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Abstract

We present. in this paper the computation of the DSO objective function in the
general acoustic case. In this model, the density and the velocity are functions of
the space variables. We use a pertubationnal approach, justified by the separation of
scales between the long and short wavelength components of the model. An extension
of the adjoint state technique yields an accurate expression of the gradient of the
DSO objective function. Then we use a finite difference approximation of the wave
equation, and give in the discrete case the expression of the gradient. We show in that
case how to apply the principle of images, so that the discrete operators involved are
self-adjoint and give exact discrete integration by parts.
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1 The Forward Map

We consider the following wave propagatbn problem. Given an acoustic medium defined
by its the density p(z,z) and its velocity ¢(z, z) for (=,2) € Q =]0; X[x]0; Z[ t €]0;TY,
find the pressure field u(z, z,t) which is the solution of the radiation problem :

(1 ) - ¥(

'IWW(J’J Vu(xvt)) = f(J?,Z,t;.‘t,,Z,)

1
(7, 2)

(1) < u(z,z,0) = du(_r z,0) =

u(0, z,t) = w(X, 2,t) = u(=,0,t) = u(z,Z,t) = 0

\

here (z,,2,) is the location of the source. To find solutions of this problem, we adopt a
pertubationnal approach. We look for solutions 'close’ to a reference solution ug given for
a reference distribution of density p, and velocity co. We therefore suppose p and ¢ to be

given by

(2)

p(x,2) = po(x,2)+ 6p(z,2)

c(r,z) = co(x,2)+ bc(r, 2)

We use in those expressions the separation of scales inherent to the physics of the prob-
lem. co(z,2) and py(=x, z) are supposed to be smooth functions, and é¢(z, z) and ép(z, z)
are supposed to be oscillatory functions. We suppose that the pertubations are relatively
small compared to the references that is :

bc
H |I<<1 =l <<1
€o

where ||.|| is a certain norm on the functional space where p and c are defined (e.g the L?
norm). We will see as the calculation proceeds the necessary regularity of the different so

called models. _
Then we look for a solution written as u = wug + du where up verifies (1) and 6u is the

solution of the linearised problem :

(1 9%u 1. 1 [ép ) D%ug
— L _Y(—Véu) = — [ —=+2— -V V
poc§ Ot? (/’0 ®) pocd (pu +2 o/ 0% ( o)

(3) Su(x,2,0) = ()bu(.r z,0)=

| 6u(0, z,t) = du(X, z,t) = du(xr,0,t) = éu(s, Z,t) =0
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We define the reflectivities (cf [1]), as the relative perturbations, that is :

=¢_5_;: , éc

r
p c
Po Co

Supposing that f, 7, and rc do not have overlapping supports, we can write (3) as follows

(L w1, 1 r
= I g(=Véu) = (r, + 2r.) V(—Vug) - V(£V
Pocl 012 (PD ) (rp ) (PO 0) (PO o)
(4) ﬁ éu(z,2,0) = ib-ﬁ(a:,z,O) =0
ot
| 6u(0,2,t) = bu(X, z,t) = bu(x,0,t) = 6u(=, Z,t)=0

We are now able to define the forward map F of our inverse problem. It maps the functions
defining the medium, the density p, the velocity c, the reflectivity in density 7, and the
reflectivity in velocity 7. to the seismogram produced in this medium at the array of
receivers (Zr, zr)r=1..r by the source f(t) located in (£, 25)s=1..5-

Therefore we define the forward map by :

S R
F(ﬂ, C, Ty rc)(t; Ly Z,) = z Z ‘(l(JT,-, A N Z,)

s=1r=1

where u satisfies :

( 1 0211.0 1
7)?2-—0;5— - V(;;V‘U.o) = f(.l!, z,try, -,)
1 0%u | . 1 r,
;»_c—l-{)T’. - V( ;;Vu) = (7, + 2r¢) V(-/-,-V'u(,) -V( ;’-Vuo)

(5) ﬁ 01!0

u(z,z,0) = uo(r,2,0) = %1—:(:1:,2,0) =5 xr,2,0)=0

uo(0, z,t) = uo(x,0,t) = uy(X, z,t) = uo(r, Z,t) =0

| u(0,2,t)= u(r,0,t) = u(X,z,t)= uw(r,Z,t) =0
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2 The Objective Function and the Normal Equations

