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Dynamics simulations of molecular systems are notoriously computationally intensive. Using parallel com-
puters for these simulations is important for reducing their turnaround time. In this article we describe a
parallelization of the simulation program CHARMM for the Intel iPSC:860, a distributed memory multipro-
cessor. In the parallelization, the computational work is partitioned among the processors for core calcula-
tions including the calculation of forces, the integration of equations of motion, the correction of atomic
coordinates by constraint, and the generagjon and update of data structures used to compute nonbonded
interactions. Processors coordinate their activity using synchronous communication to exchange data val-
ues. Key data structures used are partitioned among the processors in nearly equal pieces, reducing the
memory requirement per node and making it possible to simulate larger molecular systems. We examine the
effectiveness of the parallelization in the context of a case study of a realistic molecular system. While
effective speedup was achieved for many of the dynamics calculations, other calculations fared less well
due to growing communication costs for exchanging data among processors. The strategies we used are
applicable to parallelization of similar molecular mechanics and dynamics programs for distributed memory

multiprocessors. © 1992 by John Wiley & Sons, Inc.

INTRODUCTION

Simulation methods for many-particle systems
have wide use in theoretical chemistry from mate-
rial science to rational drug design and protein en-
gineering. Computer simulation often comple-
ments analytic theory and experimental methods,
and can probe phenomena where other methods
have fundamental or technical difficulties. The po-
tential of simulation methods seems only to be lim-
ited by the capacity of computers and the quality
of the models employed.

Molecular dynamics simulations provide unique
information about molecular systems. By following
atomic movements in a simulation, actions of mole-
cules can readily be visualized and analyzed. For
example, the hinged ‘‘lid”’ motions of some en-
zymes have been suggested by molecular dynamics
simulations to relate to reactivity.! More impor-
tantly, microscopic trajectories within the phase
space of a system implied by a statistical ensemble
can be obtained by molecular dynamics simulation;
such trajectories yield the macroscopic properties

« Author to whom all correspondence should be addressed.

of the system. This capacity, for example, aids in
the interpretation of the stability of proteins and
the specificity and catalytic capacity of enzymes.2
Molecular dynamics also finds usage in theoretical
issues such as the existence of multiple energy
minima in proteins.?

Protein dynamics simulations are notoriously
computationally intensive. The large computa-
tional requirements of such simulations are pri-
marily due to three features. First, simulations
typically consist of thousands of protein atoms,
often together with even more solvent atoms. Sec-
ond, accurate dynamics simulation requires mul-
tiple types of interactions; among them the long-
ranged nonbonded interactions are particularly
time-consuming. Third, as a high correlation exists
between neighboring atoms, the trajectory of a
protein diffuses slowly in phase space, making it
difficult to achieve adequate sampling in this sta-
tistical ensemble. Even with great simplification in
modeling the interactions, it is not uncommon to
take hundreds of CPU hours on a CRAY-class vec-
tor supercomputer to complete a protein dynamics
simulation. Unfortunately, high-performance con-
ventional supercomputers are extremely costly.
The high cost of such machines limits their avail-
ability for biomolecular research such as protein
dynamics simulations.
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In recent years, parallel computers have ad-
vanced to the point where their performance is
competitive with, often exceeding that of conven-
tional vector supercomputers for certain problems.
Also, parallel computers are sometimes much more
cost-effective than conventional vector supercom-
puters.? Because the performance and price/per-
formance of parallel computers is expected to con-
tinue to improve at much faster rates than those of
conventional vector supercomputers, parallel com-
puters are generally regarded as the architectures
of the future for scientific computing.

The key impediment to the widespread use of
parallel computers for scientific computing is their
demand for a higher degree of integration of hard-
ware, algorithm, and programming and the diffi-
culty of developing correct, efficient, and portable
parallel programs. Although parallel computers
can deliver extremely high peak performance,
achieving a significant fraction of that perform-
ance for a particular application can be extraordi-
narily difficult requiring machine-dependent opti-
mization in addition to algorithm restructuring.
Some of the available parallel machines require
their own language and most of them are cumber-
some to program because they support only primi-
tive programming models that require users to ex-
plicitly manage concurrency. On the other hand,
molecular dynamics appears to be an application
that can benefit substantially from parallel execu-
tion. Movement of atoms in a molecular system is
essentially simultaneous and thus lends itself natu-
rally to parallel computation.

The potential for improving turnaround time of
molecular dynamics simulations and the challenges
of exploiting parallelism effectively in such simula-
tions have prompted recent exploration of ways to
implement molecular dynamics on a variety of par-
allel computers.*” Recently, we ported the pro-
gram CHARMMS to the Intel iPSC/860 parallel com-
puter. In this article we discuss the parallelization
of molecular dynamics computations that we im-
plemented in CHARMM and its performance.

iPSC/860 AND CHARMM

The Intel iPSC/860°19 is an MIMD distributed-mem-
ory multiprocessor. Each processing node of the
system is built around a 40-MHz Intel i860 micro-
processor with 8 Mb of local memory that provides
space for an application’s code and data in addition
to a copy of the node operating system. Nodes in

* For parallelization of molecular dynamics, see, for example,
ref. 5. For introductory materials on parallel processing, see, for

example, ref. 6.
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the multiprocessor are connected in a hypercube
topology. Communication between nodes is accom-
plished using message passing. The operating
system supports routing of messages between
arbitrary pairs of nodes and access to attached pe-
ripheral storage devices. A 16-MHz PC/386 front-
end serves as an interface between the multipro-
cessor and a network computing environment. The
i860 microprocessor has a theoretical computation
speed of 80 MFLOPS for single precision arithmetic
and 40 MFLOPS for double precision arithmetic.
However, such performance is rarely achieved in
practice because it is only possible for computa-
tions that contain a certain ratio of addition to
multiplication and exhibit data reuse patterns that
make cache and registers effective.

