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The High Performance Fortran Forum (HPFF), with participation from over 40 organ-
izations, met from March 1992 to March 1993 to discuss and define a set of extensions to
Fortran called High Performance Fortran (HPF). Our goal was to address the problems
of writing data parallel programs for architectures where the distribution of data impacts
performance. While we hope that the HPF extensions will become widely available, HPFF
is not sanctioned or supported by any official standards organization.

This is the Journal of Development of the High Performance Fortran Forum. This doc-
ument contains features proposed for HPF but not included in Version 1.0. It is hoped that
the Journal of Development will preserve topics of interest for consideration in a possible
follow-on to HPF. This copy of the draft was processed by IATEX on May 24, 1993.

HPFF encourages requests for interpretation of this document, and comments on the
language defined here. We will give our best effort to answering interpretation questions,
and general comments will be considered in future HPFF language specifications.

Please send interpretation requests to hpff-interpret@cs.rice.edu. Your request is
archived and forwarded to a group of HPFF committee members who attempt to respond
to it.

Please send comments on the HPF language to hpff-comments@cs.rice.edu. Your
comment is archived. Periodically, the archives are sent to HPFF committee members
for their perusal. Where appropriate, comments are forwarded to the hpff-interpret
list. HPFF invites comments on the technical content of HPF, as well as on the editorial
presentation in the document.

The text of interpretation requests and comments on the language specification become
the property of Rice University.

©1993 Rice University, Houston Texas. Permission to copy without fee all or part of
this material is granted, provided the Rice University copyright notice and the title of this
document appear, and notice is given that copying is by permission of Rice University.
This material appeared in Scientific Programming, vol. 2, no. 1, June 1993.
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Section 1

Overview

This document is the Journal of Development for the High Performance Fortran (HPF)
language. It contains proposals considered for High Performance Fortran but not included
for any of several reasons, including;:

e lack of time to complete within the one year time frame of HPF, or

e lack of consensus on the syntax, semantics, or pragmatics of the proposed feature.

In most cases it was felt that the features in this Journal of Development represented
capabilities that should be in a language for high performance computing. The High Per-
formance Fortran Forum decided that these proposals should be preserved as input to a
potential future HPF-II process.

Information on the goals of HPF, its specific features, and credits to the members of the
High Performance Fortran Forum are found in the companion document High Performance
Fortran Language Specification.
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Section 2

Input/Output

High Performance Fortran has exactly the same Input /Output facilities that are available
in Fortran 90. :

One of the High Performance Fortran Forum working groups was dedicated to I/0
extensions for parallel machines. The objective was to define a set of extensions to standard
Fortran 90 I/O which would provide high I/0 performance on a massively parallel computer
running HPF.

Three proposals in this spirit were offered. The basic idea of these proposals is outlined
here and the proposals themselves appear in Section 13.

The HPFF voted not to include I/O extensions in the first version of the language.
Arguments for this position include:

e I/0O systems on parallel computers from different vendors are too architecturally dif-
ferent for there to be a useful abstraction on which the language model can build. For
example, consider the difference between a machine with disks on each node, compared
with one which has a high bandwidth disk system connected to the communication
network, and thus globally accessible.

o Fortran I/0 is already highly expressive, some would say too expressive.

¢ The HPF compiler must already know when it is performing I/O on distributed arrays,
and can optimize the I/O to distributed files without any extensions to the source
language.

e The management of distributed files (and their implementation) is a matter for the
operating system, not the language.

Moreover the current lack of extensions does not limit features that may be added by
system vendors. In particular:

e Vendors are allowed to implement any I/O extensions to the language they may wish.
Indeed this would be impossible to prevent. There are simply no special /O mecha-
nisms mandated by HPF.

e The HPF run-time system may use whatever facilities the operating system provides
for accessing “high performance” files, though the HPF language contains no 1/0
extensions that specifically describe such access. For example, the HPF system is
entirely free to place a status="SCRATCH? file in the highest performance file system
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it likes, and distribute it as is appropriate for the machine, but it is not up to the user
to say all this. ‘

The proposals made to the I/O subgroup were based on the following observations:

¢ A massively parallel machine needs massively parallel 1/0;

e Efficient programs must avoid sequential bottlenecks from processors to file systems;
and

e Fortran specifies that a file appears in element storage order; this conflicts with striped
files (for example, an array distributed by rows may be written to a file striped by
columns).

The proposals were that HPF should provide explicit control to obtain high perfor-

mance I/O. In essence the three proposals were:

1. On a write, give a hint about how the data will be read.

'HPF$ DISTRIBUTE (CYCLIC) :: a
'HPF$ IO_DISTRIBUTE * :: a
WRITE a, b, c

When an array is written, it can be easily read back in the given distribution. The
annotation can be associated with either the declaration or the write itself; in the first
case it applies to all writes of the array, while in the second it only applies to the one
statement. The intent is that metadata is kept in the file system to record the “right”
data layout. The advantages of this proposal include notation and efficiency.

. Give hints about the physical layout (number of spins, record length, striping function,
etc.) of the file when it is opened.

This uses the HPF array mapping mechanisms. (A file is a 1-dimensional array of
records.) The syntax needs a “name” for the file “template”; the proposal is to use
FILEMAP. The programmer can align/distribute FILEMAP (on I/O nodes), associate
FILEMAP with a file on OPEN, etc. There are no changes in semantics or file system.

. Introduce parallel read/write operations that are not necessarily compatible with se-
quential ones.

PWRITE a
PREAD a

Data can be read back only into arrays of the same shape and mapping. Data written
by PWRITE must be read by PREAD. This solution does not need metadata in the
file system or changes in the file system but is incompatible with the standard READ

and WRITE.

© ® NN e WN e

LA - L I W W W W W W W W W W NN N NN NN e e

-
]



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48

Section 3

VIEW Directive

The VIEW attribute provides a mechanism to allow the same set of abstract processors to be
viewed as having different rectilinear geometries, possibly of differing rank. (This feature is
sometimes loosely called “EQUIVALENCE for processors arrangements.”)

J301 view-directive . is VIEW processor-view view-attribute-stuff
J302 view-attribute-stuff is OF processor-viewed
J303 processor-view is processor-name permutation

J304 processor-view-entity is processor-name [ ( array-spec ) ]
[ permutation ]

J305 processor-viewed is processor-name [ permutation ]

J306 permutation is array-constructor

Constraint: A permutation, if present, must be a constant integer array, synta.ctica.lly' ex-
pressed as an array constructor, whose elements are a permutation of the values
(1,2,...,n), where n is the rank of the associated processor-name. If it is omit-
ted and the processor-name names a non-scalar processors arrangement, it is
as if the identity permutation (/ 1, 2, ..., n /) had been specified.