Following [2], we introduce the Differential Semblance Objective function as :

' J(p,c) = min,, . JDs(p,c7pTe)
J = 2{IFGerpr) = Fasal? eacll;
(6) 4 D§(pwcarparc) = 5 | (/’,C!"'pﬂc)- data Lz(O;T)+6P“5;:“L7(Q)
Ore
‘ + ﬂcllmlliz(g) + M2|[Wr,llZa(q) + '\§||WTc||2L=(n)}

where W is a regularizing operator, for instance W = I or W = V; (cf [3]). The first
term of Jps fits the data and the other part of Jps enforces coherency in the inverted
models (cf [3]). When we use W = V... we need r, and rc to belong to H 1(Q).

We see by the expression of the cost function alone, that we have two minimization prob-
lems to solve.

First the minimization on the so called ‘inner variables‘ r, and r.. Then once r, and .
determined at p and c fixed, we want to minimize J over the so called ‘outer variables‘ p
and c.

We start with the inner variables minimization. We want to compute the gradient of Jps
with respect to r, and r.. The first variation é.Jpgs of Jps with respect to a variation ér,
and 8. in 7, and r. is given by :

dr, 0ér,

6Jps = (D, Fép+ D, Féc F- F,[,,g,.)L,(O;T) +a? (()T’ 92 )Lﬁ(n)
‘s “8

, [ Orc Obr 1774
2 + A\ (Wér, W + A (Wé
+ te (5;2-’—01::)L2(0) A, (Wer,, r/’)L’(ﬂ) A (Were, rezx(a)

where D, F is the derivative of Jps with respect to 7, and D, F is the derivative of Jps
with respect to r.. This can be written as :

2
§Jps = (op, D, F*(F = Fuuta) — a}‘.—-—‘f,,rz" + »\}‘.WTer)
Ts L(@)
. e 2027'6 2T
+ bc,Dr,_F (F - quta) - a. Or2 + ’\cW Wre
Ts L2(N)

where D, F* is the adjoint operator of the derivative D, F and D, F* is the adjoint of
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the derivative D, F. This simply means that :

V..Jps = D,.”F'(F Fyata) - paa r: + z\iWTer
(7 o
V..Jps = D F"(F - Fusta) = 035 ’; + 2wTwr,

" When we use W = V. ., we have to suppose that r, and r. belong to H%(Q).
Setting the gradients to zero in (7) we get the following normal equations :

M, F - rrf,‘(),) 2" + NXWTwr, = M, Fia
(8)
M, F- ‘”‘+,\2WTW = M,.F
re ac r 2 Te = rcL'data

Now we need to know the effect of the operator D, F* = M,, and D, F* = M,_on some
seismogram ©(r, Zr, t; sy Zs)- Since F is linear in 7, and r., we have :

D, F.ér, = F(p,c,ér,,0)

D, F.br.

F(p,c,0,67)

therefore

(M;,,67,)[aq) = tp(a:,., 23 Tay Zs)s Dr, F (2 €, 71 16)-87)) 20,1

M= u[\’]u.

£

(@(£ry 2r; T3y 25)s F(py €7, 0)-87,) 120.7)

—

1r=

@
[
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We have F(p,c,,,0) = du solution of :

' ;1;50(;:;1' - V(%Vﬁu) = b’r,,V(-:';Vuo) - V(a—;—eVuo)
;t—,%;‘% - V(%V"-o) = f(z,2,t7,,2,)
(9) ﬁ du(z,z,0) = {-%tu-(z,z,O) =0 )
6u(0, z,t) = du(X, z,t) = éu(r,0,t) = bu(z,2,t)=0
ug(x, 2,0) = M(J, z,0) =

u9(0, 2,t) = up(X, 2,t) = uy(x,0,t) = uy(z,Z,t) =0

\

Following a well known technique (cf [5], [6], [7]), we define the adjoint wp state as follows

(

_1-021”0 V( V , ) Z ( t )6( '
p62 atZ Wwy) = -I(P TryZr i Tsy 3y 37—17,,2—2,)
10)
( | wy(x,2,T) = ()m(, £z,T)=0
. '(UU(O, zZ, t) = ’H’U(JY, z, t) = 'U)(’(;(S‘O’ f) = ‘“’U(Iy Z’ t) =0

then we have :