CHARMM is one of several available molecular
simulation programs developed primarily for
biomolecular systems. The program has a rela-
tively friendly user-interface and has been run
on many midsize and mainframe computers.
CHARMM (v.20) consists of nearly one hundred
thousand lines of FORTRAN (preprocessed from
the original Flecs code). For parallelization, it
might be desirable to translate the program into a
universal parallel language to make it available for
any parallel machine; we are exploring the use of
FORTRAN D,!! a machine-independent parallel
language for this purpose. However, it is unclear at
present that such a language can be compiled to
effectively exploit a variety of parallel architec-
ture. As an interim approach, we have rewritten
critical portions of CHARMM in message-passing
FORTRAN for the Intel iPSC/860 to evaluate the
parallelism inherent in its core algorithms and to
provide a tool for high-performance molecular dy-
namics simulation.

DATA STRUCTURE, ALGORITHM,
AND PARALLELISM

CHARMM begins a molecular dynamics simulation
using an initial set of atomic coordinates and
atomic velocities at time t = to. For each &t time
step the simulation cycles through three major
stages: the calculation of forces applied to each of
the atoms, the integration of equations of atomic
motion, and an optional correction to the resulting
coordinates to constrain selected interatomic dis-
tances to fixed lengths. An enumeration of the
pair-wise interactions of nonbonded atoms, called
“nonbonded list,”’ is updated in a period of n time
steps, where 7 is usually between 10-100. These
four stages constitute the core of the molecular
dynamics computation, as shown in the following

diagram:
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Correction by
constraint

These stages in CHARMM must execute sequen-
tially with respect to each other. Hence parallelism
is desirable for implementation at each individual
stage. A balanced distribution of the core computa-
tions is the major goal of parallelizing the molecu-
lar dynamics. Namely, computational work and re-
lated data should be divided among the processors
as evenly as possible. The parallelization should ac-
complish this efficiently and coordinate the proc-
essors as well as give correct results.

In our prototype parallelization of CHARMM,
identical copies of the executable are loaded onto
each of the nodes of the iPSC/860. Static data
structures used by CHARMM are replicated on all
of the nodes. For each of the core computations,
work is partitioned and the nodes cooperate in per-
forming the computation. The nodes also generate
some distributed data structures that are dynami-
cally allocated by CHARMM using its internal heap
and stack architecture. Input and output are han-
dled using a concurrent read, exclusive write strat-
egy, in which the input data stream is fed identi-
cally to all of the nodes while only one node
writes to external files. Communication is always
synchronous using global communication and
arithmetic functions provided by a system library
for the iPSC/860. '

A protein-water sample system is used to exam-
ine the performance of the parallelization. The
sample system is close to one we have used in real-
istic molecular dynamics simulations. It consists of
a single chain of the globular protein, myoglobin,
and a surrounding water shell. The protein has
1541 atoms; 1743 water molecules make up a total
of 6770 atoms in the system. The test runs consist
of a 1 ps dynamics simulation integrated using the
“‘stochastic boundary’’ condition,'? with an 8 A
cutoff range for the nonbonded list and 7.5 A for
the nonbonded force calculations. Stochastic
boundary condition was used because of its more
general nature and hence complexity. The non-
bonded list is updated every 10 fs. The water mole-
cule geometry is fixed at the equilibrium configu-
ration and in the protein the bonds to hydrogens
are fixed at their equilibrium lengths. The compu-

Nonbonded

list update

tation of the sample system spends about 67% of
time in the calculation of forces, 8% in the integra-
tion of the equations of motion, 11% in the correc-
tion of coordinates by constraint, and 13% in the
update of the nonbonded list, to total over 99%.

In the following sections we discuss the parallel-
ization of the aforementioned four core computa-
tions of the molecular dynamics for the iPSC/860.
For each of them we examine the corresponding
CHARMM data structure and algorithm, discuss
our parallelization strategy, outline the implemen-
tation, and present results from measuring simula-
tions of the sample system. The discussion is based
on a version of CHARMM-20. For the sake of re-
porting execution time, the iPSC/860 system li-
brary function MCLOCK is used by the program to
measure time intervals. All timing measurements
as well as data sizes reported in this article were
recorded by one processor during a simulation.
Checks have been made to ensure there are no sig-
nificant deviations either among the processors or
between repeated tests.

Calculation of Forces

Atoms in a molecular system are driven by time-
dependent potential forces. The forces are deter-
mined by the relative positions of the atoms. As

‘the atoms move the forces change in tandem. For

polyatomic molecules the forces are customarily
described as the gradient of a potential force field
modeled by multiple energy terms. For an N-atom
system when the atoms are at positionsr;, rs, . . .,
ry, CHARMM describes the potential field V as

) Ix) = Z Ky(b = bo)

bonds

+ D, K8 — 8o

valence angles

V(rl, ) o YO

+ Z K, [1 + cos(nyé, — §,)]

dihedral

>

improper dihedral

K, [1 + cos(n;9; — ;)]

A B Qloz>

5 — —= + (D
nonbonded pairs (R 12 R® &R

—> New coord. & vel.
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In eq. (1) b, by, and K, are the bond length, its
equilibrium value parameter, and the bond
stretching force constant, respectively; 6, 6o, and
K, are the bond angle, its equilibrium value param-
eter, and the angle bending force constant, respec-
tively; ¢,, K,,, np, and 6, are a dihedral angle, its
force constant, the symmetric multiplicity, and
phase, respectively; ¢;, K,,, n;, and §; are an im-
proper dihedral angle, its force constant, the sym-
metric multiplicity, and phase, respectively; @,
and Q, are the charges of two atoms and R is the
distance between them, ¢ is the dielectric con-
stant, and A and B are the coefficients of the 6-12
van der Waals potential.'?

An atom at position r is subject to the force
F(r) = =VV(r). To determine the force for an
atom eq. (1) indicates that there are several force
terms to be calculated. The first four terms in eq.
(1) are framework terms named bonds, angles, and
torsions; the latter includes dihedral and improper

dihedral terms. The last term in eq. (1) includes the .

nonbonded force terms of both van der Waals and
Coulombic interactions, which are calculated for
atom pairs across space. The first four terms scale
with the number of atoms and are of order N. The
last terms are potentially of order N 2. however,
typical approximations reduce this term to order N
as well as described below.

