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Abstract

Fortran D is version of Fortran enhanced with data decomposition specifications. Case studies illustrate
strengths and weaknesses of the prototype Fortran D compiler when compiling linear algebra codes and
whole programs. Statement groups, execution conditions, inter-loop communication optimizations, and array
kills for replicated arrays are identified as new compilation issues. On the Intel iPSC/860, the output of the
prototype Fortran D compiler approaches the performance of hand-optimized code for parallel computations,
but needs improvement for linear algebra and pipelined codes. The Fortran D compiler outperforms the CM
Fortran compiler (2.1 beta) by a factor of four or more on the TMC CM-5 when not using vector units. We
find that that the success of the prototype compiler is linked to the ratio of communication to computation
inherent in the computation; the compiler most closely approaches the performance of hand-optimized code

when communication overhead is a small percentage of total execution time.

1 Introduction

Fortran D is an enhanced version of Fortran that allows the user to specify how data may be partitioned
onto processors. It was inspired by the observation that modern high-performance architectures demand that
careful attention be paid to data placement by both the programmer and compiler. Fortran D is designed
to provide a simple yet efficient machine-independent data-parallel programming model that shifts much
of the burden of machine-dependent optimizations to the compiler. It has contributed to the development
of High Performance Fortran (HPF), an informal Fortran standard adopted by researchers and vendors for
programming massively-parallel multiprocessors [16].

The success of HPF hinges on the development of compilers that can provide performance satisfactory
to users. The goal of our research with the Fortran D compiler is identify ﬁnportant compilation issues
and explore possible solutions. Previous work has described the design and implementation of a prototype
Fortran D compiler for regular dense-matrix computations [14, 17, 18]. This paper describes our prelimi-
nary experiences with that compiler. Its major contributions include 1) advanced compilation techniques
needed for complex loop nests, 2) empirical comparison of the prototype Fortran D compiler against hand-
optimized code on the Intel iPSC/860 and the CM Fortran compiler on the TMC CM-5, and 3) identifying
the connection between computation and compiler performance.

In the remainder of this paper, we briefly introduce the Fortran D language and illustrate how Fortran D
programs are compiled. We use case studies to introduce a number of compilation problems and their
solutions. To evaluate the efficiency of the Fortran D compiler, we compare the performance of its output for
these programs and some kernels against hand-optimized versions on the Intel iPSC/860. We also compare



the Fortran D and CM Fortran compilers on the Thinking Machines CM-5 by translating representative
kernels into CM Fortran. Results are discussed and used to point out directions for future research. We

conclude with a comparison with related work.

2 Background
2.1 Fortran D Language

In Fortran D, the DECOMPOSITION statement declares an abstract problem or index domain. The ALIGN
statement maps each array element onto the decomposition. The DISTRIBUTE statement groups elements of
the decomposition and aligned arrays, mapping them to a parallel machine. Each dimension is distributed in
a block, cyclic, or block-cyclic manner; the symbol “” marks dimensions that are not distributed. Because
the alignment and distribution statements are executable, dynamic data decomposition is possible.

2.2 Basic Fortran D Compilation

Given a data decomposition, the Fortran D compiler automatically translates sequential programs into effi-
cient parallel programs. The two major steps in compiling for MIMD distributed-memory machines are par-
titioning the data and computation across processors, then introducing communication for nonlocal accesses
where needed. The compiler applies a compilation strategy based on data dependence that incorporates and
extends previous techniques. We briefly describe each major step of the compilation process below, details

are presented elsewhere [14, 17, 18]:

1. Analyze Program. The Fortran D compiler performs scalar dataflow analysis, symbolic analysis,

and dependence testing to determine the type and level of all data dependences.

2. Partition data. The compiler analyzes Fortran D data decomposition specifications to determine the
decomposition of each array in a program. Alignment and distribution statements are used to calculate
the array section owned by each processor.

3. Partition computation. The compiler partitions computation across processors using the “owner
computes” rule—where each processor only computes values of data it owns [5, 26, 32]. The left-hand
side (Ihs) of each assignment statement is used to calculate its local iteration sel, the set of loop itera-

tions that cause a processor to assign to local data.

4. Analyze communication. Based on the computation partition, references that result in nonlocal

accesses are marked.

5. Optimize communication. Nonlocal references are examined to determine optimization opportu-
nities. The key optimization, message vectorization, uses the level of loop-carried true dependences to

combine element messages into vectors [3, 32].

6. Manage storage. Buffers or “overlaps” [32] created by extending the local array bounds are allocated

to store nonlocal data.

7. Generate code. The compiler instantiates the communication, data and computation partition
determined previously, generating the SPMD program with explicit message-passing that executes
directly on the nodes of the distributed-memory machine.



We refer to collections of data and computation as indez sets and iteration sets, respectively. In the Fortran D

compiler, both are described using Fortran 90 triplet notation.
2.3 Prototype Compiler

The prototype Fortran D compiler is implemented as a source-to-source Fortran translator in the context of
the ParaScope parallel programming environment [4, 8]. It utilizes existing tools for performing dependence
analysis, program transformations, and interprocedural analysis [9, 13,20]. The current implementation
supports:

o inter-dimensional alignments

e 1D BLOCK and CYCLIC distributions

e loop interchange, fusion, distribution, strip-mining

e message vectorization, coalescing, aggregation

e vector message pipelining

e broadcasts, collective communications, point-to-point messages
e SUM, PRODUCT, MIN, MAX, MINLOC, MAXLOC reductions
o fine-grain and coarse-grain pipelining (preset granularity)

e relax “owner computes rule” for reductions, private variables
¢ nonlocal storage in overlaps, buffers

e loop bounds reduction, guard introduction

e global « local index conversion

e interprocedural reaching decompositions, overlap offsets

e common blocks

e I/O (performed by processor 0)

e generation of calls to the Intel NX/2 message-passing library

For simplicity, the prototype compiler requires that all array sizes, loop bounds, and number of processors
in the target machine to be compile-time constants. All subscripts must also be of the form c or i+ ¢, where
¢ is a compile-time constant and 7 is a loop index variable. These restrictions are not due to limitations of
our compilation techniques, but reflect the immaturity of the prototype compiler.

3 Compilation Case Studies

Examples in previous work mostly dealt with individual stencil computation kernels from iterative partial
difference equation (PDE) solvers. In this section, we illustrate the Fortran D compilation process for
linear algebra kernels, large subroutines, and whole programs. We point out strengths and weaknesses of
the prototype.compiler using case studies of four example programs and subroutines: DGEFA, SHALLOW,
DISPER, and ERLEBACHER. For these more complex codes, we find that the Fortran D compiler needs to:
e Robust translation of global/local loop bounds and index variables. Re-indexing accesses into tempo-

rary buffers.

e Partition computation in complex non-uniform loop bodies across processors, using statement groups
to guide loop bounds & index variable generation. Apply loop distribution and guard generation as
needed.

e Compile loop nests containing execution conditions that may affect the iteration space.

o Exploit pipeline parallelism, perform inter-loop communication optimizations.

e Use array kill analysis to eliminate communication for multi-reductions performed by replicated array
variables.