(Mrp‘p)arp)LZ(Q) = Z/ Z‘P(-"ra“rvt -"s"'a)(’"(-",-vt TgyZs) ‘lt

s=1 r=1

Z/ / Zc,o(r,,.,,,r Ty, 25)0(i = 14,2 = 25)0u(T, 2, T4, 2,) dr dz dt

s=1

= [T 1 0%wy 1
= Z_:/‘; ./Q(/K“ oI V(pru)) du(r, z,t; 7y, 2,) dz dz dt

. . 2 . ‘
’-1/ / (;,%QJ;ZZE - V(%Vﬁu)) wo(x, 2,t; 4, 25) dz dz dt
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1
Z/ / (br,,V(quu) - V(——ano)) wo(=, 2,t; 24, 2,) dr dz dt

s=1

/ / Z ( W, V( vm,)+ -Vonuo)dt) oér, dz dz

s=1

whence

M, o Z/ wy. V(= Vuo)+ Vonundt

s=1

I

in the same way we have :
S

R
(M 0, 87) 2q) = Z Z (@(irs 203 T 5y 25)s Dr F(py €,Tpy Te)-67) 20,1

s=1r=1

S R
= Z E ((P(I,-, 2ry Ly Z,), F(Py c,0, rc)-brc)[,'z(u;r)

s=1r=1

We have F(p,c,0,r.) = éu solution of :

(1 0%*u 1 " \
p_(ﬁ_()_tz_ —V(;;Vbu) = ZbTCV(;Vuo)
1 () 'll(j
cz dt3 —V( Vll() = f(:ﬂ,Z,t;:ﬂ,,Z,)
bu(z,2,0) = == ‘)"" r,2,0)=0

(11) ﬁ
§u(0, z,t) = ou(X, z,t) = éu(x,0,t) = du(s, Z,t) =0

uo(x,2,0) = -dl'(-’-(.r,..,O) =

u0(0, 2, t) = uy(X, z,t) = u(r,0,t) = ug(r, Z,t) =0
then we have :

(Mrc‘P7 6rc)L2(Q) Z/ Z‘r’( rr1~r9f Tyy< ‘s b"(-r ‘va-rav-'s ’lt

s=1 r=1
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Z/ / E SO(:Br,Zr,t;lﬁ,, z:)d(z —T5Z- 33)6"(3’ z,t; T4, Z,) dr dz dt

s=1 r=1

= [T 1 9%wp 1
= Z:_/o _/n(;)?_—()tz - V(;;V‘l(’q)) 61L(Jt,z,t,3:” z’) dr dz dt

1 0%6u 1
= Z/ / (-,;z;-(-)t—z- —V(;V&u)) wo(z, 2,8 T4, 2,) dr dz dt

s=1

S T - A .
= Z/ / (‘261".V(-:-’Vuo)) wo(Z, 2, t; £, 25) dz dz dt
s=1
/ (/ Z 2. V(—VII())llt) bre die dz
Y] 0

s=1

whence

Z/ 2wy, V(-Vuo)(lt

s=1

We then solve the normal equations by an iterative algorithm using Chebycheff polynomials
(cf [1])-
3 Computation of the gradient

We assume now that the normal equations have heen solved exactly, and therefore we have
r, and r. as functions of p and c. Therefore

( j(p,C) = JDS(PsCyr;ﬁ(/’a")i"t(ﬂ"“))

ar,(p,
“__;_(__

1 )2
(12M = 2 {”F(Pv ¢, m(py )y TP, c)) - qum”'ia(u;r) +a, “Lﬁ(n)

drc(p, )2

+ ol |22y + A 2|Wr,(p, )IEaq) + '\ZHWTc(P,C)“Lz(n)}

The first derivative of J due to a perturbation (4p, éc) in (p,c)is given by :

Dj(/” c))-(6p,bc) = D,Jps(pc, r(pyc)sreps c))-6p+ D.Jps(p,c,m(psc)itdp, c)).bc
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+ Dr,,JDS(/’v ¢ 7u(py c),rpyc)) (Dprolps c).6p+ DcT,,(p, c).bc)

+ D, . Jps(p,ec, ro(py )Py c)) (Dpre(p,c)-6p + D r.(p,c).bc)