CHARMM uses similar data structures and al-
gorithms for each of the bonded terms. They are
based upon enumerations of the interactions in
- each term. Taking the valence angle potential in-
teractions described by the term

Ky(6 — 60)? )

valence angles

as an example, the data structure consists of a set
of lists of size proportional to the number of angu-

lar interactions. Three lists each enumerate one of °

the three atoms forming the angle §-for each inter-
action. Another list specifies (for each interaction)
an index into a parameter table containing con-
stants K, and 6. Algorithm 1 shows pseudo-code
for calculating the angular forces from the individ-
ual interactions.

Algorithm 1

loop over angles
fetch r’s of the three atoms
calculate 6 from r’s
look up Ky and 8, at the parameter table
calculate F(r) at r’s
end loop

In bonded-term calculations such as the one
shown in Algorithm 1, there are no dependences
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between loop iterations other than the accumula-
tion of the forces on each atom that result from
multiple bonds (this is why such terms also work
well on vector machines). Therefore, a straightfor-
ward partitioning of loop iterations among the
processors will obtain parallelism without major
difficulty; communication will be required to sum
up the elementary forces computed by each of the
processors. The atom reference lists and parameter
reference list can be distributed among the proces-
sors before the dynamics starts, and remain un-
changed during an entire dynamics session. For
each bonded term, the atom reference lists and
the parameter reference lists together have size
equal to

(the number of interactions)
x (1 + the number of atoms in the interaction)

®3)

The number of interactions is of the same order of
magnitude as the number of atoms. Because of dif-
ferences in the data and loop size for different
bonded term calculations, each calculation may re-
quire a different loop and data partition.

The nonbonded force term considers only pair-
wise interactions between atoms across space. If
there are N atoms in the system there can be up to
N(N - 1)/2 nonbonded interaction pairs, minus
some bonded pairings that are omitted. Because of
the large number of interactions, computation of
this term typically has the largest requirements for
memory and CPU time. A common strategy to re-
duce the O(V?) burden is to limit the range over
which nonbonded interactions will be considered
using a range cutoff or interaction taper. Such
strategies reduce the number of interactions to be
considered to O(N - cutoff ) and require the use of
a data structure to trace the pairings that will be
considered. Even with physically reasonable cut-
off values, the number of interactions in practice
still tends to be tens to hundreds of times lar-
ger than N. To minimize memory requirements,
CHARMM constructs the nonbonded data struc-
ture differently from those of the bonded terms.

The CHARMM nonbonded data structure enu-
merates a list of pairing partners for each atom. An
atom’s pairing partners form a neighborhood
block; all blocks are concatenated contiguously
into an atom reference list. An array of pointers
maps each atom to its neighborhood block in the
atom reference list. The atom reference list and
the pointer list together make up the data struc-
ture called the nonbonded list. The following ex-
ample illustrates a nonbonded list that describes
four atoms fully connected in six pairs:
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3 5 6 null

The pairs of atoms are 1-2, 1-3, 1-4, 2-3, 2-4, and
3-4 in the above example.
The nonbonded list has a size of

(the number of nonbonded pairs)
+ (total number of atoms) (4)

This representation saves a factor of two over a
naive enumeration of interaction pairs. Supple-
mentary to the nonbonded list there are also struc-
tures for the access to the parameter table for the
force field constants 4, B, Q,, and Q, in eq. (1). The
size of these structures is on the order of the num-
ber of the atoms.

Corresponding to the differences in data struc-
ture, the CHARMM algorithm for calculation of the
nonbonded forces differs from those of the bonded
terms. Algorithm 2 shows pseudo-code for calcula-
tion of the nonbonded forces. Algorithm 2 enumer-
ates the nonbonded interactions through double
loops instead of through a single loop as featured in
the bonded-term algorithms.

Algorithm 2

loop over atoms
Setch r of the atom
loop over the atom’s partners
Setch the partner’s r
calculate R and look up relevant
parameters
calculate F(r) at r’s
end loop
end loop

Due to the large number of nonbonded interac-
tions, calculation of the nonbonded force is the
most time-consuming computation in the molecu-
lar dynamics simulation. Therefore distributing the
nonbonded force calculation is important. Al-
though the bonded and nonbonded algorithms dif-
fer in form, they use essentially the same logic.
Both algorithms iterate over all interactions enu-
merated in their respective data structures and cal-
culate the forces exerted on each atom. Therefore
partitioning methods like those we used for the

LIN ET AL.

atom number

pointer list (contains the index of the last element

of each atom’s neighborhood block
in the atom reference list)

atom reference list (contains atom numbers

grouped in neighborhood blocks)

bonded terms can also be applied to the calculation
of the nonbonded terms, except for the specifics of
how to manipulate the unique nonbonded data
structure and the double loops in Algorithm 2.
However, our strategy for partitioning the calcula-
tion of the nonbonded forces is merged with the
strategy for parallelizing the generation and up-
date of the nonbonded list. The strategy we use is
presented in the next section, which discusses the
generation and update of the nonbonded list.

In our prototype parallelization, we have chosen
to parallelize the calculation of forces, as illus-
trated in Algorithms 1 and 2, by distributing the
data structures and partitioning loop iterations
among the processors in the manner discussed
above. For the bonded terms, distribution is essen-
tially perfect in the sense that the loads on the
processors do not differ by more than one interac-
tion. For the nonbonded term, the algorithm we
use does not guarantee perfect distribution; how-
ever, it achieves near perfect balance. The method
is expected to give a speedup nearly proportional
to p on the partitioned loops, with computational
overhead from the non-partitioned parts of the
code. Communication between processors occurs
after all the terms have been calculated. The iPSC/
860 library function GDSUM is called to synchro-
nize the processors, pass the scattered forces
around, and perform an arithmetic summation to
accumulate the forces and disseminate the results
among the processors. The communication costs
are approximately proportional to N log, p.!°

Table I lists the timing measurements of all the
force term calculations against the number of proc-
essors p. Also listed are the time for an extra per-
turbation term, the total computation time, the
communication time, and the total time of compu-
tation and communication. The perturbation term
is calculated when a thermodynamic perturbation
simulation, the free energy calculation, is re-
quested. This term comprises two passes of the
bonded terms and five passes of the nonbonded
terms, operating on a subset of the data structures.

