xllx = (1 =
a)||z = x|l- Manipulating these expressions, we arrive at

1-26\’
- x 2 (1F) &

Substituting § = 0.1, we obtain the second result, therefore completing the
proof. |

The primal centering direction h(z) is the Newton direction for p(:) from
z, and it coincides with the steepest descent direction for z = e, i.e., h(z) is
the Cauchy direction from e. To see this notice that h(z) = —zPaxzVp(z) =
zPsxzz~t.

Other scalings give rise to descent directions that are in general not as
efficient as this one. We shall apply Lemma 3.3 to study the effect of slightly
shifted scalings on the descent directions.

Lemma 4.4 Let ¢ € IR" be such that |[g—e¢| < a € (0,0.25), define for
z € P°, h(z) = zPaxe and h(z,q) = zqPaxqq. Then

|h(z,q) — h(z)]lz < 3a.

Proof. By Lemma 3.3, ||Paxe — ¢Paxqqll < 3c. But this is by definition
equal to ||k(z) — k(z, ¢)||z, completing the proof. |
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5 The Mizuno-Todd-Ye Algorithm

The MTY algorithm is a path-following predictor-corrector algorithm. All
activity is restricted to a region near the central path, i.e., all points (z,s)
generated by the algorithm satisfy

IS
u(zs)

§(z,s) = ||lw(z,s) —¢|| = —ell <a,

where a € (0,0.5).

Algorithm 5.1 Given a < 0.3, (:z:ol,sol) such that 6(:1:01,301) < a?/V?2,
k=1. A

REPEAT

k k
0._ 0 o0._0F o0._ (20 (0
= g0, §0:= s, uf := pu(2° s°).

T
Predictor: Compute the (affine-scaling) step u%, %, z := 2% + %, s :=
s 4 v such that
2900 + s%u° = —(1 — 4)z%°, u® € N(4), v° € R(AT),
where « is such that (z, s) is feasible and é(z,s) = c.

Corrector: Set p := u(z,s). Compute the (centering) step (u,v) such
that
zv+su = —zs+ pe, u€ N(A),ve R(AT),
and set zt ==z + u, st ;== s+ v.

SubsecLuent iterate:
1 k+1
05t = ¥, SO = st

k:=k+1

UNTIL convergence.

We now list some properties of this algorithm. Some proofs are presented
here for the sake of completeness. The proofs that are not given here can
be found in Mizuno, Todd, and Ye [13]. Mizuno, Todd, and Ye proved that
the algorithm is well defined in the sense that the centering step produces
(z+,s%) such that §(z*,s%) < a?/V2.

Bounds on the quantities appearing in the algorithm are given in the lem-
mas below. Let {B, N} be the optimal partition for the linear programming
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problem, i.e., the index partition associated with the optimal face. As we
described in Subsection 4.1, the central path ends at the analytic center of
the optimal face, and the pairs (z,s) such that lw(z,s) — el < e consti-
tute a neighborhood of the central path bounded away from the non-optimal
faces of the feasible polyhedron and correspond to a bundle of w-weighted
affine-scaling trajectories. For a small, the bundle of trajectories ends in a
compact neighborhood of the analytic center of the optimal face, and so all
the sequences generated by the algorithm are in compact sets.

Hence, the algorithm behaves as follows. As the optimal face is ap-
proached (and this happens in polynomial time), z& — 0, s§ — 0 and
zk, sk stay in small neighborhoods of =3, sk, the analytic centers of the
primal and dual optimal faces.

Lemma 5.1 Consider quantities generated by the MTY algorithm. Then

(i) z~=0(), ss=0(), 2% =0, sp=0()
(i)  u® =0, v°=O0(°)
(i) un =O0(y), v =0()

Proof. (i): Since (z, s) approaches a compact set contained in the relative
interior of the optimal face depending on the problem data, sy = Q(1).
At all points visited by the algorithm, |lw(z,s) — || < a € (0,0.5), and
consequently z;s; < p(z,s)(1 + a). It follows that fori=1,...,n,

2 <(1+a) Q—’(‘ﬁ=0(p).

The proof for all four equalities is similar.
(ii) Using (9) and (10) with v = 0, we have

w0 = —z°¢%h,

where h can be represented by the two equivalent expressions:

h = Pyxog0¢’uw’, (27)
h = PAXO¢°¢°$%‘5, (28)
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where s* will be chosen as an arbitrary optimal dual slack, with s = 0 and
sy = 0(1). )
{From (27), h = O(1) and consequently, since z% = O(u°),

wfy = shid¥hn = O(k)

We must prove that uy = O(u®). Using the definition of projection and
problem (17), kg must solve the problem derived from (28) (with pg = 0):

minimize | Ag|| )
subject to ABXg(I)%hB = "ANXR/@?VhN-

The right-hand side of the constraint satisfies Ay X% ®%hn = O(u°), since
~ 23 = O(p°) by (i). Choosing any non-singular subsystem, we can compute
a solution hp = O(u°), since 23 = Q(1) and ¢ = Q(1). It follows that
%5l < lIksll = O(u°), proving that u} = —z%6%hs = O(x°). The proof
for v° is similar.