But since we assumed that the normal equations have been solved exactly, cf (7) then :
D, Jps(pye,to(p,€)ste(pyc)) = 0
D, Jps(p,c,m(pre)sre(prc)) = 0
and we get the following simpler expression for the derivative of J :
DJ(p,c)).(§p,6c) = D,Jps(p,c,ripsc)stelpic))-p + Delps(psc,ri(pye)stedp,c))-be
Since |
Jpu0) = SNy r) = Fuaallbaay + €7
where £ does not depend explicitly on p and ¢, we have :

D,Jps(p,c,tmre)bp = (DoF(p,c,rprc)bp, F(p,¢,Tp7e) = Fdata) [2(0,7)

DCJDS(/’v CyTpy rc).ﬁc (DCF(/’v CyTpy 7'(')-667 F(ﬂv CyTpy rc) - Fdata)[}(o;'r)

Now to compute the gradients of J with respect to p and ¢, we must find two bilinear
forms B, and B, such that

(DpF(p,c;Tpyte)-bp, F(psc,1py Te) = Fdata)m(u;r) = (ép, B,.(F(p,cyTpy1c) — Fdota))Lz(Q)

(DF(p,cy7p, re).dc, F(p,c, 1), Te) — Rl:nta)Lz(u;T) = (éc, B(F(p,c,Tp, Te) — Fdata))Lz(Q)
Remark

r, and 7. being chosen as the solution of the normal equations, they are fixed. To
enhance this fact, we use a different notation and from now on we will use ¢, for r, and
g for 7.
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We know that u = F(p, ¢, ¢c) is the solution of :

(1 O*u q
c2 oz V( V“) =(q + 2‘Ic) V( Vﬂo) (;PVuU)
1 0211-0 1
y ﬁ; ot? ‘-.V(;Vuo) = f(=, 2,8 %5, 25)
(13) < Jdu Buo

u(z, z,0) = uo(s,2,0) = —&(:r,z,O) = (z z,0) =

uo(0, 2, t) = ug(=,0,t) = uu(X, z, t) = uo(x,2,t)=0

u(0,2,t) = u(x,0,t) = w(X,zt) = u(s,2Z,t)=0

\
With a little algebra it is easy to see that §u = D,F(p, ¢, qp, 4c)-0p is the solution of

(1 0%

a7~V Lobu) = -V( Lvu)

b,f {V( Vu) + (90 + 24¢) V(= Vu.,) - V(£ "’vuo)}
= (10 + 2¢c) V(—V“o) +V l" V‘u.(,)

+ (4 + 2¢c) V( V"’“u) - V(= l"Vﬁuo)

(14)5
1 9%6ug 1. ép
[_)::EW_V(;V‘S“O) = V( V'l u) V( V’llu)
§u(2,2,0) = buo(z,2,0) = o (z,2,0) = 5(2,2,0) = 0

§uo(0, z,t) = bug(r,0,t) = bug(X, z,t) = dug(r, Z,t) =0

| 6u(0, z,t) = éu(s,0,t) = ou(X,z,t)=o6u(r,Z,t)=0
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Given a seismogram ¢, we can now evalunate the following quantity :

S R
(DpF(/” CyTpy Tc)'ﬁpy 99)[,2(0;7) = Z Z (99(3’r1 ZpyiLey 2s), 6U( Ty, 20y T, z’))LQ(O;T)

s=1r=1

= Z/ / Z G Ly 2y Uy 05y 25) OU(, 2, b5 8y, 2) 8(T = 24,2 = 2,) dz dz dt

s=1 1,21
= i/ / - O_w_o - V(iv"’ )| éu(x, z,t; 24, 2,) drdz dt
—a=1 0 /'62 ()tz p 0 ty ey by dogy s g
1 9% 1.
= 2/ /‘(Uu(J' z,tyry, 2 s)( 2 ()t‘ - V(;Vbu)) dr dz dt

= Z/ /n Yo (V(%Vu) + (g + 2q.) V(%V'u(, V(£ i Vuo)) ép dr dz dt
T 1
+/ / ;)_2 (VwoVu + V((qp + 24 )100) Vg = 4, VuoVuy)ép dr dz dt
0 Q

T .
+/ / (V( -l-V(q,, + 2qc)wy) — V( quw.,)) duy dx dz dt
o Ja P r

where wy is the solution of (10). To find the expression of the gradient of J with respect
to p, we need to work on the last integral. We introduce another adjoint state w defined

by :

(1 dw
pc? 02

(15) ﬁ w(r,z,T)= ()m(.rzT) 0

- V( Vm) (;V(q,, + 24 )wy) — V(%”-Vwo)

| w(0,z,t) = w(X,z,t)= w(r,0,t)=w(r Z,t)=0
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We can then pursue the previous calculation :

S .1 .
1=3 [ [ (VG900 + 2000) - V() o da dz
o Ja .