3.1 DGEFA

We begin with DGEFA, a key subroutine in LINPACK written by Jack Dongarra et al. at Argonne National
Laboratory. It is also the principal computation kernel in the LINPACKD benchmark program. DGEFA
performs LU decomposition through Gaussian elimination with partial pivoting. Its memory access patterns
are quite different from stencil computations, and is representative of linear algebra computations. As
many linear algebra algorithms involve factoring matrices, CYCLIC and BLOCK_CYCLIC data distributions are
desirable for maintaining good load balance. These distributions and the prevalence of triangular loop nests
pose additional challenges to the Fortran D compiler.

Figure 1 shows the original program as well as the output produced by the prototype Fortran D compiler.
For good load balance we choose a column-cyclic distribution, scattering array columns round-robin across
processors. The Fortran D compiler then uses this data decomposition to derive the computation partition.
Two important steps are generating proper loop bounds & indices and indexing accesses into temporary
messages buffers; both techniques are described elsewhere [31]. In addition, we found statement groups and

identifying MAX /MAXLOC reductions to be necessary.

3.1.1 Statement Groups

Whole programs and linear algebra codes tend to possess large diverse loop nests, with many imperfectly
nested statements and triangular/trapezoidal loops. These complex loops increase the difficulty of partition-
ing the computation and calculating appropriate local and global loop indices and bounds. Recall that an
iteration set represents the set of loop iterations that will be executed by each processor. The Fortran D
compiler partitions computation by modifying loop bounds to the union of all iteration sets of statements in
the a loop, then inserting explicit guards for statements that are executed only on a subset of those iterations.
To aid in this process, we found it useful in the Fortran D compiler to partition statements into statement
groups during partitioning analysis. Statements are put into the same group for a given loop if their iteration
sets for that loop and enclosing loops are the same. We mark a loop as uniform if all its statements belong
to the same statement group. Uniform loop nests are desirable because they may be partitioned by reducing
loop bounds; no explicit guards need to be inserted in the loop. Calculating statement groups can determine
whether a loop nest is uniform and guide code generation for non-uniform loops. . ' .
An immediate application of statement groups is loop distribution, a program transformation that sepa-
rates independent statements inside a single loop into multiple loops with identical headers. If the Fortran D
compiler detects a non-uniform loop nest, it attempts to distribute the loop around each statement group,
pro&ucing smaller uniform loop nests. If loop distribution is prevented due to recurrences carried by the loop,
the Fortran D compiler must insert explicit guards for each statement group to ensure they are executed only
by the appropriate processor(s) on each loop iteration. Statement groups also help because they identify

groups of statements that can share the same guard expression.



{* Original Fortran D Program =}
SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,l1
DOUBLE PRECISION a(n,n),al,t
DISTRIBUTE a(:,CYCLIC)
do k =1, n~-1
{* Find max element in a(k:n,k) =}
Sy 1=k
S, al = dabs(a(k, k))
doi=k+ 1, n
if (dabs(a(i, k)) .GT. al) then

{* Compiler Output for 4 Processors »}
SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j,k,1
DOUBLE PRECISIOF a(n,n/4),al,t,dp$bufi(n)
do k =1, n-1
k$ = ((k-1) /7 4) +1
{* Find max element in a(k:n,k$) =}
if (my$p .EQ. MOD(k - 1, 4)) then
1=k
al = dabs(a(k, k$))
doi=k+1, n

S3 al = dabs(a(i, k)) if (dabs(a(i, k$)) .GT. al) then
Sy 1 =3 al = dabs(a(i, k$))
endif l1=1i
enddo endif
Sy ipvt(k) =1 enddo
if (al .NE. O) then droadcast 1, al
Se if (1 .HE. k) then else
t = a(l,k) recv 1, al
a(l,k) = a(k,k) endif
a(k,k) = ¢ ipvt(k) = 1
endif if (al .FE. O) then
{* Compute multipliers in a(k+1:nk) =} if (my$p .EQ. MOD(k - 1, 4)) then
t = -1.0d0/a(k,k) if (1 .NE. k$) then
do i =k+1, n t = a(l,k$)
a(i, k) = a(i, k) = t a(l,k$) = a(k,k$)
St enddo a(k,k$) = ¢
{* Reduce remaining submatrix =} endif

Ss do j=k+1, n
t = a(l,j)
if (1 .HE. k) then
a(l,j) = a(k,j)
a(k,j) = ¢t
endif
do i = k+i, n
a(i, j) = a(d, j) + t*a(d, k)
enddo
Se enddo
endif
enddo
Sydpvt(n) = n
end

{* Compute multipliers in a(k+1:n,k$) =}
t = -1.0d0/a(k,k$)
doi=k+1i, n
a(i, k$) = a(i, k$) = ¢t
enddo
endif
{* Reduce remaining submatrix =}
if (my$p .EQ. MOD(k - 1, 4)) then
duffer a(k+1:n, k$) into dp$bufl
broadcast dp$bufi(l:n-k)
else
recv dp$bufi(1:n-k)
endif ’
1b$1 = (k / 4) + 1
if (my$p .LT. MOD(k, 4)) 1b$1 = 1b$1+1
do j = 1b$1, n
t = a(l,j)
if (1 .NE. k) then
a(1,j) = a(x,j)
a(k,j) = ¢
endif
doi=k+ti, n
a(i, j) = a(d, j) + txdp$buri(i-k)
enddo
enddo
endif
enddo
ipvt(n) = n

end

Figure 1 DGEFA: Gaussian Elimination with Partial Pivoting




DGEFA is a prime example of how statement groups work. During compilation, the Fortran D compiler
partitions the statements of the loop body into five statement groups. The first statement group (S; — —S4)
finds the pivot, and is executed by one processor per iteration of the k loop. The second group is the
statement Ss and is executed by all processors. The third group (Ss — —S7) calculates multipliers. Like
the first group, it is executed by only one processor. The fourth statement group (Ss — —Ss) calculates the
remaining submatrix, and is executed by all processors. The fifth and final group (S1o) is also executed by
all. Because loop k contains two variety of iteration sets, it is non-uniform. Its iterations are executed by

all processors, and explict guards are introduced for the first and third statement groups.

3.1.2 MIN/MAX and MINLOC/MAX Reductions

Putting statements S; through Sy in the same statement group requires detecting it as a reduction. The
Fortran D compiler recognizes it as a MAX/MAXLOC reduction by detecting that the lhs of an assignment al
at statement S is being compared against its rhs in an enclosing IF statement. The level of the reduction
is set to the k loop, since it is the deepest loop enclosing a use of al. The reduction is thus carried out by
the i loop, which only examines a single column of a. Since array a has been distributed by columns, the
reduction may be computed locally by the processor owning the column. The Fortran D compiler inserts a
guard to ensure the reduction is performed by the processor owning column k, then broadcasts the result.
This is also an example of how the compiler relaxes the owner computes rule for reductions and private
variables.