Table I shows that the single-term times halve as
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Table I. Timing on the calculations of forces in a simula-
tion of the sample system (in seconds).

p
1 2 4 8 16 32
Bond 206 113 67 35 17 9
Angle 660 332 167 84 43 22
Dihedral 149 75 39 20 11 6
Improper 159 80 40 21 11 6
Nonbonded - 9581 4778 2351 1180 583 290

Perturbation 3270 1722 949 555 360 263

Computation 14,054 7130 3643 1924 1054 627
total
Communication 0 220 603 824 1075 1324

Total 14,054 7350 4246 2747 2130 1951

p doubles, within a small deviation, indicating
computational overhead is small. The perturbation
time scales less efficiently, which can be traced to
the more significant contribution of sequential
code in the corresponding procedure. The total
computation time, which is the sum of the times
spent on all of the force calculations, added with
the extra ‘‘housekeeping’’ expenditure in the han-
dling procedure, improves by nearly a factor of 2
for each doubling of p, up to p = 32, the maximum
number of processors used in the timing test. Un-
fortunately, communication time rises when p in-
creases, and roughly proportional to log; p. When
p = 8, the net speedup starts to dwindle as addi-
tional processors are added. Going from p = 16 to
p = 32 the increase in communication overhead
essentially offsets the gain from faster computa-
tion of the forces. It is expected that using more
than 32 processors with the current iPSC architec-
ture and the log; p communication tools would
result in no further gain and probably a deteriora-
tion in the force calculations. o

Generation and Update of the
Nonbonded List

CHARMM generates the nonbonded list before the
dynamics starts and updates it at given time inter-
vals. The generation and update share an essen-
tially identical procedure. The kernel of the pro-
cedure is a two-stage list refinement. At the
first stage, the neighboring relationship of atom
clusters, which are predefined by CHARMM as
“‘groups’’,® are examined and the pairs of groups
that are not separated beyond the cutoff range are
picked out. At the second stage, the atoms in these
pairs are examined and those that satisfy the cut-
off criterion are then put into the nonbonded list.
The pseudo-code for this procedure is shown in Al-
gorithm 3.
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Algorithm 3

loop over groups
define a rectangular box enveloping the
group
end loop
loop over groups
loop over groups with larger or equal
indices
if the boxes of the two groups are
within cutoff range
then pair the groups up
end loop
end loop
loop over groups
loop over atoms in the group
loop over pairing groups
loop over atoms in the pairing
group
if the two atoms are within
cutoff range
then pair up the atoms into
the nonbonded list
end loop
end loop
end loop
end loop

The two-stage strategy greatly enhances the effi-
ciency of nonbonded list generation and update.
We have compared the algorithm with one that
does not prune group pairing preemptively,
namely, simply to examine all the N(N — 1)/2 pairs
of atoms. Sequential executions on the sample sys-
tem demonstrated a 10-fold difference in their
speeds (data not shown). This step scales essen-
tially as the order of N2 (we should note that other
more complex strategies that offer better asymp-
totic efficiency by sorting groups by position in
space and only considering pairings of nearby
groups may not seem warranted for molecular sys-
tems of the size we considered).

An efficient parallel algorithm should achieve an
even distribution of both the computation load and
the final nonbonded list structure. Algorithm 3 in-
dicates determination of the size of the most de-
manding computation segment, namely, the last
major loop, has to be delayed until after the finish
of the first loops. Furthermore, the size of the non-
bonded list cannot be ascertained until the proce-
dure is completed. Based on the information flow,
we derive a strategy for generation of the non-
bonded list described as follows.

The strategy uses loop partitioning for parallel-
ism, which Algorithm 3 suggests to be the natural
choice. The crucial piece of the strategy is a pre-
processing step, after which the loops are parti-
tioned and the processors work on a distributed
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nonbonded list. For clarity, we call the groups re-
ferred to in the outermost loops in Algorithm 3 the
master groups, in contrast to the pairing groups in
the nested loops.

1. When an initial generation of the nonbonded
list is requested before the dynamics starts, a
preprocessing step is activated. Each processor
performs a one-time mock execution of Al-
gorithm 3 to assess the size of the nonbonded
list and how the master groups contribute to the
product. This does everything but allocate stor-
age space for the list.

2. Once assessment is done, the master groups are
divided as evenly as possible with regard to
their contributions among the number of proc-
essors. The outermost loops in Algorithm 3 are
then partitioned accordingly. This step estab-
lishes for each processor a local subset of the
master groups that overlook all pairing groups
in the subsequent allocation and update proce
dures. '

3..Subsequently, allocation is accomplished by us-
ing the partitioned Algorithm 3. Each processor
only executes its own partition of loops and al-
locates a partial nonbonded list. This step com-
pletes the generation procedure.

4. The update procedure is equivalent to the
above step: Processors execute the partitioned

~ Algorithm 3 to operate on their local partition
of the data structure.

5. A new mechanism, repartition of the non-
bonded list, is introduced into the CHARMM
utility, to allow the user to force the generation
procedure in the middle of the dynamics. This
may be used to rebalance the loads periodically.

6. In the phases between generation, update, and
repartition, the distributed nonbonded list is
stable and is used for calculating the nonbonded
forces. Each processor computes only the inter-
action pairs registered in its partial list.

The scheme is relatively simple and has been
very effective compared to alternatives. It
achieves remarkably well balanced distribution of
data and computation as well as no communication
costs. As can be seen in Table II, a sample run dem-
onstrates that computation speedup is nearly pro-

Table II. Timing on the update of the nonbonded list
(in seconds).

V4
1 2 4 8 16 32
Nonbonded-list 2818 1663 929 474 248 138

update
Communication 0 0 0 0 0 0

LIN ET AL.

portional to the number of processors, p, as ex-
pected.

The generation procedure results in a balanced
distribution of the nonbonded list, which accounts
for over 500,000 atom pairs in the sample. During
the 1 ps dynamics the nonbonded list distribution
deviated slightly by the 100 updates, while no re-
partition was performed. The balance of the non-
bonded list distribution can be appreciated in the
performance of the nonbonded force calculation.
The nonbonded force calculation follows very
closely to a proportional speedup, as Table I has
shown, indicating distribution of the nonbonded
list remains nearly perfect throughout the sample
simulation.