Constraint: The VIEW directive may appear only in a declaration-part of a program.

Note that the possibility of a VIEW directive of the form
'HPF$ VIEW view-attribute-stuff :: processor-view-list

is covered by syntax rule H301 for a combined-directive in the High Performance Fortran
Language Specification.

The VIEW directive relates each of a list of processors arrangement names, each with an
optional permutation array, to one specific other processors arrangement, which may also
have a permutation array. The relationship between a view A and a viewed arrangement
B is established as follows. If A is scalar, B must be scalar, and the permutation must
be absent or empty; in this case A and B designate the same abstract processor. If A is
non-scalar, B must be non-scalar, with the same size as A but not necessarily the same
shape or rank. Let P be the permutation array for A and @ be the permutation array for
B; let M be the rank of A (and thus the length of P) and let N be the rank of B (and
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thus the length of Q). Permute the dimensions of A, yielding a processor array A’ such
that dimension J of A’ corresponds to dimension P(J) of A for 1 < J < M. Similarly
permute the dimensions of B, yielding a processor array B’ such that dimension K of B’
corresponds to dimension Q(K) of B for 1 < K < N. The permuted processor arrays A’
and B’ are then “equivalenced” using Fortran’s usual column-major order.

PARAMETER (A = (/2,1/))
DIMENSION A(2)

'HPF$ PROCESSORS P(10,10), Q(100), R(100)
'HPF$ PROCESSORS S(10,10), T(100)

'HPF$ VIEW OF P :: Q
'HPF$ VIEW OF P(/2,1/) :: R

'HPF$ VIEW S(/A/) OF T

In the code fragment above, the processor arrays P, Q and R designate the same set
of 100 abstract processors in different ways. Because P does not appear as a processor-
view, it designates the same two-dimensional arrangement as any other 10 x 10 processor
arrangement with no VIEW attribute.

The first VIEW directive specifies that Q names the same set of processors as P, in such a
way that, for all I in the range 1:10 and all J in the range 1:10, P(I,J) and Q((J-1)*10+I)
designate the same processor.

The second VIEW directive specifies that R names the same set of processors as P after
permuting the dimensions of the latter. Thus, in this case P(I,J) and R((I-1)*10+J)
designate the same processor. .

The third VIEW directive specifies that S, taken in row-major order, provides a view
of the one-dimensional processor arrangement T. A named parameter constant A is used to
specify the permutation. '

The VIEW attribute may appear in a combined-directive such as

'HPF$ PROCESSORS WILL_YOU_STILL_NEED_ME__WHEN_IM(64)
'HPF$ PROCESSORS, VIEW OF WILL_YOU_STILL_NEED_ME__WHEN_IM, &

'HPF$ DIMENSION(4,4,4) :: RUBIKS_REVENGE
'HPF$ PROCESSORS,VIEW OF RUBIKS_REVENGE(/2,3,1/) :: &
'HPF$ CHESSBOARD(8,8) (/2,1/)

For all I in the range 1:8 and all J in the range 1:8, CHESSBOARD(I,J) means the same
processor as RUBIKS_REVENGE((I-1)/2+1, IAND(J-1,3)+1, 2*IAND(I-1,1)+(J-1)/4+1).
The VIEW directive requires some modifications to other syntax rules:

J307 combined-directive is combined-attribute-list :: hpf-entity-decl-list

J308 combined-attribute is ...
or VIEW view-attribute-stuff

J309 hpf-entity-decl is entity-decl
or processor-view-entity
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Also, the remark about procesor arrangements:

If two processor arrangements have the same shape, then corresponding elements
of the two arrangements are understood to refer to the same abstract processor.

should be modified to read

If two processor arrangements have the same shape and neither has the VIEW
attribute, then corresponding elements of the two arrangements are understood
to refer to the same abstract processor. The use of the VIEW attribute may also
cause an element of one processor arrangement to refer to the same abstract
processor as an element of some other arrangement.

Furthermore:

Whenever the subprogram is called, the processor arrangement is always locally
defined in the same way, with identical lower bounds and identical upper bounds.

should be modified to read

Whenever the subprogram is called, the processor arrangement is always locally
defined in the same way, with identical lower bounds, identical upper bounds,
and identical view attribute information (if any).

Some concerns about the VIEW directive as specified above:

Right now some extremely complicated mappings can be achieved, particu-
larly by chaining VIEW directives (currently there is no restriction against chain-
ing).

By chaining VIEW directives, it is possible to rearrange all the prime factors
of all the dimensions of the original view-target into any order whatsoever.

Even without chaining, one can construct an 8 X 27 view of a 6 x 6 X 6 array.
Did we really want this generality?

Here are four alternative proposals to consider.

1. Eliminate the VIEW directive.

2. Forbid chained views; that is, if Q is a view of R, then P may not be a view
of Q, but only of R directly.

3. f P is a view of Q, then there must be a set of arrows from the permuted
dimensions of P, laid out in order in a line, to the permuted dimensions of
Q, laid out in order in a line, such that:
(a) every dimension is at one end of at least one arrow;
(b) for every arrow, that arrow either shares the dimension at its tail with
no other arrow or shares the dimension at its head with no other arrow;

(c) a dimension shared by several arrows must equal the product of the
dimensions at the other ends of the arrows; and

(d) no arrows cross.
4. Both 2 and 3 together.

Other possibilities considered by the committee included:
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e Restricting a view to be one-dimensional (and prohibiting chaining, as the value of
chaining is trivial given this restriction).

e Restricting a view to be of lower rank than the viewed arrangement.

e Restricting a view to be of lower rank than the viewed arrangement and prohibiting
chaining.
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Section 4

User-Specified Default
Distributions

The HPF specification states that if the dist-format-clause is omitted from the attributed
form of a DISTRIBUTE or REDISTRIBUTE directive, then the language processor may make
an arbitrary choice of distribution formats for each template or array.

It would be convenient for the user to be able to specify defaults to be applied in this
situation, rather than leaving the choice entirely to the language processor. Think of it as
“IMPLICIT” distributions.