For MIN/MAX and MINLOC/MAXLOC reductions, the Fortran D compiler must also search for initialization
statements for the lhs of assignment statements in the k loop, assigning them the same iteration set as the
body of the reduction. Statements S; and S; are identified as initialization statements for the MAX/MAXLOC
reduction at S3. By putting them in the same statement group as the reduction, the Fortran D compiler

avoids inserting an additional broadcast to update the value of al at Sa.

3.2 SHALLOW

SHALLOW is a 200 line benchmark weather prediction program written by Paul Swarztrauber, National Center
for Atmospheric Research (NCAR). It is a stencil computation that applies finite-difference methods to solve
shallow-water equations. SHALLOW is representative of a large class of existing supercomputer applications.
The computation is highly data-parallel and well-suited for MIMD distributed-memory machines. A
Figure 2 outlines the version of SHALLOW we used to test the Fortran D compiler; it was modified to
eliminate I/O. Data can be partitioned quite simply by aligning all 2D arrays identically, then distributing
the result column-wise. We chose to block distribute the second dimension, assigning a block of columns
to each processor. The prototype Fortran D compiler was able to generate message-passing code fairly
simply. The principal issues encountered during compilation were boundary conditions, loop distribution,

and inter-loop communication optimizations.
3.2.1 Boundary Conditions

SHALLOW contains many code fragments solving boundary conditions for periodic continuations. As a result,
the Fortran D compiler needed to insert explicit guards for many statement groups. These boundary condi-
tions also required the creation of several individual point-to-point messages between boundary processors

to transfer data required.



{= Original Fortran D Program =}
PROGRAM SHALLOW
REAL u(¥,¥),v(¥,¥),p(¥,H) ,unew(¥,H) ,pnew(¥,¥),vnew (¥, N) ,psi(¥,N)
REAL pold(¥,¥),uold(¥,N),vold(X,N),cu(¥,N),cv(N X),z(¥,H),h(¥,N)
DECOMPOSITION d(N,N)
ALIGYE u,v,p,unew,pnew,vnew,psi,pold,uold,vold,cu,cv,z,h WITH d
DISTRIBUTE d(:,BLOCK)
{* initial values of the stream function & velocities x}
do j = 1,8-1
do i = 1 ,N~-1
u(i+1,j) = ~(psi(i+1,j+1)-psi(i+1,j))*dy
v(i,j+1) = (psi(i+1,j+1)-psi(i,j+1))*dx
enddo
enddo
do k = 1,Time
{= periodic continuation »}

{* compute capital u, capital v, z, and h x}
do j = 1,8-1
do i = {,§-1
cu(i+1,j) = .S5*+(p(i+1,j)+p(i,j))=u(i+1,j)
cv(i,j+1) = .5x(p(i,j+1)+p(i,j))*v(i,j+1)
z(i+1,j+1) = (fsdxt(v(1+1,J+1)-v(1,J+1))-fsdy*(u(1+1,J+1)
-u(i+1,3))) / (p(i,j)+p(i+1,j) +p(i+1,j+1)+p(i,j+1))
h(i,j) = p(d,j)+.25#Cu(i+L, ) *u(i+1,j+uld,j*u(d,jI+v(d, j+1)
»v(i,j+1)+v(i,jl*v(i,j))
enddo
enddo
{* periodic continuation =}

{* compute new values u, v, and p *}
do j = 1,§-1
do i = 1,F-1
unow(1+1 ,j) = uold(i+1,j)+tdts8*(z(i+1,j+1)+z(i+1, j))t(cv(iﬂ j+1)
+cv(i yj*1)4ev(d, J)+cv(1+1 j))-tdtsdx+(h(i+1,j)-h(i,j))
vnew(i,j+1) = vold(d,j+1)-tdts8+(z(i+1,j+1) +z(d,j+1))*(culi+1,j+1)
+cu(i, j*1)+cu(i, j)+cu(i+t, j))-tdtsdy*(h(i,j+1)-h(i,j))
pnew(i,j) = pold(i,j)-tdtsdx*(cu(i+1,j)-cu(i,j))
~-tdtsdy*(cv(i,j+1)-cv(i,j))
enddo
enddo
enddo
end

Figure 2 SHALLOW: Weather Prediction Benchmark

3.2.2 Loop Distribution

Because of the programming style used in writing SHALLOW, almost all loop nests were non-uniform, i.e.,
contained statements with differing iteration sets. Fortunately, none of the loops carried recurrences, so
the Fortran D compiler applies loop distribution to separate statements, creating uniform loop nests. Loop
bounds reduction is then sufficient to partition the computation during code generation, excepting boundary

conditions.
3.2.3 Inter-loop Message Coalescing and Aggregation

While loop distribution enables inexpensive partitioning of the program computation, it has the disadvantage
of creating a large number of loop nests. In many cases these loop nests, along with loops representing
boundary conditions, required communication with neighboring processors. ‘The current Fortran D compiler
prototype applies message coalescing and aggregation only within a single loop nest. Its output for SEALLOW
thus missed many opportunities to coalesce or aggregate messages because the nonlocal references were
located in loop nests not enclosed by a common loop. By applying message coalescing and aggregation
manually across loop nests, we were able to eliminate about half of all calls to communication routines.



{* Original Fortran D Program «}
SUBROUTINE DISPER
LOGICAL 1sat(256)
DOUBLE PRECISION ddx(256,8,8), ddy(256,8,8), ddz(256,8,8)
“ DOUBLE PRECISION pmfr(256,8,8,4,5), gradx(256), grady(256), gradz(256)
DECOMPOSITION d(256)
ALICGE ddx(i,j,k),ddy(i,j,k),ddz(i,j,k) WITH d(i)
ALIGN 1sat(i,j,k,1),pmfr(i,j,k,1,m) WITH d(i)
ALIGE gradz,grady,gradz WITH d
DISTRIBUTE d(BLOCK)
{* compute dispersion terms *}

do j = 2,4
do i3 = 1,8
do i2 = 1,8 -
do i1 = 1,256
5 if ((i1 .EE. 1) .AND. (ii .NE. 256)) then
Sa if (1sat(i1-1,i2,i3,j) .AND. lsat(ii1+1,i2,i3,j)) then
Ss grady(i1)=(pmfr(i1+1,i2,i3,j,k)-pmfr(i1-1,i2,i3,j,k)) /
(.5 * (ddy(i1+1,i2,i3) + ddy(i1-1,i2,i3)) + ddy(i1,i2,i3))
endif
endif
enddo
enddo
enddo
enddo
end
Figure 3 DisPER: Oil Reservoir Simulation
3.3 DISPER

DISPER is a 1000 line subroutine for computing dispersion terms. It is taken from UTcoMP, a 33,000 line
oil reservoir simulator developed at the University of Texas at Austin. Like SHALLOW, DISPER is a stencil
computation that is highly data-parallel and well-suited for the Fortran D compiler. Unfortunately, UTCOMP
was originally written for a Cray vector machine. Arrays were linearized to ensure long vector lengths, then
addressed through complex subscript expressions and indirection arrays. This style of programming, while
efficient for vector machines, does not lend itself to massively-parallel machines.