The nonbonded list data structures account for
the bulk of the dynamically allocated storage used
by CHARMM. CHARMM uses an array HEAP to
represent dynamically allocated storage. In our
parallelization, each processor node has its own
private HEAP. Distributing the nonbonded list
data structures among the processors rather than
replicating them saves significant amounts of stor-
age space. Table III shows the peak occupancy of
HEAP for the testing dynamics simulations using
1-32 processors. The decrease in HEAP occupancy
as the number of processors increases results
chiefly from distribution of the nonbonded list.

Integration of Equations of Motion

CHARMM integrates the Newton's equation of mo-
tion by the Verlet algorithm.!* The algorithm de-
rives the next position, r(¢ + 6t) of an atom of mass
m and subject to force F(r), from its present posi-
tion r(t) and previous position r(t — 6t):

F(r(t))
E— (%)

r(t + 8t) = 2r(t) — r(t — 6t) + 6t2
The atom'’s velocity v(t) is approximated using the
central difference formula

r(t + 6t) — r(t — 6t)

= 6
v(t) o, (6)
CHARMM also provides an option for the inte-
gration of Langevin's equations, to provide a
mechanism to couple the simulated system to a
heat bath. This option supplements a frictional
force f(r(t)) randomly generated for the atoms at
the time step; any Cartesian component f of the

random force f satisfies statistical properties

flt)y =0,  (f)S(0)> = 2kgTBmé(t) (7)

where kg is the Boltzman'’s constant, T is the tem-
perature of the heat bath, 8 is the frictional coeffi-
cient, and m the mass of the atom at r.!2 The inte-
gration of the Langevin’'s equations is then
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Table ITI. Effect of distributing nonbonded list on the HEAP occupancy (in bytes).
p
1 2 4 8 16 32
Peak HEAP occupancy 2,357,952 1,369,840 868,752 618,400 492,464 429.952

2r(t) - (1 — 3Bét)r(t — &t)
+ 8t3(F(x(t)) + £(x(2))m)
1 + 386t

The code for integration by Langevin's equa-
tions can be simplified as shown in Algorithm 4.

r(t + 6t) = 8)

Algorithm 4

generate random forces

loop over atoms
calculate r(t + 6t) according to eq. (8)
calculate v(t) according to eq. (6) )
let r(t — 6t) = r(t)
let x(t) = r(t + 6t)

end loop

The time complexity of this integration step is
O(N), where N is the number of atoms.

The procedure in CHARMM that implements in-
tegration also clusters other miscellaneous opera-
tions that must be done at the same time step such
as calculating the system temperature, making
preparations for the next force calculation and
constraint corrections. Many of these operations
are in the form of loops, which can be partitioned
across the processors.

The sample simulation was executed with the
stochastic boundary conditions!? for which Al-
gorithm 4 is used. A nonzero frictional coefficient
B was applied to the molecular system, except for
an internal spherical volume of a 10 A radius,
where 8 was set equal to zero, resulting in simple
Newtonian behavior for the atoms in this region.
Testing results of the integration procedure are
listed in Table IV. They show that the computation
time at the integration stage is not very sensitive to
the number of processors. Close examination re-
veals that the readily parallelizable work in the
integration procedure is only about 10% of the to-

Table IV. Time spent in the procedure of motion inte-
gration (in seconds).

4
1 2 4 8 16 32

Motion integra- 1714 1630 1583 1562 1550 1545
tion, etc.
Communication 0 101 129 154 165 176

Total 1714 1731 1712 1717 1716 1721

tal work; thus the parallelization is far from thor-
ough for this procedure. Communication costs
are contributed chiefly from a library function
GCOLX, a global concatenation function to distrib-
ute the results.

Coordinate Correction Due to Constraints

The atomic movement of macromolecules as big as
a protein covers a wide range of frequencies. The
highest frequency determines the maximum time
step allowed in a molecular dynamics simulation.
Some internal vibrations of higher frequencies, es-
pecially those involving hydrogen atoms, are read-
ily decoupled from lower-frequency motions. Re-
moving them enables the use of larger time steps
that save computer time. CHARMM facilitates the
removal of selected bond-stretching and angle-
bending, by fixing corresponding interatomic dis-
tances. Fixed-distance constraints are applied to
the equations of motion by the method of Lagran-
gian multipliers. They result in a correction to
atomic coordinates obtained from the uncon-
strained equations, eq. (5). For atom 7, the correc-
tion ér; is calculated by

by = 3 o 20 ©

u m;

where the sum is over 7’s bonded neighbors and
the gs are to be solved by the simultaneous equa-
tions of the form

(rij(t + 6‘) + éri - Grj)z = df] (10)

for all constraints, where d;; designates the con-
stant distance between atoms ¢ and j (for details,
see ref. 15). Equation (10) presents a nonlinear
problem. CHARMM employs the SHAKE algo-
rithm,!® which linearizes eq. (10) to the form

1 1
291] <E + —> (rt](t + ét) - ri](t))
d{j - r,,(t + 6t) (11)
which is solved iteratively, followed by application

of Newton’s third law to correct r;(t + &t) and
r;(t + &t) by
ri;(t)

r;i(t)
or; = gy —m—' or; =Gij — =L
i m;

(12)

The iteration continues until all the constraints ex-
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pressed by eq. (10) are satisfied within a given tol-
erance. The number of constraints scales as or-
der N.

CHARMM has a data structure for the con-
straints similar to that of the bonded interaction.
Developed along the constraints, there are two
lists enumerating the atoms in pair whose dis-
tances are to be fixed, and a list of the designated
distance constants. The following pseudo-code de-
scribes the process of correcting the atom coordi-
nates by constraint.