One specific proposal is to have a separate default for each possible array rank; given
the current Fortran 90 limit of 7 on array rank, there would be seven defaults. A default for
a scoping unit could be specified by a DISTRIBUTE directive that mentions no distributee.
For example:

'HPF$ PROCESSORS ALLPROCS(512),XY_PROCS(16,32)
'HPF$ DISTRIBUTE (BLOCK) ONTO ALLPROCS

'HPF$ DISTRIBUTE (CYCLIC,CYCLIC) ONTO XY_PROCS
'HPF$ DISTRIBUTE (CYCLIC,CYCLIC,*) ONTO XY_PROCS
'HPF$ DISTRIBUTE (*,CYCLIC,CYCLIC,*) ONTO XY_PROCS

would mean that any one-dimensional array or template in the scoping unit for which no
explicit alignment or distribution is specified would be distributed (BLOCK) onto ALLPROCS;
any two-dimensional array or template not explicitly mapped would be distributed (CYCLIC,
CYCLIC) onto XY_PROCS; and so on.
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Section 5

Partially Specified Distribution
Formats

A programmer might wish to dictate the distribution format for some axes of a template
while leaving to the language processor the choice of distribution format for other axes.
The specific suggestion would allow a dist-format to be empty. For example,

'HPF$ DISTRIBUTE A(BLOCK,,*,) ONTO SCORPROCS

would dictate BLOCK distribution for the first axis and on-processor distribution for the
third axis, leaving the choice of distribution formats for the second and fourth axes to the
compiler.

An alternate suggestion was that, as there was no precedent in Fortran 90 for such
syntactically empty list items, some explicit token such as ? should be chosen.
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Section 6

Unanchored Distribution Formats

Consider the following program fragment:

REAL A(100),B(100)
'HPF$ DISTRIBUTE (BLOCK(10)) ONTO P :: A,B
A(1:90) = B(11:100)

Question: is this understood to imply that an HPF compiler that purports to obey the
directives should not map A(1) and B(11) to the same processor, thereby avoiding commu-
nication overhead?

Now ask the same question about this version, which omits ONTO P:

REAL A(100),B(100)
'HPF$ DISTRIBUTE (BLOCK(10)) :: A,B
A(1:90) = B(11:100)

Some have suggested that the latter case, at least, dictates a blocking factor of 10 but
says nothing about relative alignment, and therefore it would be within the spirit of HPF
for a compiler to choose an offset alignment such that A(1:10) and B(11:20) are mapped
to the same processor, etc.
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Section 7

Nested WHERE statements

Briefly put, the less WHERE is like IF, the more difficult it is to translate existing serial
codes into array notation. Such codes tend to have the general structure of one or more DO
loops iterating over array indices and surrounding a body of code to be applied to array
elements. Conversion to array notation frequently involves simply deleting the DO loops
and changing array element references to array sections or whole array references. If the
loop body contains logical IF statements, these are easily converted to WHERE statements.
The same is true for translating IF-THEN constructs to WHERE constructs, except in two
cases. If the IF constructs are nested (or contain IF statements), or if ELSE IF is used,
then conversion suddenly becomes disproportionately complex, requiring the user to create
temporary variables or duplicate mask expressions and to use explicit .AND. operators to
simulate the effects of nesting.

Users also find it confusing that ELSEWHERE is syntactically and semantically anal-
ogous to ELSE rather than to ELSE IF.

We therefore propose that the syntax of WHERE constructs be extended and changed
to have the form

J701 where-construct is where-construct-stmt
[ where-body-construct ..
[ elsewhere-stmt
[ where-body-construct ]... ]...
[ where-else-stmt
[ where-body-construct ]... ]
end-where-stmt

J702 where-construct-stmt  is WHERE ( mask-ezpr )

J703 elsewhere-stmt is ELSE WHERE ( mask-ezpr )
J704 where-else-stmt is ELSE WHERE
J705 end-where-stmt is END WHERE
J706 mask-ezpr is logical-ezpr

J707 where-body-construct is assignment-stmt
or where-stmt
or where-construct

Constraint: In each assignment-stmt, the mask-ezpr and the variable being defined must be
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arrays of the same shape. If a where-construct contains a where-stmt, an elsewhere-stmt, or
another where-construct, then the two mask-ezpr’s must be arrays of the same shape.

The meaning of such statements may be understood by rewrite -ules. First one may
eliminate all occurrences of ELSE WHERE:

WHERE (m1) WHERE (m1)
XXX XXX
ELSE WHERE (m2) becomes ELSE
yyy " WHERE (m2)
END WHERE yyy
END WHERE
END WHERE

where xxx and yyy represent any sequences of statements, so long as the original
WHERE, ELSE WHERE, and END WHERE match, and the ELSE WHERE is the first
ELSE WHERE of the construct (that is, yyy may include additional ELSE WHERE or
ELSE statements of the construct). Next one eliminates ELSE:

WHERE (m) temp = m
XXX WHERE (temp)
ELSE becomes XXX
yyy END WHERE
END WHERE WHERE (.NOT. temp)
yyy

END WHERE

Finally one eliminates nested WHERE constructs:

WHERE (m1) temp = mi
XXX WHERE (temp)
WHERE (m2) xxXx
yyy becomes END WHERE
END WHERE WHERE (temp .AND. (m2))
2zz yyy
END WHERE END WHERE
WHERE (temp)
zzz
END WHERE

and similarly for nested WHERE statements.

The effects of these rules will surely be a familiar or obvious possibility to all the
members of the committee; I enumerate them explicitly here only so that there can be no
doubt as to the meaning I intend to support.

Such rewriting rules are simple for a compiler to apply, or the code may easily be
compiled even more directly. But such transformations are tedious for our users to make
by hand and result in code that is unnecessarily clumsy and difficult to maintain.
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One might propose to make WHERE and IF even more similar by making two other
changes. First, require the noise word THERE to appear in a WHERE and ELSE WHERE
statement after the parenthesized mask-expr, in exactly the same way that the noise word
THEN must appear in IF and ELSE IF statements. (Read aloud, the results might sound a
trifle old-fashioned—“Where knights dare not go, there be dragons!”-but technically would
be as grammatically correct English as the results of reading an IF construct aloud.) Second,
allow a WHERE construct to be named, and allow the name to appear in ELSE WHERE,
ELSE, and END WHERE statements. I do not feel very strongly one way or the other about
these no doubt obvious points, but offer them for your consideration lest the possibilities
be overlooked.

Now, for compatibility with Fortran 90, HPF should continue to use ELSEWHERE
instead of ELSE, but this causes no ambiguity:

WHERE(...)
ELéé.WHERE(...)
ELééﬁHERE
Enﬁ.ﬁﬂERE

is perfectly unambiguous, even when blanks are not significant(fixed source form).
Since X3J3 declined to adopt the keyword THERE, it should not be used in HPF either
(alas), though it could be allowed optionally.
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Section 8

ALLOCATE in FORALL

Proposal: ALLOCATE, DEALLOCATE, and NULLIFY statements may appear in the
body of a FORALL.

Rationale: These are just another kind of assignment. They may have a kind of side
effect (storage management), but it is a benign side effect (even milder than random number
generation).