To explore whether UTCOMP can be written in a machine-independent programmingstyle using Fortran D
or HPF, researchers at Rice rewrote DISPER to have regular accesses and simple subscripts on multidimen-
sional arrays. Figure 3 shows a fragment of the rewritten form of DISPER. Its main arrays have differing
sizes and dimensionality, but have the same size in the first dimension. Arrays were aligned along the first
dimension and distributed block-wise. The resulting code was was for the most part compiled successfully

by the prototype Fortran D compiler.
3.3.1 Execution Conditions

The major difficulty encountered by the Fortran D compiler was the existence of execution conditions cauged
by explicit guards in the input code. There are two types of execution conditions. Data-dependent execution
conditions, such as the guard at S; in Figure 3, were not a problem. Message vectorization moves commu-
nication caused by such guarded statements out of the enclosing loops. Overcommunication may result if
the statement is not executed, but the resulting code is still much more efficient than sending individual
messages after evaluating each guard.

Execution conditions that reshape the iteration space, on the other hand, pose a significant problem. For
instance, the guard at S; in Figure 3 restricts the execution of statement S3 on the first and last iteration
of loop i1. It has in effect changed the iteration set for the assignment S3, causing it to be executed on a



subset of the iterations. These guards are frequently used by programmers to isolate boundary conditions
in a modular manner, avoiding the need to peel off loop iterations.

Unlike data-dependent execution conditions, these execution conditions always hold and can be detected
at compile-time. If they are not considered, the compiler will generate communication for nonlocal accesses
that never occur. Future versions of the Fortran D compiler will need to examine guard expressions. If its
effects on the iteration set can be determined at compile-time, the iteration set of the guarded statements
must be modified appropriately. Because this functionality is not present in the current Fortran D compiler,

unnecessary guards and communication in the compiler output were corrected by hand.

3.4 ERLEBACHER

ERLEBACHER is a 800 line benchmark program written by Thomas Eidson at the Institute for Computer
Applications in Science and Engineering (ICASE). It performs 3D tridiagonal solves using Alternating-
Direction-Implicit (ADI) integration. Like Jacobi iteration and Successive-Over-Relaxation (SOR), ADI
integration is a technique frequently used to solve PDEs.. However, it performs vectorized.tridiagonal solves
in each dimension, resulting in computation wavefronts across all three dimensions of the data array.

Each sweep in ERLEBACHER consists of a set-up and computation phase, followed by forward and back-
ward substitutions. Figures 4 and 5 illustrate the core computation performed by ERLEBACHER during a
sweep of the Z dimension. We chose to distribute the Z dimension of all 3D arrays blockwise; all 1D and 2D
arrays are replicated. Here we relate some issues that arose during compilation of Erlebacher to a machine

with four processors, P ... Ps.
3.4.1 Overlapping Communication with Computation

In ERLEBACHER, we discovered unexpected benefits for vector message pipelining, an optimization that
separates matching send and recv statements to create opportunities for overlapping communication with
computation [18]. Consider compilation of the setup phase in the Z dimension, shown in Figure 4. The
Fortran D compiler first distributes the loops enclosing statements Sj ...Ss because they belong to two
distinct statement groups. Message vectorization then extracts all communication outside of each loop nest.
The Fortran D compiler then applies vector message pipelining.

- We found ' vector message pipelining to be particularly effective here because it moves the sends C3 and
C before the recws in the first two loop nests. If C3 and Cy are left in their original positions before Ss, the
computation will be idle until two message transfers complete, because the boundary processors Po and P;
will need to first exchange messages before communicating to the interior processors. The prototype thus
saved the cost of waiting for an entire message. More advanced analysis could determine that the statements
Sy ...Ss are simply incarnations of statement Ss created to handle periodic boundary conditions. We can
perform the reverse of indez set splitting and merge the loop bodies to simplify the resulting code.

3.4.2 Multi-Reductions

Another problem faced by the Fortran D compiler was handling reductions on replicated variables. A
multidimensional reduction performs a reduction on multiple dimensions of an array. Finding the maximum
value in a 3D array would be a 3D MAX reduction over an n3 data set. We examine a special case of
multidimensional reduction that we call a multi-reduction, where the program performs multiple reductions
simultaneously. For instance, finding the maximum value of each column in a 3D array would be a 2D MaAX
multi-reduction composed of n? 1D MAX reductions. Unlike normal multidimensional reductions, multi-



{= Original Fortran D Program =} {* Compiler Output for 4 Processors *}

SUBROUTINE DZ3D6P SUBROUTINE DZ3D6P
REAL uud(n,n,n),uu(n,n,n) REAL uud(n,n,n) ,uu(n,n,-1:(n/4)+2)
DECOMPOSITION dd(n,n,n) n$ = n/4
ALIGE uud, uu with dd if (my$p .EQ. 0)
DISTRIBUTE dd(:,:,BLOCK) C; send uwu(i:n,1:n,1:2) to P3
do j=1,n if (my$p .EQ. 3)
do i=1,n C2 ac?d :u(i:n,!:;,ns-l:ns) to PO
uud(i,j, = if (my P .LT. 3
51 J(-'%u?;(?,j,a) ,uuli,j,n-1)) C3 send uu(i:n,1:n,n$-1:n$) to my$p+1
S, uwud(i,j,2) = it (my$p .GT. 0)
F(uui,j,4) ,uuli,j,n)) Cs send uwu(i:n,1:n,1:2) to my$p-1
S3; uud(i,j,n-1) = if (my$p .EQ. O) then
F(uuli,j,1),uuli,j,n=3)) recv uu(i:n,1:n,n$+1:n$+2) from P3
S; uwud(i,j,n) = dg jissiinn
audi. i i,j,n- ° ,
enddf( u(i,j,2),wudi,j,n=2)) s ad(1,5.1) = FC.
enddo S uwud(i,j,2) = F(..)
do k = 3,n-2 enddo
do j =1,n enddo
do i = 1,n endif -
Ss  uud(i,j,k) = if (my$p .EQ. 3) then
F(uu(i,j,k+2),uu(i,j, k-2)) . recv wu(1:n,1:n,-1:0) from P1
enddo d: jiﬂ 1in
enddo oi=1,n
enddo S3 uud(i,j,n$-1) = F(..)
end Sy uud(i,j,n$) = F(..))
enddo
enddo
endif

if (my$p .GT. 0)
recv uu(i:n,1:n,n$+1:0$+2) from my$p+i
if (my$p .LT. 3)
recv uu(1:n,1:n,-1:0) from my$p-1
do k = 1b$,ub$
do j =1,n
do i =1,n
Ss uud(i,j,k) = F(...)
enddo
enddo
enddo
end

Figure 4 ERLEBACHER: Computation Phase in Z Dimension

reductions are directional in that they only transfer data across certain dimensions. This property allows -
the compiler to determine when communication is necessary. It also allows the problem to be partitioned in
other dimensions so that no global reductions are required at the end.