Algorithm 5

repeat
Jor all constrained atom pairs
solve eq. (11)
evaluate eq. (12)
update the coordinates of the two atoms
until all constraints satisfied

In terms of solving-a system of thousands of si-
multaneous nonlinear equations, SHAKE is quick.
The power of the SHAKE algorithm lies in two as-
pects of its design. First, the constraint equations
are usually highly sparse: The number of variables
in any one of the constraint equations is seldom
more than half a dozen for a realistic molecular
system. By linearization SHAKE actually keeps
only one variable for each equation. Iterative al-
gorithms work particularly well with sparse sys-
tems.!® The second factor is the immediate update
of rs after an equation is solved. With the use of
the new rs in upcoming equations, immediate up-
date often, though not necessarily, provides better
starting atom positions for a later constraint, hence
resulting in quick convergence.

However, with regard to decomposing the al-
gorithm for parallel execution the immediate up-
dates of the atom'’s coordinates cause serious inter-
dependency of the coordinates across the loop,
resulting in a high communication overhead for
any naive loop partitioning strategy. However, im-
mediate update of coordinates only benefits evalu-
ation of other constraint equations involving the
same atom. In typical biomolecular applications of
SHAKE the constraints are localized so that the
groups of dependent equations are small. More-
over, these dependences can be identified in ad-
vance by inspecting the molecular topology be-
cause dependences only occur for the constraints
of joint bonds. Therefore by separating dependent
and independent equations, SHAKE can be envi-
sioned as a two-dimensional algorithm, one dimen-
sion defined by an axis along which the inde-
pendent constraints are placed, and the other
dimension along an axis where the dependent
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constraints are strung together. We then have the
expression

constraints =
Z (single constraint) (13)

along axis of along axis of

independence dependence
Update of the atomic coordinates is required only
along the axis of dependence, and along the axis of
independence the constraints are readily partition-
able. The distinction between the two dimensions
leads to our “‘2-D SHAKE" parallel algorithm.

The 2-D SHAKE algorithm includes two stages.

The first is a one-time construction of a partitioned
constraint data structure. The construction col-
lects dependent constraints into sets and scatters
the sets across the processors evenly, with all
members of each set contained completely in indi-
vidual processors.!” At the regular stage of per-
forming constrained coordinate corrections during
the dynamics, eq. (13) expands to the following
algorithm.

Algorithm 6

repeat
loop over sets of dependent constraints
Jor all constraints in the set
solve eq. (11)
evaluate eq. (12)
update the coordinates of the two
constrained atoms
end loop
until all constraints satisfied
broadcast new coordinates

The 2-D algorithm can potentially speed up
SHAKE by a factor near p, owing to the even distri-
bution of the constraint sets achieved at the con-
struction stage. The speedup also depends on the
convergence of the constraints on individual proc-
essors. Dynamic balance schemes that are not dis-
cussed here can be used to even out the works, if
the problem is considered significant. For the sam-
ple system under study, convergence was quite ho-
mogeneous, requiring approximately 20 repeti-
tions on any of the processors. The timing
measurements shown in Table V indicate that ex-
cept for approximately 5% sequential overhead

Table V. Timing on SHAKE, the coordinate correction by
constraints (in seconds).

p
1 2 4 8 16 32

SHAKE computation 2197 1199 676 405 268 203
Communication 0 127 258 388 518 643

Total 2197 1326 933 792 787 846
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that remained constant, the speedup of the re-
mainder of the computation was proportional to
the number of processors.

Communication is generally necessary in Al-
gorithm 6 after all constraints have converged, to
broadcast the corrections around the processors.
We used GDSUM to sum up corrections for all of
the atomic coordinates. Table V shows that com-
munication expenditure in the test increases ap-
proximately proportional to log; p. The sum of
computation and communication times reaches
minimum at around p = 16, giving a maximum par-
allel efficiency of about 3 over the single-processor
execution.

It should be mentioned that for highly connected
constraints for which degree of independence is
low or balance is bias, different algorithms that
may require more communication should be more
suitable.!”

Summary

We summarize the testing results in Table VI as
the speedup ratios for using multiple processors
against using a single processor, except that for the
communication time the ratio is against using two
processors. The total times and the percentage ex-
penditures in the use of 1 and 32 processors are
also listed in Table VI.

To evaluate the performance of the paralleliza-
tion we introduce the following expression for the
dependence of execution time, T, on the number
of processors, p:

T(p)=a/p+b+clnp (14)

where the coefficients a and b describe the costs of
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the computations having been and not being paral-
lelized, respectively, and ¢ describes the communi-
cation costs. For the computations a reciprocal
function is a good approximation, as justified by
the discussions in the above subsections. The com-
munication costs asymptotically follow In p by us-
ing the iPSC library communication routines exclu-
sively.!®

Scalability of the parallelization against p can be
conveniently discussed by evaluating p at the zero
point of the derivative dT/dp to yield

p. = alc C(18)

where p, is the critical number of processors at
which the speedup ratio R = T(1)/T(p) reaches
maximum

a+b
Re = c(l + In(a/c)) + b < B (16)
where
alc
= — 17
™~ In(a/c) (17)

R, < R,, is valid when a > ¢ and R,, is the limit of
R.whena » bandlIn(a/c) » 1. R, and p, character-
ize how the parallel performance scales with the
use of multiple processors.

What can we learn from these formulae?

First, we see that the cost ratio a/c uniquely de-
fines both p. and the limit of R,.. This quantifies
what one’s instinct would have realized that the
more of the code being parallelized and the higher
the communication efficiency, the better the para-
llel performance. A subtler point is that additional
parallelizing with communication may or may not
improve overall performance, depending on the

Table VI. Speedup ratios, percentage execution times in the use of 1 and 32 processors, and total execution times

measured for the sample simulation.