“/ s=1
S 1 O*w 1 ‘
- mzl/o -/i:t (FW - V(;,'V"’)) duy dr dz dt
i /T/ ) 1 (')26”() V( 1V6‘u ) ie de dt
= - _ 1 L
s=17/0 JQ b pct Ot P 0 dr
S T
= Z/ (/ ZV( iVll,u) + —lr‘-Vqu(,rlt) op dz dz
=1/8\Jo p P p

whence :

H S T wm, 1 1 q,
v,J = Z/u 7(1 (V(-,;Vu) + ('11,, + 2¢.) V(;Vuu) - V(%Vuo)) dt

s=1

N T |
(16) + Z/“ /)—‘ (VuyVu + V((qp + 2¢c)w0) Vg — ¢, VugVug) dt

s=1

+ i/r (EV(£VM )+ inVu ) dt
o \p p 0 p? 0

. s=1
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From (13) we can derive the equation verified by éu = D.F(p, ¢, ¢c)-0c :

(1 0%u L. be 1

é 1
+22 {4 + 200 V5 Vo) - V(250

+ (10 + 206) V(5 V60) - V(L V510)

Lo 1 i _ . éc 1
FW— -— V(’/‘)’Vbno) = 2 c V(;V'lu)

du(x, z,0) = dug(xr, 2,0) = (—)grﬁ(w. z,0)= ‘-):)1:0

(#,2,0)=0

dug(0, z,t) = dug(x,0,t) = dug( X, z,t) = bug(r,Z,t)=0

( 6u(0, z,t) = du(:r,0,t) = du(X, z, t) = du(r,Z,t)=0

Given a seismogram ¢, we can now evaluate the following (uantity :

S R
(DCF([?, Cy Ty 1.6).6c, ¢)L2(();T) = Z: 2 (LP(QFM ZyryLsy z:)v b’ll(mrv Zry Ly z’))L’(O;T)

s=1r=1

S T R
= Z/ / Z O(Fry 2r, bty £y, 25 )00(ir, 2, 8 25, z,)0(r = vy, 2 — 2,) drdzdt
0 JQ

s=1 r=1
ST 1 9*w 1
= ;/0 /n (Fﬁ—at-‘z—({ - V(;V'uu,)) dule,z, bt xy,z5) duo dzdt

S T 2 ‘
= Z/ / wy(, 2,8y 2y) -Lz-(—)—z-zi - V(£V61£)) dir dz dt
s=1/0 Ja pet ot P

13
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= Z/ / 2— (V( =Vu) + (4, + 24c) V( Vuo) - V( ~LVuo ) dc dz dz dt

s=1

T | 1
+ / / wo (4, + 24e) VoV (= Vo — V(L Véuo) da dz dt
o Ja P p
= Z/ / 2w° (V( =Vu) + (qp +2q:) V(= Vuo) —v(k Vuo)) bc dr dz dt

T
+/ / dug (V(£V(q,, + 2¢c)uny) — V(flﬁun)) dr dz dt
o JO r 4

where 1wy is the solution of (10). Introducing w the solution of (15), we can write the
second integral as :

Z/ / (V( V(gp + 2¢c)wy = V(—un)) duy dr dz dt

s=1
= Z/ / Lﬂ - V(£V'm) duy da dz dt
= pet Jt? ) A
1 () b‘llo 1 .
= ;1/ / w (pﬂ P V(;Vbu.o)) dr dz dt
w
= Z/ 2 V( Vu(,) dt) bc dr dz
s=1 ¢
whence :
( - o W0 wo oy
v.J = Z / V(s Vu)+(q,,+2q¢.)V( 1) - 222 9(Lvu,)
s=1
(18)4

+ Z ZE{V( VU()) llt

\ s=1
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4 Implementation of the Gradient

We now turn to the implementation aspects of the computation of the two gradients
obtained above. We are going to use a finite difference method to compute the different
wave fields we need. We summarize below the expressions of the two gradients and the
equations we need to discretize to compute them.