The Fortran D compiler handles multi-reductions as follows. If the direction of the multi-reduction
crosses a partitioned array dimension, then compilation proceeds as normal. ‘The compiler produces code so
that each processor computes part of every reduction in the multi-reduction, then inserts a global collective
communication routine to accumulate the results. ERLEBACHER performs 2D suM multi-reductions along
each dimension of a 3D array for each of its three comp?xtation wavefronts. Consider statement S; in
Figure 5, which performs a SUM multi-reduction in the Z dimension. Because this dimension is distributed,
the compiler partitions the computation based on f, the distributed rhs, and inserts a call to global-sum to
accumulate the results.

If the multi-reduction does not cross any distributed dimensions, no information is transferred across
distributed dimensions. A processor can thus evaluate some of the reductions comprising the multi-reduction
using local data. This case occurs in the solution step in the X and Y dimensions in ERLEBACHER. Simple
loop bounds reduction is sufficient to partition the reduction; no communication is needed. If all results are
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{» Original Fortran D Program =}
SUBROUTINE TRIDVPK

REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,n)
DISTRIBUTE £(:,:,BLOCK)

{* perform forward substitution =}

{* perform backward substitution =}
do k = 1,n
do j =1,n
doi=1,n
S1  tot(i,j) =
tot(i,j)+d(k)*»£(i,j,k)
enddo
enddo
enddo
do j =1,n
do i =1,n
S f£(i,j,n) =
(£(i,j,n)=tot(i,j))*b(n)
enddo
enddo
do j =1,n
do i = 1,n
S £(i,j,n-1) =
£(i,j,n-1)-e(n-1)*2(i,j,n)
enddo

enddo
do k = n-2,1,-1
do j =1,n

doi=1,n
Sy  £(i,j,k) = £(i,j,k)-c(k)=*
£(i,j,k+1)-e(k)*£(i,j,n)
enddo
enddo
enddo
end

{* Compiler Output for 4 Processors =}
SUBROUTIKE TRIDVPK

REAL a(n),b(n),c(n),d(n),e(n)

REAL tot(n,n),f(n,n,0:(n/4)+1),r$bufi(n)
{* perform forward substitution =}

{* perform backward substitution =}
n$ = n/4
0f£30 = my$p * n$
do k = 1,n$

k$ = k + off$0

do j =1,n

do i =1,n

tot(i,j) = tot(i,j)+d(k$)*>£(i,j, k)

enddo

enddo
enddo
global-sum tot(i:n,j:n)
if (my$p .EQ. 3) then

do j =1,n

do i = 1,n

£(i,j,n$-1) = (£(i,j,n$)-tot(i,j))*b(n)

enddo
enddo
do j =1,n
doi=1,n
£(i,j,n$-1) = £(i,j,n$-1)-e(n-1)*£(i,j,n$)
enddo
enddo

buffer £(1:128, 1:128, n$) into rbuf$i(n*n)
broadcast rbuf$i(i:n*n)
else
recv rbuf$1(1:n*n)
endif
do j =1,n
do i$ = 1,n,8
i$up = i$+7
if (my$p .LT. 3)
recy £(i$:i$up, j, n$+1) from my$p+1i
do i = i$,i$+8 -
do k = ub$,1,-1
k$ = k + off$0
£(i,j,k) = £(i,j,k)-c(k$)*£(di,j,k+1)
- o¢(k$)*r$bufi(j*n+i-n)
enddo
enddo
if (my$p .GT. 0)
send £(i$:i$up, j, 1) to my$p-1
enddo
enddo -
end

Figure 5 ERLEBACHER: Solution Phase in Z Dimension

needed, a global concatenation routine can be called to collect the results from each processor.

3.4.3 Array Kills

.

For instance, a multi-reduction is performed in the Y dimension solution step of ERLEBACHER, shown in
Figure 6. Because the Y dimension of f is local, relaxing the owner computes rule allows each processor
to compute its reductions locally. Unfortunately the multi-reduction is being computed for tot, a replicated
array. The compiler thus inserts a global concatenation routine to collect values of tot from other processors.

This concatenation is the only communication inserted in the computation sweeps in the X and Y dimensions,
and turns out to be unnecessary. Array kill analysis would show that the values of tot only reach uses in the

next loop nest Sz, where it is used only on iterations executed locally. Values for tot not computed locally
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{* Original Fortran D Program =} {* Compiler Output for 4 Processors *}

SUBROUTINE TRIDVPJ SUBROUTIEE TRIDVPK
REAL a(n),b(n),c(n),d(n),e(n) REAL a(n),b(n),c(n),d(n),e(n)
REAL tot(n,n),f(n,n,n) REAL tot(n,n),f(n,n,0:(n/4)+1)
DISTRIBUTE f£(:,:,BLOCK) n$ = n/4
dok=1,n of£30 = my$p * n$
do j =1,n do k = 1,n$
doi=1,n k$ = k + off$0
S1 tot(i,k) = do j=1,n
tot(di,k) + d(j)*£(i,j,k) doi=1,n
enddo tot(i,k$) = tot(i,k$) + d(j)*£(i,j,k)
enddo enddo
enddo enddo
do k = 1,n enddo
doi=1,n glodal-concat tot(i:n,j:n)
Sz £(@i,n,k) = do k = 1,n$
(£(i,n,k) = tot(i,k))*b(n) k$ = k + off$0
enddo doi=1,n
enddo . £@i,n,k) = (£(i,n,k) = tot(i,k$))*b(n)
end enddo
enddo
end

Figure 6 ERLEBACHER: Solution Phase in Y Dimension

are not ever used. This information can be employed to eliminate the unnecessary global concatenation.

Array kill analysis has not yet been implemented in the prototype compiler.
3.4.4 Exploiting Pipeline Parallelism |

Finally, because the computational wavefront traverses across processors in the Z dimension,- the Fortran D
compiler must efficiently exploit pipeline parallelism [17]. In Figure 5, the compiler detects that the k loop
enclosing statement Sy is a cross-processor loop because it carries a true dependence whose endpoints are on
different processors. To exploit pipeline parallelism, the compiler interchanges k innermost, then strip-mines
the enclosing i loop to reduce the communication overhead. Note that the nonlocal reference to f(3,34,n) has
also been converted to a vectorized broadcast. The compiler replaced the reference with r$bufl(j*n+i—n)

to properly access data in the buffer array.