P (%) p

Speedup 1 2 4 8 16 32 1 32
Bond 1.0 1.8 3.1 5.9 12.1 22.9 1.0 0.2
Angle 1.0 2.0 4.0 7.9 15.3 30.0 3.2 0.5
Dihedral 1.0 2.0 3.8 7.5 13.5 24.8 0.7 0.1
Improper 1.0 2.0 4.0 7.6 14.5 26.5 0.8 0.1
Nonbonded 1.0 2.0 4.1 8.1 16.4 33.0 45.9 6_5.0
Perturbation 1.0 1.9 3.4 5.9 9.1 12.4 15.7 5.4
Force total 1.0 2.0 3.9 7.3 13.3 22.4 67.3 12.9
Nonbonded-list update 1.0 1.7 3.0 5.9 11.4 20.4 13.5 2.8
SHAKE 1.0 1.8 3.3 5.4 8.2 10.9 10.5 4.2
Integration procedure 1.0 1.1 1.1 1.1 1.1 1.1 8.2 31.8
Other operations 1.0 1.0 1.0 1.0 1.0 1.0 0.5 4.7
Computation total 1.0 1.8 3.1 4.7 6.4 7.7 100.0 55.8
Communication total - 1.0 0.45 0.33 0.26 0.21 0.0 44.2
Total 1.0 1.7 2.6 3.6 4.2 4.3 100.0 100.0
Total time (h) 5.80 3.37 2.19 1.62 1.39 1.35
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cost ratio. Clearly, communication efficiency is the
center piece of the issue. This is why we must con-
duct a parellelization with low communication. If
faster communication were available, besides a
gain directly attributable to a smaller ¢, we could
have wider choice of algorithms and could make
parellelization more thorough.

Second, the size of the molecular system, repre-
sented by the number of atoms, N, does not explic-
itly appear in the formulae. How the paralleliza-
tion scales against system size N is determined by
how @, b, and ¢ depend on N. We can express a, b,
and c¢ in power series of N to include only the prom-
inent terms expected for realistic values of N by

a = aN + ayN?
b=b0 + b1N+ ngz
C =¢Cy + ClN (18)

where the expansion coefficients are positive.
From egs. (15) and (18) one can easily find that p, is
an.increasing function of N. From egs. (16) and (17)
one can also show that when a > ¢, a sufficient
condition for R, to be an increasing function of N
can either be (1) az/b; > R,, — 1 or (2) by = b,N2.
The two conditions are independent. We note that
by is contributed chiefly from the sequential por-
tion of the code in the procedures of integration,
SHAKE, and force calculations, which are exe-
cuted every time step; a,N? and b,N? are both
from the work in the middle loop of Algorithm 3,
but respectively for pairing groups in the non-
bonded list update and generation, and are recip-
rocally proportional to the periods of update and
repartition, respectively. Therefore condition (1)
means a distribution of the O(N?) terms that ac-
cords with the limit speedup ratio, R,,, suffices
scalability with regard to N. Regulating the update
and repartition periods changes the distribution.
Condition (2) conveys that the O(1) term, whose
weight in total computation diminishes as N in-
creases, apparently helps scalability. Note that al-
though the b, N does not appear in condition (2),
one can re-express the condition to include the
term. It is conceivable that R, can be non-scalable;
however conditions are too convolved to formu-
late as concise.

Table VI shows p, is around 32 and R, is around
4.3. Least square fit to the total execution times
gives b/a = 0.114, c/a = 0.034, p, = 29.5, and
R, = 4.24. The moderate values of p. and R, can be
attributed to several elements. The first and most
significant is the communication costs. The value
of c/a indicates rather high relative communica-
tion costs. The costs grow with p to consume 44%
of the total execution time at p = 32. Second, the
parallelization is not thorough. Although for the
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N = 6770 sample system about 90% of the work
has been in parallel computation, a maximum
speedup ratio of only 10 is expected for this system
even if there is no communication. The most costly
portion of the sequential code lies within the inte-
gration procedure, which accounts for 32% of the
total execution time at p = 32. If the integration
procedure were perfectly scalable, the fitted p,
would increase slightly to 32 and R, would increase
to 6.1, while the maximum speedup without com-
munication would be 33 for the sample system.
Third, judging by the speedup ratios of individual
computations, sequential work in corresponding
procedures that set up the partitioned iterations
are not negligible for the sample system, except for
the calculation of nonbonded forces. Fourth, the
simulation conditions were set up for even pres-
ence of individual computational components. For
example, the weight of the nonbonded force calcu-
lation is only 46% at p = 1, using a short cutoff
distance (7.5 A) upon which the calculation has
cubic dependence, while a percentage well over
75% is more customary and over 90% is quite often
in applications and testings.5 Change of simulation
conditions would affect all the numerical predic-
tions presented above.

DISCUSSION

In this article we have examined the problems as-
sociated with parallelizing existing molecular dy-
namics algorithms on a distributed-memory mul-
tiprocessor. We used the Intel iPSC/860 as
the platform for parallelization of the program
CHARMM. The modification of the program is still
ongoing; however, the shape of the strategies has
been molded and the performance can be analyzed
to reveal the pivotal elements in such kinds of par-
allelizations. Our strategy focuses on partitioning
the workload of the core loops of the molecular
dynamics computation. Quite different effects are
observed in the four main stages, for a variety of
reasons.

In the calculation of all force terms, nearly pro-
portional speedup is achieved for up to 32 proces-
sors (Table VI). This performance may be attrib-
uted to the characteristics of the force fields and
the algorithms for computing them. Except for a
short setup stage, all the calculations are nested in
loops. The computational work of the loops domi-
nates the setup when the molecular system is not
exceptionally small. However, the O(N log; p) com-
munication overhead eclipses quickly the speedup
of computation that is O(N/p), to the extent that no
further overall improvement is expected by using
significantly more processors.
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Our parallelization of the nonbonded list genera-
tion and update was quite successful. Computa-
tional speedup is close to proportional. More im-
portantly, it gives rise to an evenly distributed
nonbonded list, which results in a significant sav-
ing in time and space throughout the entire dy-
namics simulation (Tables I-III). Communication is
not a factor so there is virtually no limit on how
many processors can be used. A couple of factors
contribute to the success of our strategy. First, we
have taken advantage of a characteristic embed-
ded in the pairing algorithm and data structure.
This characteristic is the reducibility of the map of
pairing from a complete graph to a union of di-
rected subgraphs. The union can be distributed
without interference between its members. There-
fore one needs chiefly to be concerned with the
criteria of partitioning. Second, we assume that
the fluctuation of the atom pairing during the dy-
namics is not large enough to seriously impair the
balance among the partitions. We also assume if
there is a systematic drift in the geometry of the
molecular system to induce a drift in the balance,
the drift is slow enough to be remedied by infre-
quent repartition of the nonbonded list (clearly,
problems on proteins involving partial unfolding
might require regular repartition). In practice, the
aforementioned assumptions of small fluctuation
and slow drift in the conformation of molecular
systems seem to hold.