(iii) Now for the corrector step. From (9),

u=—z¢Paxed(w —e)

As in the proof of (ii), ¢(w — e) = O(1) and zx = O(p), resulting in uy =
O(u) and similarly sg = O(u), completing the proof. |

The lemma above shows that all the variations in (z,s) due to a MTY
step are bounded by O(p), with exception of up and vy. These are the
variations in the large variables due to the corrector step.

6 Convergence of the MTY Algorithm

In this section we establish the main result of the paper: the points generated
by the MTY algorithm always converge to the analytic center of the optimal
face. We shall assume that the optimal face is not a single point. Our
convergence proofs will be carried out for primal solutions. The symmetric
results for dual slacks can always be proved by the same methods using the
complete symmetry of conditions (1).

We begin by studying the map that results from the algorithm. Towards
this end we describe the relationship between primal-dual pairs (z°, s°) and
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the result (z+,s*) of a MTY step originating at (z°,s°%). It is essential to
keep in mind that at this point we are not studying sequences generated by
the algorithm. We derive a lemma (a main result of the paper) on the bound-
ary behaviour of the algorithmic map for sequences with strong convergence
properties; a second lemma extends the result to nonconvergent sequences,
and provides the main convergence property of the algorithmic map*. We
then consider a sequence generated by the algorithm, and prove in Theorem
6.3 that it converges to the analytic center of the optimal face.

Consider a sequence of interior primal-dual pairs (:z:°k,s°k), and all the
quantities that would be generated by applying one MTY step from each of
these points, namely (u®, o), (¥, s¥), (u*,vF), (u"’k, vth), 1O pk = R,
w®, wk, ¢°%, ¢k. Again, we stress the fact that presently (z°,s°)%*1 is not
necessarily related to (z*,s*)¥. Our main interest is in measuring how the
large variables approach zj. A good metric for measuring this is given by
the norm || - ||z5,, defined on IR'Bl. To simplify notation, we write

-l =11 llg-

Lemma 6.1 Let (:rok,sok) be such that 6(x°k,s°k) < 0.1, and assume that
#ok — 0, (J:ok,s°k) — (z,3), w® — @°, w* — w. Then
(i): If Z = z~, then u* — 0 and o+t =z

(ii): If  # z*, then for sufficiently large k,

k = k -
ek — <3l < 0.8llz5 — z5ll.-

Proof. The proof consists of two technical parts and a conclusion. In
the first part we analyse the boundary behaviour of the MTY steps; in the
second part we describe the centering direction from Z in the optimal face.
Finally, the conclusion is reached from the comparison of the results of the
first two parts.

We begin by considering MTY steps. From Lemma 5.1, w%* — 0 and
consequently z¥ — Z. ;From the same lemma, uk, — 0. We must describe
the behaviour of u%. ;From (10),

k .=
. xS
Uk = _$k¢kPAxkok¢k (—#k -— e) .

*The reader might consider Lemma 6.2 before going through the technical proof of
Lemma 6.1.

(3]
(3]



Using Lemma 3.2 with s3 = 0, 2y — 25 > 0, ¢} — ¢5 > 0,
ub — ip = Zp¢BPax,8,9B- (29)
Since z+* = 2% + u% + u* and u® =0, uk, = 0,

k - - -
gt -zt =3 +14,
where uy = 0.

Our attention now goes to centering in the optimal fa,ce Consider the
following primal centering direction associated with each (.1: , °k)

[ 40k
BE = _zokPAxok (—zpo—; - e) ) (30)

where s is an a.rbitrary dual slack (remember that dPspds = dP4pds’ for
any dual slacks s, s’ and any scaling d > 0. )
_ With s = °k, we see that h* = —z° PAxok( o* _ ). It follows that
hy =0 and

1A¥1] e < flw® = el = 6(a%",s™) < 0.1.

With s = s*, we use Lemma 3.2 with s = 0 and conclude that h* — B,
where ) B _
hn =0 , hg=12ZIpPsy2.eB , llhBllzs <O0.1.