4 Empirical Evaluation of the Fortran D Compiler

To evaluate the status of the current Fortran D compiler prototype, the output of the Fortran D compiler is
compared with hand-optimized programs on the Intel iPSC/860 and the output of the CM Fortran compiler
on the TMC CM-5. Our goal is to validate our compilation approach and identify directions for future
research. In many cases, problems sizes were too large to be executed sequentially on one processor. In
these cases sequential execution times are estimates, computed by projecting execution times for smaller
computations to the larger problem sizes. Empirical results are presented in both tabular and graphical

form.
4.1 Comparison with Hand-Optimized Kernels

We begin by comparing the output of the Fortran D compiler against hand-optimized stencil kernels on
the Intel iPSC/860 hypercube. Our iPSC timings were obtained on the 32 node Intel iPSC/860 at Rice
University. It has 8 Meg of memory per node and is running under Release 3.3.1 of the Intel software. Each
program was compiled under -O4 using Release 3.0 of if77, the iPSC/860 compiler. Timings were made

using dclock(), a microsecond timer.
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Figure 7 Speedups & Comparisons for Stencil Kernels (Intel iPSC/860)

The hand-optimized stencil kernels are taken from a previous study evaluating the effect of different
communication & parallelism optimizations on overall performance [18]. We selected a sum reduction (Liv-
ermore 3), two parallel kernels (Livermore 18, Jacobi), and two pipelined kernels (Livermore 23, SOR). As
before, all arrays are double precision and distributed block-wise in one dimension. Speedups for different
problem and machine sizes are graphically displayed at the tope of Figure 7, with speedups plotted along
the Y-axis and number of processors along the X-axis. Solid and dashed lines correspond to speedups for
hand-optimized and Fortran D programs, respectively. Each line represents the speedup for a given prob-
lem size. The bottom of the figure compares the ratio of execution times between the hand-optimized and
Fortran D versions of each kernel. Each line represents the ratio for a given problem size.

We found that the code generated for the inner product in Livermore 3 were idengical to the hand-
optimized versions, since the compiler recognized the sum reduction and used the appropriate collective
communication routine. For parallel kernels, the output of the Fortran D compiler was within 50% of the best
hand-optimized codes. The deficit was mainly caused by the Fortran D compiler not exploiting unbuffered
messages in order to eliminate buffering and overlap communication overhead with local computation. The
compiler-generated code actually outperformed the hand-optimized pipelined codes, even though the two
message-passing Fortran 77 versions of the program were nearly identical. We thus assume the performance
differences to be probably due to complications with the scalar i860 node compiler in the parameterized

hand-optimized version.
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4.2 Comparison with Hand-Optimized Subroutines and Programs

We now turn our attention to evaluating the performance of the Fortran D compiler for large subroutines
and application codes. In the following sections, we display speedups and comparisons for SHALLOW and
the three other codes studied, both in tables and graphically.

The top of Figure 8 displays speedups for each program graphically, with speedups plotted along the
Y-axis and number of processors along the X-axis. Solid and dashed lines correspond to speedups for hand-
optimized and Fortran D programs, respectively. Each line represents the speedup for a given problem size.
The bottom of the figure compares the ratio of execution times between the hand-optimized and Fortran D

versions of each program. Each line represents the ratio for a given problem size.

4.2.1 Results for SHALLOW

Table 1 contains timings for performing one time step of SHALLOW. It presents speedups as well as the
ratio of execution times between hand-optimized and Fortran D versions of the program. We found the
program to be ideal for distribute-memory machines. Computation is entirely data-parallel, with nearest-
- neighbor communication taking place between phases of each time step.. The compiler output achieved
excellent speedups (21-29), even for smaller problems. To evaluate potential improvements, we performed
aggressive inter-loop message coalescing and aggregation by hand, halving the total number of messages.
The hand-optimized versions of SHALLOW exhibited only slight improvements (1-10%) over the compiler-
generated code, except when small problems were parallelized on many processors (12-26%). Communication
costs apparently only contributed to a small percentage of total execution time, reducing the impact and

profitability of advanced communication optimizations.
4.2.2 Results for DISPER

Like SHALLOW, DISPER is a completely data-parallel computation that requires only pearest-neighbor com-
munications. Timings for DISPER in Table 2 show near-linear speedups for the output of the Fortran D
compiler, once errors introduced by execution conditions were corrected. We also created a hand-optimized
version of DISPER by applying aggressive inter-loop message message aggregation. The resulting message
was large enough that it became profitable to also employ unbuffered isend and irecv messages. However,
since communication overhead is small, the hand-optimized version only yielded minor improvements (1-3%)
for the single problem size tested. '

4.2.3 Results for DGEFA

Table 3 presents execution times and speedups for DGEFA, Gaussian elimination with partial pivoting.
Results indicate that the Fortran D compiler output, shown in Figure 1, provided limited speedups (3—6) on
small problems. For larger problems moderate speedups (11-16) were achieved. Due to the large number
of'global broadcasts required to communicate pivot values and multipliers, performance of DGEFA actually
degrades when solving small problems on many processors.

To determine whether improved performance is attainable, we created a hand-optimized version of DGEFA
based on optimizations described in the literature [11,23]. First, we combined the two messages broadcast
on each iteration of the outermost k loop. Instead of broadcasting the pivot value immediately, we wait until
multipliers are also computed. The values can then be combined in one broadcast. Overcommunication may
result when a zero pivot is found, since messages now include multipliers even if they are not used. However,

combining broadcasts is still profitable as zero pivots occur rarely.
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Second, we restructured the computation so that upon receiving the pivot for the current iteration, the
processor Py responsible for finding the pivot for the next iteration does so immediately. Px41 performs
row elimination on just the first column of the remaining subarray, scans that column to find a pivot and
calculates multipliers. P4, then broadcasts the pivot and multipliers to the other processors before perforrri;
ing row elimination on the remaining subarray. Since row eliminations make up most of the computation
in Gaussian elimination, each broadcast in effect takes place one iteration ahead of the matching receive,
hiding communication costs by overlapping message latency with local computation.

Results for the hand-optimized version of DGEFA are presented in Table 3. The new algorithm showed
little or no improvement for small problems or when few processors were employed. However, it increased
performance by over 30% for large problems on many processors, yielding decent speedups (14-25). The
Fortran D compiler can thus benefit from more aggressive optimization of linear algebra routines. Experience
also indicates that programmers can achieve higher performance for linear algebra codes with block versions
of these algorithms. The Fortran D compiler will need to provide BLOCK_CYCLIC data distributions to support
these block algorithms.

4.2.4 Results for ERLEBACHER

Unlike SHALLOW and DISPER, ERLEBACHER is not fully data-parallel. It is a more complex program that
requires global communication, and also contains computation wavefronts that sequentialize parts of the
computation. For ERLEBACHER, the Fortran D compiler first performs interprocedural reaching decomposi-
tion and overlap analysis, then invokes local code generation for each procedure. The compiler inserts global
communication for array SUM reductions, and also applies coarse-grain pipelining. Timings for ERLEBACHER
in Table 4 show that the compiler-generated code is rather inefficient, with speedup peaking at 3-5 even for
large programs.