Example:

TYPE SCREEN

INTEGER, POINTER :: P(:,:)
END TYPE SCREEN
TYPE(SCREEN) :: S(N)
INTEGER IERR(N)

! Lots of arrays with different aspect ratios
FORALL (J=1:N) ALLOCATE(S(J)%P(J,N/J),STAT=IERR(J))
IF(ANY(IERR)) GO TO 99999
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Section 9

Generalized Data References

Proposal: Delete the constraint in section 6.1.2 of the Fortran 90 standard (page 63, lines
7 and 8):

Constraint: In a data-ref, there must not be more than one part-ref with nonzero
rank. A part-name to the right of a part-ref with nonzero rank must not have
the POINTER attribute.

Rationale: Further opportunities for parallelism.
Example:

‘TYPE MONARCH

INTEGER, POINTER :: P
END TYPE MONARCH
TYPE(MONARCH) :: C(N), W(N)

! Munch that butterfly
C=C+ W=* AP ! Illegal in Fortran 90
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Section 10

FORALL with INDEPENDENT

Directives

We propose that two new directives be added for use within the FORALL construct.

'HPF$BEGIN INDEPENDENT
'HPF$END INDEPENDENT

The two directives must be used in pair. A sub-block of statements parenthesized in the two
directives is called an asynchronous sub-block or independent sub-block. The statements
that are not in an asynchronous sub-block are in synchronized sub-blocks or non-independent
sub-block. The synchronized sub-block is the same as the HPF FORALL construct, and the
asynchronous sub-block is the same as the FORALL with the INDEPENDENT directive.
Thus, the block FORALL

FORALL (e)
b1
'HPF$BEGIN INDEPENDENT
b2
'HPF$END INDEPENDENT
b3
END FORALL

means the same as

FORALL (e)

bi
END FORALL
'HPF$INDEPENDENT
FORALL (e)

b2
END FORALL
FORALL (e)

b3
END FORALL

e et e e s e e e — S oy
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The INDEPENDENT directive indicates to the compiler there is no dependence and con-
sequently, synchronizations are not necessary. It is users’ responsibility to ensure there is
no dependence between instances in an asynchronous sub-block.

10.1 What Does “No Dependence Between Instances” Mean?

It means that there is no true dependence, anti-dependence, or output dependence between
instances. Examples of these dependences are shown below:

1. True dependence:

FORALL (i = 1:N)
x(i) = ...
= x(i+1)
END FORALL

Notice that dependences in FORALL are different from that in a DO loop. If the
above example was a DO loop, that would be an anti-dependence.

2. Anti-dependence:

FORALL (i = 1:N)
= x(i+1)
x(i) = ...
END FORALL

3. Output dependence:

FORALL (i = 1:N)
x(i+1) = ...
x(i) = ...

END FORALL

10.2 Rationale

1. A FORALL with a single asynchronous sub-block is the same as a DO with an IN-
DEPENDENT assertion. A FORALL with no INDEPENDENT directive is the same
as a tightly synchronized FORALL. We only need to define one type of parallel con-
struct including both synchronized and asynchronous blocks. Furthermore, combining
asynchronous and synchronized FORALLSs, we have a loosely synchronized FORALL
which is more flexible for many loosely synchronous applications.

2. With INDEPENDENT directives, the user can indicate which block needs not to be
synchronized. The INDEPENDENT directives can act as barrier synchronizations.
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Section 11

EXECUTE-ON-HOME and
LOCAL-ACCESS Directives

The EXECUTE-ON-HOME directive is used to suggest where an iteration of a DO construct
or an indexed parallel assignment should be executed. The specified location of computa-
tion provides the reference with which the compiler determines which data access of the
computation should be local and which data access may be remote. The LOCAL-ACCESS
directive further asserts which data accesses are indeed local.

J1101 erecute-on-home-direct is EXECUTE (align-source-list) ON_HOME align-spec
[, local-access-directive]

J1102 local-access-directive  is LOCAL_ACCESS array-name-list

The EXECUTE-ON-HOME directive must immediately precede the corresponding DO
construct, array assignment, FORALL statement, FORALL construct or individual assign-
ment statement in a FORALL construct.

The scope of an EXECUTE-ON-HOME directive is the entire loop body of the following
DO construct, or the following array assignment, FORALL statement, FORALL construct
or assignment statement in a FORALL construct.

When an EXECUTE-ON-HOME directive is applied to a DO construct, a FORALL
statement, a FORALL construct or an assignment statement in a FORALL construct, the
align-source-list identifies a distinct iteration index or an indexed parallel assignment in the
corresponding scope and the align-spec identifies a template node. Every iteration index
or indexed assignment must be associated with one and only one template node. The
EXECUTE-ON-HOME directive states that each iteration or indexed parallel assignment
should be executed on the processor where its associated template node is mapped. For any
subroutine call within a DO construct, the EXECUTE-ON-HOME directive specifies only
the execution location of the caller but not necessarily the execution location of the called
subroutine.

When an EXECUTE-ON-HOME directive is applied to an array assignment statement,
each align-sourceidentifies positions spread along one dimension (:) or a collapsed dimension
(*) of the assigned array, and the align-spec identifies the associated template or template
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section. (Replication, i.e. “*”,is not allowed in align-spec.) The align-source-list must have
the same rank as the assigned array. The associated template or template section must
have the same size as the assigned array in all uncollapsed dimensions. The EXECUTE-
ON-HOME directive states that, for each element in the assigned array, the corresponding
evaluation and assignment should be executed on the processor where the corresponding
template element of the associated template is mapped. For example,

'HPF$ EXECUTE (:,*) ON_HOME T(2:N)
A(1:N-1,2:N) = B(2:N,1:N-1)

A(1,j) = B(2,j-1) is executed on the processor to which T(2) is mapped, where j =
2,..,N.

(Align-spec in current HPF is restricted to simple expressions of align-dummy. Thus
only regular data mapping is supported. If array elements or functions are allowed in align-
spec for specifying irregular data mapping, the above EXECUTE-ON-HOME directive can
also be used to address the corresponding computation location problem.)

EXECUTE-ON-HOME directives can be nested, but only the immediately preceding
EXECUTE-ON-HOME directive is effective.

The optional LOCAL-ACCESS directive asserts that all data accesses to the specified
array-name-list within the scope of the EXECUTE-ON-HOME directive can be handled as
local data accesses if the related HPF data mapping directives are honored.

The LOCAL-ACCESS directive can also be used separately from the EXECUTE-ON-
HOME directive. When used alone, it applies only to the immediately following statement
or construct, and asserts that all specified data accesses are local data accesses provided
that the immediately preceding EXECUTE-ON-HOME directive and all related HPF data
mapping directives are honored. The assertion overrides any local-access assertions by
the preceding EXECUTE-ON-HOME directive. It is an error when a LOCAL-ACCESS
directive is not applied inside the scope of some EXECUTE-ON-HOME directive.