. S .
v, = 3 T wy V(Evu) + (g, + 2 ) V(AVuo) - V(2 Vug)) dt
P o p p lp e p P 0
=1 )

N T |
+ E/o ;i (VwoVu+ V((q, + 2¢¢)wo) Vg — 4, VwyVug) dt

s=1
+ i /T (EV( £Vno) + —I:IVqu.o) dt
=Jo \p 'p p
V) = i /T 9 (V(qu) + (g, + 2q‘.)V(quo) - 2HV(‘I—"V1£0)) dt
=70 ¢ r p c P

s T w_,l
+ Z/u 22V(=Vno) dt
s=1

where the two direct states ugy, u are solutions of :

1 0% 1
pagm ~VGT) = S nhis)
ou
\ uy(x,z,0) = Ttg(m’ z,0)=10

L uy(0, z,t) = (X, 2,t) = wy(r,0,t) = u(x,Z2,t) =0

(1 0%u 1 . 1 qp
;)?-5{2- - V(;Vu) = (qp + 2¢c) V(;Vuo) - V(;’-Vuo)

ﬁ u(x,z,0) = %1—:(:5,2,0) =0

| w(0,2,t)= w(X,z,t) = u(s,0,t)= uw(x,Z,t)=0
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and the two adjoint states wy and w are solutions of :

1 32WQ

R
1 .
_pc2 —at2 -— V(;Vwo) = E (F(ﬂ, Cy py ‘lc)(zn zrat; Tsy za) - Fddtd(t))b(z —T5,2— Z,)

r=1

ﬁ wo(z,2,T) = %;—l;—o(m, 2,T)=0

wo(0, z,t) = wo(X, z,t) = wo(x,0,t) = wo(=, Z, t)=0

(1 Q®w 1 1 - ”
—_— —-V(=-V = V(=V(q, + 2. —v(ly
pc? Ot? ( P w) (p (4p + 2¢c)wn) (p wy)

4 | Jw _
w(z,2,T)= -5‘:—(.n,..,T) =0

w(0, z,t) = w(X, z,t) = w(x,0,t) = w(x,Z,t)=0

The finite difference schemes used to simulate those wave fields are of order 2 in time and
2L in space, where L is the number of points used in the calculation of the derivative.
Those schemes are described in detail in [4].

In the previous calculations, we repeatedly used the vanishing of ug, #, wp and w on the
boundary of the dowmain. In order for these calculations to carry over to the discretized
equations we need to make sure that ug, un, wo,n and wy,, discrete equivalents of uo, ,
wg and w, have the same property, with the same consequences.

For this we use the well known ‘image principle’, by extending won, ®n, Won and w,
outside the domain.

First, we define some functional spaces, to which o, wn, won and w;, will belong.

N: N!I

Lg,o = { p € LZ(Q) /| ¢= ZZ‘P:‘J 1[(;‘-%)Ar.(i+:})Au~]x[(j-%)A:,(j.plz-)A;](xaz) }
=1 j=1
N;—l Ny—l .

L2, = S pel*Q) / p= ooy Pipdi+h Liax (i+1) A x[iaz(i+1)a5) (F52)
=l =1
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N, Nyg-1
L. = {LPG L¥Q) [ ¢=2 2 Pijeb L-baz i+ hazxas+1ad] (%) 2) }
=1l =1
Ns-l Ny
L2, = { pel?(Q)/ ¢= Y 2@kl Liaz+1)asx((i- DAz i+ bas) (% 2) }
i=1l j=1
where

1 (z,2) € [a,b] x [c,d]

l[u.b]x[c.d]("""z) =

0 (s2)¢[a,b] x[c,d]
We approximate the first derivative by the following operator :

Ag : Lz,o - Lz.o L
U — A‘,fzz(i+%,j):z-f—fr-[u(i+l,j)-u(i-l+1,j)]
=1 ’

A2 is a finite difference approximation of order 2L in ((i + 1)Ax, jAz) of the quantity %,

with the coefficients (3;)i=1..L defined in appendix 1. The exponent refers to the departure
set L2 ,; the subscript to the direction of differentiation. Similarly we define :

o . 2 2
Az * L(l,u Ln,'