For the computations at the stage of motion inte-
gration, loop partitioning shows a negligible effect,
even though communication time remains low (Ta-
ble IV). As already explained, this is because most
of the computational load is outside the parti-
tioned loops. The integration procedure whose
computation time was measured contains many
miscellaneous functionalities besides the integra-
tion of motion, necessary for updating all relevant
informations after a time step. Obviously, other
approaches must be investigated for this complex
procedure, including optimizing the outside-loop
computations.

For the correction of coordinates by constraint
we have converted the SHAKE algorithm to a two-
dimensional one. Taking advantage of the sparse-
ness of the simultaneous equations of constraints
and their locality in typical applications, the paral-
lel algorithm separates dependent and indepen-
dent constraints. Scattering of data structure and
computation then becomes possible and nearly
proportional speedup was observed (Table V). The
general algorithm requires broadcast of corrections
at the end of the computation that offsets the
overall speedup as with the force calculations.

The efforts we made and the effects of the paral-
lelism present a classical case of the interdepen-
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dency of hardware, algorithm, and programming
in parallel computation. Parallelization by loop
partitioning is highly efficient for an MIMD ma-
chine, as we have already shown, while it is not a
strategy suitable for an SIMD machine. Distribu-
tion of data structures such as the constraints and
the nonbonded list is important for a distributed-
memory computer, but is less significant for
shared-memory machines. These two characteris-
tics justify our choice of using loop partitioning
and data distribution for a multiprocessor in the
core molecular dynamics computations where
loops dominate, for example, in the calculation of
the nonbonded forces. However, the high com-
munication costs of the chosen Intel iPSC/860
hardware and software limit the overall speedup.
We have derived a no-communication strategy for
the update of the nonbonded list, and a low-com-

" munication algorithm for the correction of coordi-

nates by constraint. Even so, imbalance between
communication speed and computation speed of
the machine remains a bottleneck of the parallel
performance and limits the algorithms that can be
effectively exploited. Adopting hardwares with
higher communication bandwidth, such as the
newer Intel multiprocessors with 2-D mesh archi-
tecture, and softwares with higher communication
efficiency such as the O(N) algorithms’ to replace
corresponding O(N log p) algorithms provided by
the current Intel library, will free the program
from communication-bound and open up more pos-
sibilities for performance enhancement. To a cer-
tain extent, our choice to keep the infra-structure
and user-interface of CHARMM intact also affected
the strategies of parallelization.

We have demonstrated the usefulness and limi-
tations of exploring parallelism in molecular dy-
namics by modifying an existing program. We have
shown that it is realistic and promising to use
multiprocessors for computations in molecular dy-
namics simulation. Most of the core computations
have been shown to be parallelizable. The strate-
gies we have used can be applicable to other pro-
grams for molecular mechanics and dynamics
computations and to other MIMD machines. The
features of our parallelization point to further
gains from the next generation of distributed com-
puters. Elements that effect the parallel perform-
ance have been analyzed and provide direction for
further explorations.

APPENDIX

The CHARMM algorithms for the calculation of
forces represent two kinds of basic design: an in-
teraction-first approach, as in the bonded al-
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gorithms, and an atom-first approach, as in the
nonbonded algorithm. To account for all interac-
tions, the interaction-first approach iterates over
the interactions directly, using a data structure
that enumerates all participating atoms for each of
the interactions. On the contrary, the atom-first
approach iterates over the atoms to calculate inter-
actions associated with the atom, and hence
adopts a data structure that enumerates for each
atom the associated atoms involved in the interac-
tions. The two approaches require different data
structures of different sizes, and lead to different
routes to complete the calculation, as demon-
strated by egs. (3) and (4) and Algorithms 1 and 2.
Because atoms and interactions are the prime
entities in molecular dynamics, one might consider
swapping the two approaches for the two classes
of interactions. Memory considerations for the In-
tel iPSC/860 rule out the interaction-first approach
for nonbonded terms, for it needs to almost double
the size of the already quite large nonbonded list.
For the bonded terms, size consideration is not as
crucial: The change would be relatively small, and
could be either upward and downward. An atom-
first structure could be recast for the CHARMM
bonded data structure, to form one that resembles
the nonbonded data structure. One of the atom
reference lists would be replaced by a pointer list.
Sorted into appropriate blocks, the remaining atom
reference lists and the parameter reference list
would be accessed by the pointers. The atom-first
scheme would allow all bonded terms to nest under
the same outer loop, together with the nonbonded
terms, as shown in the following algorithm.

Algorithm 7

loop over atoms
Jetch r of the atom
execute the loop over the bonds led by the
atom
execute the loop over the angles led by the
atom
execute the loop over the dihedrals led by
the atom
execute the loop over the improper dihedrals
led by the atom
execute the loop over the nonbonded pairs
led by the atom
end loop

Compared to separate bonded and nonbonded
calculations, this scheme saves repeated refer-
ences to the leading atoms. In terms of paralleliza-
tion, it also makes it possible to unify the loop par-
titions. However this algorithm would not be
suitable for vectorization, due to the short inner
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loops that would iterate few times for any realistic
problem.

CHARMM constructs data structures according
to system topology. If we construct the data struc-
tures by sorting atomic coordinates spatially and
partition them among the processors accordingly,
lower communication demand is possible owing to
locality of the atoms. To obtain satisfactory local-
ity a prerequisite is for each processor to hold a
subsystem whose dimension is greater than the
cutoff distance. For a typical biomolecular system
of 10,000 atoms whose diameter is around 50 A, a
typical cutoff distance of 15 A will allow the use of
a moderate number of processors. The spatially
sorted data structures should be the choice for
much larger systems.

In future development of the parallel molecular
dynamics, we will explore these alternative ap-
proaches further.
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