INDEPENDENT and EXECUTE-ON-HOME directives can be combined into a single
HPF directive when they are applied to the same DO or FORALL construct,

J1103 combined-assert-direct is assertion-directive-list

J1104 assertion-directive is independent-directive
or ezecute-on-home-directive

Example 1

REAL A(N), B(N), C(N)
'HPF$ TEMPLATE T(N)
'HPF$ ALIGN WITH T:: A, B, C
'HPF$ DISTRIBUTE T(CYCLIC(2))

'HPF$ INDEPENDENT, EXECUTE (I) ON_HOME T(2+%I), LOCAL_ACCESS A, B, C
DOI =1, N/2
! we know that P(2*I-1) and P(2%I) is a permutation
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! of 2*%I-1 and 2x*I
A(P(2%I - 1)) = B(2*I - 1) + C(2*I - 1)
A(P(2+I)) = B(2*I) + C(2*I)

END DO

Example 2

REAL A(N,N), B(N,N)
'HPF$ TEMPLATE T(N,N)
'HPF$ ALIGN WITH T:: A, B
'HPF$ EXECUTE (I,J) ON_HOME T(I+1,J-1)
FORALL (I=1:N-1, J=2:N) A(I,J) = A(I+1,J-1) + B(I+1,J-1)

Example 3

REAL A(N,N), B(N,N)
'HPF$ TEMPLATE T(N,N)
'HPF$ ALIGN WITH T:: A, B

'HPF$ EXECUTE (:,:) ON_HOME T(2:N,1:N-1)
A(1:N-1,2:N) = A(2:N,1:N-1) + B(2:N,1:N-1)

Example 4 The original program for this example is due to Michael Wolfe of Oregon
Graduate Institute.

This program performs matrix multiplication C = A x B by a systolic algorithm. Note
that without the EXECUTE-ON-HOME and LOCAL_ACCESS directive, the compiler will
have a hard time detecting that all A, B and C accesses are actually local.

REAL A(N,N), B(N,N), C(N,N)
PARAMETER(NOP = NUMBER_OF_PROCESSORS())
'HPF$ DYNAMIC B
'HPF$ TEMPLATE T(2%N,N) ! to allow wrap around mapping
'HPF$ ALIGN (I,J) WITH T(I,J):: A, C
'HPF$ ALIGN B(I,J) WITH T(N+I,J)
'HPF$ DISTRIBUTE T(CYCLIC(N/NOP),*) ! distributed by row blocks
IB = N/NOP
DO IT = O, NOP-1

! rotate B by row-blocks
'HPF$ REALIGN B(I,J) WITH T(N-IT*IB+I,J)

! data parallel loop



28

SECTION 11. EXECUTE-ON-HOME AND LOCAL-ACCESS DIRECTIVES

'HPF$ INDEPENDENT
(IP) ON_HOME T(IP*IB+1,1), LOCAL_ACCESS A, B, C

'HPF$ EXECUTE

DO IP
ITP
DO

D

0

D

, NOP-1

1, IB

J=1, N
0K=1, IB

MOD( IT+IP, NOP )

C(IP*IB+I,J) = C(IP*IB+I,J) +

END

ENDDO
ENDDO

ENDDO

ENDDO

IT

DO ! K
vJ

' I

IP

A(IP*IB+I,ITP*IB+K)*B(ITP*IB+K,J)
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Section 12

Elemental Reference of Pure
Procedures

Fortran 90 introduces the concept of “elemental procedures”, which are defined for scalar
arguments but may also be applied to conforming array-valued arguments. The latter type
of reference to an elemental procedure is called an “elemental” reference. Examples are the
mathematical intrinsics, e.g. SIN and the intrinsic subroutine MVBITS. However, Fortran 90
restricts elemental reference to a subset of the intrinsic procedures — programmers cannot
define their own elemental procedures. We propose that pure procedures may also be
referenced elementally, subject to certain additional constraints given below.

12.1 Elemental Reference of Pure Functions

A user-defined pure function may be referenced elementally, provided it satisfies the addi-
tional constraints that:

1. Its dummy arguments (except procedure dummy arguments) and result are scalar and
do not have the POINTER attribute.

2. The length of any character dummy argument or result is independent of argument
values (though it may be assumed, or depend on the lengths of other character argu-
ments and/or a character result).

We call user-written pure functions that satisfy these constraints “elemental non-
intrinsic functions”, and use the term “elemental function” to include both elemental in-
trinsic and non-intrinsic functions.

The interpretation of an elemental reference of such a function is as follows (adapted
from Section 12.4.3 of the Fortran 90 standard):

A reference to an elemental function is an elemental reference if one or more
actual arguments are arrays and all array arguments have the same shape. If
any actual argument is a function, its result must have the same shape as that
of the corresponding function dummy procedure.

The result of such a reference has the same shape as the array arguments,
and the value of each element of the result, if any, is obtained by evaluating
the function using the scalar and procedure arguments and the corresponding
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elements of the array arguments. The elements of the result may be evaluated
in any order.
Example:

INTERFACE
REAL, ELEMENTAL FUNCTION foo (x, y, z, dummy_func)
REAL, INTENT(IN) :: x, y, Z
INTERFACE ! interface for ’dummy_func’’
REAL, ELEMENTAL FUNCTION dummy_func (x)
REAL, INTENT(IN) :: x
END FUNCTION dummy_func
END INTERFACE
END FUNCTION foo
END INTERFACE

REAL a(100), b(100), c(100)

¢c = foo (a, 0.0, b, sin)

12.2 Elemental Reference of Pure Subroutines

A user-defined pure subroutine may be referenced elementally, provided it satisfies the
additional constraints that:

1. Its dummy arguments (except procedure dummy arguments) are scalar and do not

have the POINTER attribute.

2. The length of any character dummy argument is independent of argument values
(though it may be assumed, or depend on the lengths of other character arguments).

3. None of the dummy arguments allow alternate return specifiers.

We call user-written pure subroutines that satisfy these constraints “elemental non-
intrinsic subroutines”, and use the term “elemental subroutine” to include both elemental
intrinsic and non-intrinsic subroutines.

The interpretation of an elemental reference of such a subroutine is as follows (adapted
from Section 12.4.5 of the Fortran 90 standard):

A reference to an elemental subroutine is an elemental reference if all actual
arguments corresponding to INTENT(OUT) and INTENT(INOUT) dummy ar-
guments are arrays that have the same shape and the remaining actual argu-
ments (except procedure dummy arguments) are conformable with them. If any
actual argument is a function, its result must have the same shape as that of
the corresponding function dummy procedure.