[

u — Alu(i,j+ %): —ﬂ%[u(i,j-i-l)-u(i,j—l-l-l)]
=1

Ay ¢ L, — L2,

.-'-1_Lﬂl/.ll.1 .11.1
v AnGi+h =L G tdt-uli=l+git3)l

A : LE, — L%,
L
3 A S 1 .1 1
v o o— A;"(ivj'*'%)=ZLA'IZ[“(‘+:2,J+’+..'2')""(1+§,J—1+§)]

=1

y l l - 1 0 - 1 d
We approximate the quantity V(;;Vu) by V,L(;)-th) = —‘A,,(_;Aru) =t A,(;A;n)
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Fig 1 : The original and shifted grids

The finite difference operators use 2L points to compute the derivative. For instance, AZu
approximates %‘;ﬁ- in ((i + 3)A=x,jAz) with L points to the right, and L points to the left
of ((i + §)Ar, jAz).

Therefore when we reach the houndary of the domain, for iustance, we miss points to
compute our derivative. A way to solve that problem is to extend the function we need
outside the domain Q. There are many ways to do so, but we keep in mind that we want
our discretized functions to be subject to Dirichlet houndary conditions.

We are going to derive the way to extend the discretized functions, so that they will vanish

1 . . .
on the boundary, and the operators V;,(=V)u) will be self adjoint.
)
Since the derivatives are taken, each time in one direction, it is equivalent to consider a

unidimensionnal problem. We consider = [0, X] and we set Q, = (1,2..N] and Q. =
[1,2..N — 1]. We define the finite difference operators as follows :

Aa . Lz(Qo) — Lz(ﬂ.)
L
u — A%u(it+ 1) = Z i = wicig]
) =1

A" LI(Q.) -_— LZ(Q(,)

v — A%v(i) = Zu,[ui_’_l_% - “i—l+§-]
=1
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with a; = fi/Az and :

N:

L}Q,) = { ¢ € LX(Q) / ¢ =) 0i lg_tyaz(i+h)ad(?) }
=1

. Na-1

L*(Q.) = {‘PG L¥Q) [ o= ), Pivt liaz(i+1)a7] }
=1

Thoses spaces are provided with the usual scalar products defined by :

N
(f,.(l)[ﬂ(no) = (f,.‘l)o=2f;g.'AmAz
1=1
N-1
(f’g)Lz(Q-) = (f’g)t = Z fi+;_yi+%A$AZ

=1

We suppose that the boundaries of the domain are located in i = 1 and 7 = N, so that
u; = uy = 0. We extend u € Q,, outside , by the following procedure :

Ul-k = —Ur4k k=0.L-1

UN4k = =—UN-k k=0..L-1

That is we skew-symetrize u, at the houndary. Now we want to find under what conditions
we have

(Au,v). = (v, *Au),
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That is an integration by part without houndary terms We have

N-1
(Au,v). = ZA":'+§- v,

1

2

N-1L

= Z Z a(Wigt — Wizlg1) ;

i=1 (=1
L N-1

- Za;( et Vg = 3 Wit Ty
=1  "\i=1 i=1
L

- S
I=1

N+il-1

Z R E Uj VoL
j=l+1 j=1-l

N L

= 2D vyt = i) - Z“' Z": Vieipy Z Ui
i=1 [=1 =1 j=2-!
L N+i-1

+ Zal Z Uy v l+’+ Z Uy Vi~ L

=1 Jj=N+1 i1=N=l+1

YVipi-1

(v, tAu), — Zaz Zu] ", —l+5-+ Z R
1=1 1=2-l
L N+l-1 N
ST I ST 5 A
=1

j=N+1 1=N-=l+1

Therefore we have boundary terms,given by

!
Bo= (St 3 ey
j=1 j=2=l
L

B, = 211,1

I=1

N+i-1

Z u; v;_ 1+1 + Z Uj VgL
J=N+1 j=N=i+1
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We have
L l 0
B, = Zu; Zu, Viled + Z Uj VoL
=1 i=1 j=2-l

-1

=2 k=1

»
.
[
-

-
[
—

w1k ( Vi—t4l T ”-k+z+§-))

and

L N+i-1
B, = Z“‘ z u; ”,_1+L+ z uj )

=1 i=N+1 j=N=l+1
L -1 -1
= Z”‘( UN+k VN 4k l+‘+Z"V kUn_ ki-L
=1 k=1 k=0
L -1 -1
= a‘( UN+k VN k= l+L+Z"V kUN- k+l-—
=1 k=1 k=1
L -1
= Z W (Z '"'N-k('"N-k+l-% - “N+k-l+§)>
i=1 k=1
We see that if we extend v outside Q. by symetry, that is :
Vogel = Vied k=0.L-1
UNpLek T UN4L-k k=0.L-1

we annihilate the boundary terms By and Bs.