To determine how much improvement is attainable, we applied additional optimizations to create three
hand-optimized versions. Optimizations are cumulative from left to right, so each hand-optimized program
contains optimizations applied in the previous version. In the “Array Kill” version we used interprocedural
array kill analysis to eliminate global concatenation for local multi-reductions on replicated arrays in the
X and Y sweeps. In the “Pipelining” version we also experimented with the granularity of coarse-grain
pipelining performed during forward and backward substitution in the Z sweep. We found that a strip size
around 16 yielded significantly better performance than the default strip size of 8 selected by the Fortran D
compiler.

Finally, in the “Memory” version we also performed loop interchange to improve the data locality of
each node program during forward and backward substitution in the Z sweep. The current algorithm for
pipelining in the Fortran D compiler simply interchanges the cross-processor loop innermost, without taking
data locality into account. It thus placed the k loop innermost in TRIDVPK. We interchanged the strip-mined
i loop innermost by hand, improving data locality by restoring unit-stride memory accesses.

Timings show that all three optimizations contribute to improved performance. Using array kill infor-
mation and adjusting pipelining granularity reduced communication costs, especially when many processors
were used. Improving data locality of the node program helped most when few processors were used and
large data sizes caused many cache misses. Together these optimizations yielded speedups of 5-9, improving
performance by up to 50% over the Fortran D compiler-generated code.
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Fortran D |

Hand-Optimized

- : Hand-Optimized
Problem Size | Proc | time I speedup | time | speedup Fortran D
1 sequential time = 0.728
2 0.354 2.06 0.348 2.09 0.98
256 x 256 © 4 0.195 3.73 0.188 3.87 0.96
8 0.097 7.50 0.091 8.00 0.94
16 0.056 13.0 0.049 14.86 0.88
32 0.035 20.8 0.026 28.00 0.74
1 estimated sequential time = 2.9
2 1.529 1.90 1.521 1.91 0.99
512 x 512 4 0.707 4.10 0.698 4.15 0.99
8 0.377 7.69 0.368 7.88 0.98
16 0.201 14.43 0.191 15.18 0.95
32 0.107 27.10 0.095 30.53 0.89
1 estimated sequential time = 11.6
1K x 1K 8 1.620 7.16 1.610 7.20 0.99
16 0.755 15.36 0.739 15.70 0.98
32 0.397 29.22 0.380 30.53 0.95

Table 1 Intel iPSC/860 Execution Times for SHALLOW (in seconds)

Fortran D Hand-Optimized | Hand-Optimized
Problem Size | Proc | time I speedup | time l speedup ortran
1 estimated sequential time = 39.0
) 4 9.971 3.91 10.222 3.81 1.03
256 x8x8x4 8 5.040 7.74 4.979 7.83 0.99
16 2.440 15.98 2.414 16.16 0.99
32 1.284 30.37 1.240 31.45 0.97

Table 2 Intel iPSC/860 Execution Times for DISPER (in seconds)
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Fortran D Hand-Optimized | Hand-Optimized
Problem Size | Proc | time I speedup | time | speedup ortran
1 sequential time = 2.151
2 1.051 2.05 1.108 1.94 1.05
256 x 256 4 0.744 2.89 0.683 3.15 0.92
8 0.670 3.21 0.551 3.90 0.82
16 0.695 3.09 0.644 3.34 0.93
32 0.782 2.75 0.758 2.84 0.97
1 sequential time = 17.53

2 7.988 2.19 7.879 2.22 0.99
512 x 512 4 4.786 3.66 4.322 4.06 0.90
8 3.373 5.20 2.601 6.74 0.77
-16 2.908 6.03 2.259 7.76 0.78
32 2.916 6.01 2.619 6.69 0.90

1 estimated sequential time = 140
2 66.74 2.10 68.91 2.03 1.03
1K x 1K 4 36.29 3.86 35.61 3.93 0.98
8 21.83 6.41 18.93 7.40 0.87
16 15.32 9.14 10.97 12.76 0.72
32 12.96 10.80 9.654 14.50 0.74

1 estimated sequential time = 1120
2K x 2K 8 160.45 6.98 145.83 7.68 0.91
16 97.22 11.52 76.28 14.68 0.78
32 68.86 16.26 44.62 25.10 0.65

Table 3 Intel iPSC/860 Execution Times for DGEFA (in seconds)

Fortran D Hand-Optimized
Array Kill Pipelining Memory Hand-Optimized
Problem Size |Proc| time | speedup | time | speedup | time | speedup | time L speedup Fortran D
1 sequential time = 1.577
2 1.104 1.43 1.071 1.47 - 1.051 1.50 0.805 1.96 0.73
64 X 64 X 64 4 0.765 2.06 0.726 2.17 0.630 2.50 0.586 2.69 0.77
8 0.657 2.40 0.599 2.63 0.452 3.49 0.448 3.52 0.68
16 | 0.539 2.93 0.427 3.69 0.312 5.05 0.311 5.07 0.53
32 | 0.613 2.57 0.461 3.43 0.314 5.02 0.315 5.00 0.51
1 estimated sequential time = 5.3
4 1.677 3.17 1.590 3.33 1.311 4.06 1.151 4.60 0.70
96 x 96 X 96 8 1.475 3.61 1.312 4.04 0.961 5.54 0.917 5.78 0.62
16 | 1.492 3.57 1.189 4.46 0.824 6.46 0.813 6.52 0.54
32 1.355 3.93 1.059 5.00 0.741 7.1 0.720 7.36 0.54
1 i estimated sequential time = 12.6
128 x 128 x 128| 8 3.341 3.77 3.101 4.06 2.508 5.03 1.905 6.61 0.59
16 | 2.997 4.21 2.528 4.98 1.876 6.72 1.584 7.95 0.56
32 2.683 4.70 2.146 5.87 1.497 8.42 1.347 9.35 0.50

Table 4 Intel iPSC/860 Execution Times for ERLEBACHER (in seconds)
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4.3 Comparison with CM Fortran Compiler

We also evaluated the performance of the Fortran D compiler against a commercial compiler. We selected the
CM Fortran compiler, the most mature and widely used compiler for MIMD distributed-memory machines,
and compared it against the Fortran D compiler on the Thinking Machines CM-5.

Our CM-5 timings were obtained on the 32 node CM-5 at Syracuse University. It has Sun Sparc processors
running SunOS 4.1.2 and vector units running CMOST 7.2 S2. CM Fortran programs were compiled using
cmfversion 2.1 beta, with the -O and -vu flags. They were timed using CM_timer_read_elapsed(). CM Fortran
programs were compared against message-passing Fortran 77 programs using CMMD version 3.0 beta; the
CM message-passing library. Fortran 77 node programs were compiled using the Sun Fortran compiler f77,
version 1.4, with the -O flag. They were linked with cmmd version 3.0 beta. Fortran 77 node progré,ms were
timed using CMMD_node_timer_elapsed().