The values of the elements of the arrays that correspond to INTENT(OUT)
and INTENT(INOUT) dummy arguments are the same as if the subroutine were
invoked separately, in any order, using the scalar and procedure arguments and
corresponding elements of the array arguments.

Example:
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INTERFACE
ELEMENTAL SUBROUTINE solve_simul(tol, y, z)
REAL, INTENT(IN) :: tol
REAL, INTENT(INOUT) :: y, z
END SUBROUTINE
END INTERFACE

REAL a(100), b(100), c(100)

CALL solve_simul( 0.1, a, b )
CALL solve_simul( c(10:100:10), a(1:10), b(1:10) )

12.3 Constraints

It is perhaps worth outlining the reasons for the extra constraints imposed on pure proce-
dures in order for them to be referenced elementally.

The result of an elemental function or “output” arguments of a subroutine are not
allowed to have the POINTER attribute because Fortran 90 does not permit an array of
pointers to be referenced. The “input” arguments of an elemental reference are prohibited
from having the POINTER attribute for consistency with the output arguments or result.

In an elemental reference, any actual argument that is a function must have a result
whose shape agrees with that of the corresponding function dummy procedure. That is,
elemental usage does not extend to function arguments, as Fortran 90 does not support the
concept of an “array” of functions.

Finally, the length of any character dummy argument or a character dummy result
cannot depend on argument values (though it can be assumed, or depend on the lengths
of other character arguments). This ensures that under elemental reference, all elements
of an array argument or result of character type will have the same length, as required by
Fortran 90.
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Section 13

Parallel I/0

High Performance Fortran is primarily designed to obtain high performance on massively
parallel computers. Such massively parallel machines also need massively parallel 1/0.
There are difficulties in getting high performance I/0:

o Efficient programs must avoid sequential bottlenecks from processors to file systems

o Fortran specifies that a file appears in element storage order; this conflicts with striped
files (for example, an array distributed by rows may be written to a file striped by
columns).

In particular Fortran file organization has limits:

o Files have a sequential organization. (Even direct access files have records in sequential
order, though they can be accessed out of order)

Fortran files are record oriented

Storage and sequence association are in force (when writing and then reading a file,
for instance)

No specification of the physical organization is possible

No compatibility with other languages/machines is guaranteed

With these in mind there are two major approaches that have been suggested:

1. Define hints (annotations) that do not change file semantics, in the spirit of data
distribution. (This gives some information to the compiler.)

2. Introduce parallel read/write operations that are not necessarily compatible with se-
quential ones.

13.1 Hints

Two ideas have been advanced which use the idea of giving hints to the compiler without
changing the Fortran file semantics.

The first is based on the observation that although the distribution of an array when it
is written may be available to the compiler or runtime system, the distribution into which
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that array will be read cannot generally be known, even though the programmer may have
this knowledge. So the proposal is to provide on a write a hint about how the data will be
read.

'HPF$ DISTRIBUTE (CYCLIC) :: a
'HPF$ IO_DISTRIBUTE * :: a
WRITE a, b, c

'HPF$ IO_DISTRIBUTE * :: b

When an array is written, it can be easily read back in the given distribution. The
annotation can be associated with either the declaration or the write itself; in the first case
it applies to all writes of the array, while in the second it only applies to the one statement.
The intent is that meta-data is kept in the file system to record the “right” data layout.
The advantages of this proposal include notation and efficiency.

The second proposal is to give hints about the physical layout (number of spins, record
length, striping function, etc.) of the file when it is opened.

This uses the HPF array mapping mechanisms. (A file is a 1-dimensional array of
records.) The syntax needs a “name” for the file “template”: we suggest FILEMAP. The
programmer can align/distribute FILEMAP (on I/O nodes), associate FILEMAP with a
file on OPEN, etc. There are no changes in semantics or file system.

Mapping Files A Fortran file is a sequence of records. We treat such file as a 1-D
array of records with LB=1 and infinite UB. This array can be mapped to a (storage)
node arrangement in a manner analogous to the mapping of an array to a (processor) node
arrangement. Files are mapped using the same notation as for array mapping. The mapping
defines a partition of the file, and each part is associated with one abstract node.

The mapping of a file to a node arrangement can be interpreted in two ways:

1. The nodes may represent (abstract) independent storage units, each storing a fixed
part of the file.

2. The nodes may represent (abstract) independent file caches, with a fixed association
of each cache with a part of the file.

In both cases the file is mapped onto physical I/O devices so as to allow maximal
concurrency for accesses directed to distinct parts of the file. If the second interpretation
is used, then it is meaningful to align arrays and files onto the same templates.

We introduce a new filemap object. Filemaps are, essentially, named files. They
appear where an array name would appear in a array mapping expression. An actual file is
associated with a FILEMAP in an OPEN statement. Filemaps are introduced because files
are not first class objects in FORTRAN (files are not declared). Also, Filemaps can have
rank > 1, giving more flexibility in the types of mappings that can be specified.

The following diagram illustrates the mapping
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. Node Physical storage
File Filemap Template arrangement units (or caches)
|_|-mmmmm- >|_|-mmmmm-- I >|_|-mmmmmmmemee >1_1
OPEN ALIGN DISTRIBUTE Implementation
Dependent

Node Directive We suggest to replace the keyword PROCESSOR with the keyword NODE,
which is more neutral. Node arrangements (ex processor arrangements) can be targets both
for file mappings and for array mappings. Some implementations may disallow the use of
the same node arrangement name as a target both for array mappings and for file mappings.
In such case an AFFINITY directive, that specifies.affinity between io nodes and processor
nodes, would be useful. (Such directive would also be useful to specify affinity between
nodes of different.arrangements, e.g. nodes in arrangements of different rank.)

The set of allowable node arrangenients that can be used to map files is implementation
dependent - however, a node arrangement with NUMBER_OF_IONODES nodes is always legal.

The mapping of nodes to physical storage units is implementation dependent.

For example:

'HPF$ NODE :: D1(2,4), D2(2,2)
PARAMETER (NOD=NUMBER_OF _IONODES())
'HPF$ NODE, DIMENSION(NOD) :: D3,D4

FILEMAP Directive A Fortran file is an infinite one-dimensional array of records, with
LB=1. A filemap can be thought of as an assumed-size array of records. This array is
associated with (one-dimensional) files, using storage association rules. The filemap name
is used to specify a mappings for files. The association between a filemap name and an
actual file is effected by the OPEN statement.

A FILEMAP directive declares filemap names. The syntax is

J1301 filemap-directive is FILEMAP [::]
filemap-name ( assumed-size-spec )
[, filemap-name (assumed-size-spec ) ] ...
or FILEMAP, DIMENSION ( assumed-size-spec )
:: filemap-name-list

An assumed-size-spec is a specification of the form used for assumed sized arrays: All
dimensions are specified, with the exception of the last, which is assumed. In our case,
the last dimension is infinite. Only initialization expressions may occur in this specification
(including expressions that depend on NUMBER_OF_IONODES).