!
PRLTEIE, D Bk Vopyis)

L (-1
= Zu, N4k ";—H—l + Uy v k+l+§-

21

)
)
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To summarize, with :

Uk = —M14k k=0..L-1
UN4k = —UN-k k=0..L-1
kel T Ukl k=0.L-1
UNLek = UN+b-k k=0..L-:l

the implementation of V(qu) by V,,( V,‘u) = —‘A'(%A"u)

Alain Sei

A (- A"u) defines an

self-adjoint operator, and the integr :mons by parts carried out in the prevnons section for

the computation of the gradieuts, carriy over to the discrete case.
Therefore we define ug ,, 1), as solutions of

(1 PPugy

]
—V’L(;VIL"'U,’A) = f(;t,z,t;x,,z,)

pc? ot?
Do),
ﬁ "Oh(-rs vO)—(_:I)(i)L RN )-0

wn(z,2,0) = & “‘(:,-,0) =0

uy(0, z,t) = un(X, z,t) = wp(r,0,2) = wp(e,Z,t) =0

and the two adjoint states wyy, and wy, as solutions of :

u‘UJL(Ov z, f) = "U.l&(-’(v z, t) = 'II.()'[‘(:IT. 01 t) = "U./&(Is Zv f) =0

(1 O%u, 1 . | q
p_ci"at_z - Vh(;;vhuh) = (‘lp + zllc) Vh( ;)‘Vh“u,h) - VIL(';:LVI«'”'U.I;)
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1 321D0'h 1 R
- 7 Vh(-vhw().h) = E (F(Pa Cy Upy 'lc)(zra Zp, b, Ty, Z,) - Fdata(t)) 6(3 —Te,2— Z,)
pc? Ot p =
¢
'U)Q’h(ﬂ?, z, T) = au’o h( r,z, ) =

wo'h(O,z,"t) = wou(X,2,t) = wy (¢, 0,t) = wo(x, Z,t) =0

(10w,

1 1
- Vh(;vhwh) = VIA(;Vh((]p + 2(lc)wo,h) - Vh(:llf'vhwo,h)

wi(z,2,T) = -aﬁ'ﬂ £,2,T)=0

{ wi(0, z,t) = wi (X, 2,t) = wy,(r,0,t) = wy(r, Z,t) =0

The two gradients are now given by

S N
- wo 4, 1 1 1p
Voad = 33 == (vh(;v;.u,.n(q,,+2qc)vh(;v,.uu.;.)—v,.(‘F'v;,uo.;.)) At

s=1n=1

s N .
1
+ Z Z - (Vh“’l)'hvhuh + Vh((‘]p + 2{1(')7”(),I¢)Vh7"(l./t - ’Ipvlﬂ“(),hvh?lo,h) At

s=1n=1

S N
wy, 1
+ ZZ( ’Vh( thol.)-l-—Vm"thtuh) At

s=1n=1

S N
i , 1 A :
Verd = 33 2mk (vh( ~Viu) + (1, + 20) V(S 2 Vi) - 272w (42 tho,h)) At

s=1n=1

S N
+ ZEQEVI.( V/'t.'“'ll,h) Af

s=1n=1
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Remark :

It is important to notice the different contribution of a variation in density, or a
variation in velocity. The first one will essntially have an effect on the amplitude of the
reflected signals, whereas the second one will have an effect on the kinematic of the different
arrivals. Therefore a variation in velocity will be much more non linear effect on the cost
function than a variation in density.

That is why, thinking of the computational cost of gradients, it would be interesting
to drop the computation of the gradient with respect to p, and account for the variation
of amplitude in the ’inner’ variable r,.

5 Appendix

5.1 Appendix 1

The coefficients 8; are defined by 8 = /(2! - 1). For consistency reasons o are solutions
of N

L
Za[ = 1
=1
L
Y(@-1)%a = 0 p=1L.L
=1

Solving this linear system gives :

H (2m-1)

m#l

a = (_1)l+1 -

IT le2m - 1)? - (20 - 1)}
m#l
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