We conclude that % is the Newton centering direction in the optimal face,
and that the proximity measure of Z is

5(53) = "715"5-8 <0.1.
Let y = % + h be the result of a primal centering step. Then by Lemma 4.3,

|lzg — z3ll. = 0.756(ZB)

lys — z3ll- < 1.056%(Zm). (31)

Our attention now turns to shifted scaling. We study the effect of the
direction iig defined in (29), when it is used for primal centering instead of
h. The quantity

ip = Zp¢BPa%y859B
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corresponds to hp by way of a shifted scaling. Here ¢ = 1/\/w, as usual.
Since ||@ — || < 0.1, it follows that for ¢ = 1,...,n w; € [0.9,1.1] and it is
trivial to check that ¢; € [0.9,1.1]. Hence “cz-S - e“ < 0.1, and by Lemma
3.3, =

ks — @sllzp < 0.3|lhBllzs = 0.36(Z5). (32)

If z = z*, then 6(Zp) = 0 and it follows that hg = ip = 0. This proves part
(i) of the lemma. Assume from here on that lzs — =3l # 0.
We need (32) in the norm || - ||.. Using (26), define

- §(zB) 0.1
= _ e € ——t < —,
a=|zg - z5llzs < T—4(z5) = 09

Using Lemma 3.4,

= 1
ks - asl. < §

— a||713 — uBllzp

Merging this and (32) with 1/(1 — ) < 1.2 we obtain
|\hs — tgll. < 0.46(ZB)- (33)

And now we compare the points yg = Zp + hg and z} = Zp + iB, using
(31). Specifically

lys — z5ll- + 125 — ysll-
lys — z3ll. + llas = Rsll-
1.056%(zg) + 0.46(ZB)
0.515(5:3).

125 — =5l

INIA I IA

Using (31), we conclude that

=+ _ .=
“fB zf”- < 0.51 S 0.7.
|z — zgll. — 0.75

. . . . - k —
Finally, we conclude from this expression that since 2% — 7 and 2+ — i,
for sufficiently large k,

k . k -
Izt — z5ll. < 08llzs — 25l
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completing the proof. |

The lemma above studies convergent sequences (a:ok,s"k). The next
lemma shows that the reduction in distance from z* can be extended uni-
formly for nonconvergent sequences.

Lemma 6.2 Let (z°k,s°k) be such that 5(:c°k, %) < 0.1 and 1 = 0. Then'
there exists a sequence of positive reals €* such that ¥ — 0 and for sufficiently
large k, \
- k =
lz% — z5ll. < max{¢*,0.8||z — z5ll.}-

Proof. Assume by contradiction that there exists ¢ > 0 and a subsequence
of (%, %) with indices K° C IV such that for k € K°,

k - k = k -
le3 — <5l >¢ , llzh — 25l > 08]lz5 — <5 (34)

ko ok k . .
The sequences (z°,5% ), (w®"), (w*) are all in compact sets by construction,
and thus there must exist a subsequence with indices K C K° such that these
three sequences are convergent in K.

In particular, (z}k),c does not converge to zg, due to (34). Applying
Lemma 6.1(i), we see that (x°k),c does not converge to z*, and thus (ii) must
hold for this subsequence. This contradicts (34), completing the proof. §

Finally we are ready to establish our convegence result.

Theorem 6.3 Consider sequences (m°k,s°k), (z*, s*) generated by the MTY
algorithm. Then (:c°k,s°k) — (z*,s*) and (z*,s*) — (z7,s"), where (z*,s%)
is the analytic center of the solution set.

Proof. We prove the result for the primal variables. The proof for the
dual slacks is similar. Also, it is enough to prove that 2% o z*, since
ok ok
u” =0(p’) —0.
Assume by contradiction that the sequence {zok} has an accumulation
point Z # z*. Since Iy = =} = 0, we have

o = ||zp — 3]l > 0.

Let {€*} be the sequence guaranteed by Lemma 6.2, and let k be such that
the conclusions of that lemma are valid for £ > k. Choose an index j > k
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such that ||z%’ — z3]l. < 1.1, and such that for &k 2 j, € < 0.50. This
index exists because e¥ — 0 and Zp is an accumulation point of {x%k}.

We prove by induction that for any k > j, IIz%k —z3ll. < 0.90.
(a) |23’ = z3]l. < 0.8 x 1.1 < 0.9¢ by Lemma 6.2.
(b) Assume that for an index k > j, ||:c°Bk — z3|l. < 0.90. Then by Lemma
6.2, ||z —zpll. < max{e",O.S“m%k - z3|l.} < 0.90.

(a) and (b) prove that for all k > j, ||a:%k — zg]|. < 0.90, contradicting

the fact that o is an accumulation point of the sequence (Ila:%k - z%|l.), and
completing the proof.
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