For example:

'HPF$ FILEMAP :: F1(2,4,*)
'HPF$ FILEMAP, DIMENSION(2,2,1:%) :: F2,F3

A FILEMAP directive does not allocate space, neither in memory, nor on disk.
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File mapping ALIGN and DISTRIBUTE statements are used to map FILEMAPs onto
nodes. The syntax is identical to the syntax for processor mappings, with one restriction:
Block distributions cannot be used for the last (infinite) dimension of the filemap.

For example:

'HPF$ DISTRIBUTE (CYCLIC,CYCLIC,*) ONTO D2 :: F2,F3
'HPF$ DISTRIBUTE F1(*,BLOCK,CYCLIC(2)) ONTO D1

Assume that F1, F2 are the filemaps and D1, D2 are the node arrangements from the
previous examples.

The first distribute statement specifies the following mapping for successive records of
a file associated with F2 or F3.

D2(1,1) D2(1,2)

1 (1,1,1) 3 (1,2,1)

5 (1,1,2) 7 (1,2,2)

D2(2,1) D2(2,2)

2 (2,1,1) 4 (2,2,1)
6 (2,1,2) 8 (2,2,2)

The second distribute statement specifies the following mapping for successive records
of a file associated with F1.

D1(1,1) D1(1,2) D1(1,3) D1(1,4)
1 (1,1,1) 17 33 49

2 (2,1,1)

3 (1,2,1) . . .

4 (2,2,1) 20 36 52

9 (1,1,2) 25 41 57

10 (2,1,2)

11 (1,2,2) . .

12 (2,2,2) 28 44 60

65 81 97 113
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D1(2,1) D1(2,2) D1(2,3) D1(2,4)
5 (1,3,1) 21 37 53

6 (2,3,1)

7 (1,4,1) . . .

8 (2,4,1) 24 40 56

13 (1,3,2) 29 45 61

14 (2,3,2)

15 (1,4,2) . . .

16 (2,4,2) 32 48 64

69 85 101 117

13.2 Explicit Parallel /O Statements
13.2.1 OPEN statement

A new connection specifier of the form FILEMAP = filemap-name associates a mapping with
the opened file. If the file exists then the mapping must be one of the mappings allowed for
the file. The set of allowed file mappings for an existing file is implementation dependent,
but always includes the mapping under which the file was created. More generally, it will
include any mapping where the file is mapped onto the same storage node arrangement, and
with the same allocations of file records to storage nodes (different mappings may result
in the same allocation of records to storage nodes). One choice is to allow any mapping,
with possible degraded performance for ill matched mappings; another choice is to remap
an existing file when it is opened with a new mapping, either offline or online. Vendors are
expected to provide implementation dependent mechanisms to exercise such choices.

The default mapping is implementation dependent.

Only external files can be mapped.

Implementations may restrict the use of the FILEMAP connection specifier to files that
are open for direct access (i.e., fixed size record files).

13.2.2 Parallel Data Transfer

The READ, WRITE, CLOSE, INQUIRE, BACKSPACE, ENDFILE, REWIND statements
can be used to access distributed files; there are no changes in the syntax or semantics of
these statements.

PREAD and PWRITE statements are added to allow efficient input or output of dis-
tributed arrays. The PREAD and PWRITE statements have the same syntax as unformat-
ted I/O statements with READ or WRITE, respectively; they are semantically different.
The data representation created on a file by a PWRITE statement may be different from
the data representation that obtains if PWRITE is replaced by WRITE. In particular,
whereas an unformatted WRITE statement will create a single record (stored on one I/O
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node), a PWRITE statement may create multiple records, possibly on multiple I/O nodes.
Whereas an unformatted READ statement accesses a unique record, a PREAD statement
may access multiple records.

If a PWRITE statement was used to write a list of output items on a file, then a
PREAD that starts at the same point in the file, and has a compatible list of input items, will
return the values that were written. Two lists of items are compatible if the corresponding
items in each list occupy the same number of storage units and have compatible mappings
(informally, if the distribution of entries onto abstract processors is the same).

The following program exchanges the values of arrays A and B. The exchange is legal
because the arrays are compatible.

REAL, DIMENSION(1000,1000) :: A, B
'HPF$ ALIGN WITH B :: A

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

REWIND (UNIT = 15)

PREAD (UNIT = 15) B, A

The behavior of the following program is undefined. More than one record could have
been created by the PWRITE statement, so that the BACKSPACE statement does not
necessarily return the file position to where it was before PWRITE executed.

REAL, DIMENSION(1000,1000) :: A, B
'HPF$ ALIGN WITH B :: A

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

BACKSPACE (UNIT = 15)

PREAD (UNIT = 15) B, A

The behavior of the following program is undefined, since the two arrays A and B don’t
have compatible distributions.

REAL, DIMENSION(1000,1000) :: A, B
'HPF$ DISTRIBUTE A(BLOCK,BLOCK)
'HPF$ DISTRIBUTE B(CYCLIC, CYCLIC)

OPEN(UNIT = 15, ACTION = READWRITE)
PWRITE (UNIT = 15) A, B

REWIND (UNIT = 15)

PREAD (UNIT = 15) B, A

Data written by a WRITE statement cannot be read with PREAD, and data written
with PWRITE cannot be read with READ, or by a PREAD that does not start at exactly
the same point in the file (otherwise the program outcome is undefined).

PREAD and PWRITE can be used both for sequential access and for direct access. In
the latter case, the REC specifier indicates the position in the file where from the transfer
starts. It is still the case that a transfer may involve several records.
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13.2.3 Restrictions

The following restrictions allow for a simpler, more efficient implementation of parallel 1/0.
We may either put them in the language, or list them as recommended programming style.

1.

Items in the item list of a PREAD or PWRITE statements are restricted to be vari-
ables (no io-implied-do). [Compilers may want to relax this rule, by considering an
io-implied-do as being an operation that defines a new variable, akin to an array sec-
tion, with a distribution induced by the distribution of the variables appearing in the
implied-do-loop.]

. All values needed to determine which entities are specified by a parallel I/O item list

need be specified before the I/O statement. That is, we prohibit a statement of the
form PREAD (...) N, A(1:N).

13.2.4 Extensions

We may want to write an array with a layout that is suited to the mapping of the
array that will appear in the input item list, rather than suited to the mapping of the
array in the output list. To achieve this, we need to add align/distribute information
as part of the PWRITE statement.

We may want a REMAP statement, to be used instead of the sequence CLOSE ..
OPEN, in order to associate a new mapping to an existing file.

We may want to extend the INQUIRE statement to return file mapping information.
Alternatively, we may use the same query intrinsics used to query array partitions.

A new intrinsic function of the form INDEX(filemap-name, list-of-indices) would
be handy, in order to address random-access files as multi-dimensional arrays. E.g.

READ (7, REC = INDEX(F1,3,5) ) A

Each data transfer operation specifies an association between parts of the file and
abstract processor nodes where from (where to) the data in the record is transferred.
We may want to add additional directives to the OPEN statement to indicate that
this association fulfills certain restrictions for as long as the file is open.

— Accesses to a file are independent if, in all data transfers, each file part is asso-
ciated with the same processor node. An INDEPENDENT argument in the OPEN
statement may be used to specify this condition (which simplifies file caching).

— A data transfer is aligned if each file part is associated with a unique proces-
sor node (is not split among two processor nodes). We may use an ALIGNED
argument in the OPEN statement to specify that all data transfers are aligned.
(INDEPENDENT implies ALIGNED, but not vice versa).
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Section 14

FORALL-ELSEFORALL

construct

FORALL-ELSEFORALL construct is a natural generalization of Fortran 90 WHERE-
ELSEWHERE construct. A construct proposed in previous drafts of the HPF:

FORALL(I=1:N,J=1:N)
WHERE (MASK)
assignment
ELSEWHERE
assignment
ENDWHERE
ENDFORALL

seems to introduce unnecessary limitations coming from limitations of WHERE construct:
the mask array must conform with the variables on the right side in all of the array assign-
ment statements in the construct.

14.1 FORALL-ELSEFORALL Construct

The FORALL-ELSEFORALL construct is a generalization of the masked element array
assignment statement allowing multiple assignments, masked array assignments, and nested
FORALL statements to be controlled by a single forall-triplet-spec-list. Rule R215 for
ezecutable-construct is extended to include the forall-construct.

14.1.1 General Form of the FORALL-ELSEFORALL Construct

J1401 forall-construct is FORALL (forall-triplet-spec-list
[, scalar-mask-ezpr ])
forall-body-stmt-list
[ELSEFORALL)
[elseforall-body-stmt-list]
END FORALL

J1402 forall-body-stmt is forall-assignment
or forall-stmt
or forall-construct
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J1403 elseforall-body-stmt is forall-body-stmt

Constraint: indez-name must be a scalar-name of type integer.

Constraint: A subscript or a stride in a forall-triplet-spec must not contain a reference to
any indez-name in the forall-triplet-spec-list.

Constraint: Any left-hand side array-section or array-element in any forall-body-stmt must
reference all of the forall-triplet-spec indez-names.

Constraint: If a forall-stmt or forall-construct is nested within a forall-construct, then the
inner FORALL may not redefine any indez-name used in the outer forall-
construct. This rule applies recursively in the event of multiple nesting levels.

For each index name in the forall-assignments, the set of permitted values is determined
on entry to the construct and is

(m2-ml+1)

m1.+ (k=1)*m3,where k =1,2,...,| 3

]

and where mI, m2, and m3 are the values of the first subscript, the second subscript, and
the stride respectively in the forall-triplet-spec. If stride is missing, it is as if it were present
with a value of the integer 1. The expression stride must not have the value 0. If for some
index name |(m2 — m1 + 1)/m3| < 0, the forall-assignments are not executed.

14.1.2 Interpretation of the FORALL Construct

Execution of a FORALL construct consists of the following steps:

1. Evaluation in any order of the subscript and stride expressions in the forall-triplet-
spec-list. The set of valid combinations of indez-name values is then the cartesian
product of the sets defined by these triplets.

2. Evaluation of the scalar-mask-ezpr for all valid combinations of indez-name values.
The mask elements may be evaluated in any order. One set of active combinations of
indez-name values is the subset of the valid combinations for which the mask evaluates
to true and a second one is the subset of the valid combinations for which the mask
evaluates to false.

3. Execute forall-body-stmts in the order they appear for the set of the valid combination
of indez-name for which mask was evaluated to true in the step 2. Each statement
is executed completely (that is, for all active combinations of indez-name values)
according to the following interpretation:

(a) Assignment statements, pointer assignment statements, and array assignment
statements (i.e. statements in the forall-assignment category) evaluate the right-
hand side ezpr and any left-and side subscripts for all active indez-name values,
then assign those results to the corresponding left-hand side references.

(b) FORALL statements and FORALL constructs first evaluate the subscript and
stride expressions in the forall-triplet-spec-list for all active combinations of the
outer FORALL constructs. The set of valid combinations of indez-names for
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the inner FORALL is then the union of the sets defined by these bounds and
strides for each active combination of the outer indez-names. The scalar mask
expression is then evaluated for all valid combinations of the inner FORALL’s
indez-names to produce the set(s) of active combinations, as in step 2. If there
is no scalar mask expression, it is assumed to be always true. Each statement
in the inner FORALL is then executed for each valid combination (of the inner
FORALL), recursively following the interpretations given in this section.

4. Execute elseforall-body-stmts for the set of active indez-name for which the mask was
evaluated to false in the step 2, the same way as in 3.

If the scalar mask expression is omitted, it is as if it were present with the value true.
In that case ELSEFORALL statement is not allowed.

A single assignment or array assignment statement in a forall-construct must obey the
same restrictions as a forall-assignment in a simple forall-stmt. (Note that the lowest level
of nested statements must always be an assignment statement.) For example, an assignment
may not cause the same array element to be assigned more than once. Different statements
may, however, assign to the same array element, and assignments made in one statement
may affect the execution of a later statement.

14.1.3 Scalarization of the FORALL-ELSEFORALL Construct

A forall-construct of the form:

FORALL ( v=l:u:s, mask )

a(l:u:s) = rhsi
ELSEFORALL

a(l:u:s) = rhs2
END FORALL

is equivalent to the following standard Fortran 90 code:

!evaluate subscript and stride expressions in any order

templ =1
tempu = u
temps = s

!then evaluate the masks
DO vi=templ,tempu,temps

tempmask(v) = mask(v)
END DO

'then evaluate the first block of statements

DO v=templ,tempu,temps
IF (tempmask(v)) THEN
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temprhsi(v) = rhsi
END IF
END DO
DO vi=templ,tempu,temps
IF (tempmask(v)) THEN
a(v)=temprhsi(v)
END IF
END DO

!then evaluate the second block of statements

DO v=templ,tempu,temps
IF (not.tempmask(v)) THEN
temprhs2(v) = rhs2
END IF
END DO
DO vi=templ,tempu,temps
IF (.not.tempmask(v)) THEN
a(v)=temprhs2(v)
END IF
END DO
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