4.3.1 Results for Kernels and Programs

The output of the Fortran D compiler was easily ported to the CM-5 by replacing calls to Intel NX/2
message-passing routines with equivalent calls to TMC CMMD message-passing routines. We converted
program kernels into CM Fortran by hand for the CM Fortran compiler, inserting the appropriate LAYOUT
directives to achieve the same data decomposition. The inner product in Livermore 3 was replaced by
DOTPRODUCT, a CM Fortran intrinsic. Jacobi, Livermore 18, and SHALLOW can be transformed directly
into CM Fortran. Loop skew and interchange must be applied to SOR and Livermore 23 to expose parallelism
in the form of FORALL loops. A mask array indz is used to implement Gaussian elimination. The resulting
CM Fortran code, except for SHALLOW, are shown in Figure 9.

The CM Fortran compiler can generate two versions of output. The first uses CM-5 vector units, the
second only uses the Sparc node processor. Unfortunately, the current TMC Fortran 77 compiler does not
generate code to utilize CM-5 vector units. Fortran D message-passing programs are thus forced to rely on
the Sparc processor.! To permit a balanced comparison, we provide timings for CM Fortran programs using
either Sparc or vector units. Table 5 shows the elapsed times we measured on the CM-5 for CM Fortran
and Fortran D programs, as well as the ratio of execution times between CM Fortran and Fortran D code.
Sequential execution times on a single Sparc 2 workstation are provided for comparison.

We also graphically present the execution times measured on the CM-5. Figure 10 displays measured
execution speed. Execution times in seconds are plotted logarithmically along the Y-axis. The problem size
is plotted logarithmically along the X-axis. Solid, dotted, and dashed lines represent the CM Fortran using
Sparc, CM Fortran using vector units, and Fortran D using Sparc, respectively. All parallel execution times
are for 32 processors. Figure 11 displays the ratio of execution times of both versions of CM Fortran code
(sparc/vector) to Fortran D (sparc), plotting ratios along the Y-axis.

1For the final version of the paper we expect to be able to provide results for Fortran D programs using CM-5 vector units.
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{* Livermore 3 (Inner Product) =}
s = DOTPRODUCT(a,b)

{* Jacobi =}
forall (j=2:§-1,i=2,¥-1)
a(i,j) = 0.25%(b(i-1,j)+b(i+1,j)+b(d,j-1)+b(i,j+1))
b=a

{* Livermore 18 (Explicit Hydrodynamics) =}
forall (k=2:§-1, j=2:¥-1)
za(j, k) = (zp(j-1, k+1) + zq(j-1, k+1) - zp(j-1, k) - zq(j-1, X))
* (zr(j, k) + zr(j-1, X)) / (zm(j-1, k) + zm(j-1, k+1))
forall (x=2:§-1, j=2:§-1)
zb(j, X) = (zp(j-1, k) + zq(j-1, k) - zp(j, k) - zq(j, k)
* (zr(j, x) + zr(j, k-1)) / zm(j, k) + zm(j-1, k))
forall (k=2:§-1, j=2:N-1)
zu(j, k) = zu(j, k) + s = (za(j, k) *= (2z(j, k) - zz(j+1, k))
- za(j-1, X)* (zz(j, X) - zz(j-1, k)) - zb(j, k)
+ (z2(j, X) - zz(j, k=1)) + zb(j, k+1) * (zz(j, k) = zz(j, k+1)))
forall (k=2:§-1, j=2:N-1)
zv(j, X) = zv(j, X) + s = (za(j, k) * (zr(j, k) - zr(j+1, k))
- za(j-1, k) * (zr(j, k) - zr(j-1, k)) - zb(j, k+1) * (zr(j, X)
- zr(j, k=1)) + zb(j, k+1) *= (zr(j, k) - zr(j, k+1)))
forall (k=2:§-1, j=2:§-1)
zr(j, k) = zr(j, k) + t * zu(j, k)
forall (k=2:§-1, j=2:8-1)
zz(j, k) = zz(j, k) + t * zv(j, k)

{* SOR =}
do j = 4,2+(H~1)
forall (i=max(2,j-§+1):min(¥-1,j-2))
a(i,j=i) = 0.175+(a(i-1,j-i)+a(i+1,j-i)+a(i,j-i-1)
+ a(i, j-i+1)) + 0.3 = a(di, j-i)
enddo

{* Livermore 23 (Implicit Hydrodynamics) *}
do j = 4,2+(N-1)
forall (k=max(2,j-N+1):min(E-1,j-2))
za(k,j-k) = za(k,j-k)+.175+((za(k, j-k+1)*zr(k, j-k)
* zb(k, j=k) + za(k+1,j-k)*zu(k,j-k)
+ za(k-1, j-k) * zv(k, j-k)) - za(k,j-k))
enddo D .-

{* Gassian Elimination »}

indx = 0

dok = 1.X
iTmp = maxloc(abs(a(:,k)), MASK = indx .EQ. O)
indxRow = iTmp(1)
maxNum = a(indxRow,k)
indx(indxRow) = k
fac = a(:,k) / maxNum
row = a(indxRow,:)
forall (i = 1:N, j = 1:N+1, (indx(i) .EQ.0) .AND. (j.GE.k))

a(i,j) = a(d,j) - fac(i) * row(j)
enddo

Figure 9 CM Fortran Versions of Kernels
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Sequential | Fortran D CM Fortran
Execution | + CMMD CM Fortran “Fortran D

Program Problem Size Sparc Sparc Sparc | Vector | Sparc | Vector
Livermore 3 64K 0.005 0.002 0.018 0.005 9.92 3.19
Inner 256K 0.020 0.007 0.032 0.006 4.67 0.88
Product 1024K 0.079 0.027 0.098 0.007 3.63 0.27
Jacobi 512 x 512 0.877 0.027 0.236 0.045 8.74 1.67
Iteration 1K x 1K 3.525 0.103 0.766 0.079 7.44 0.77
2K x 2K 14.14 0.362 2.834 0.159 7.83 0.44
Livermore 18 128 x 128 0.457 0.022 0.165 0.100 7.50 4.55
Ezplicit 256 x 256 1.861 0.062 0.332 0.132 5.35 2.13
Hydrodynamics 512 x 512 7.554 0.223 0.994 0.163 4.46 0.73
256 x 256 1.297 0.031 0.409 0.185 13.2 5.97
SHALLOW 512 x 512 5.210 0.141 1.363 0.256 9.67 1.82
1K x 1K 20.88 0.520 6.159 0.408 11.8 0.78
Successive 512 x 512 0.376 0.060 17.04 7.559 284 126
Over 1K x 1K 1.519 0.130 116.1 27.39 893 211
Relaxation 2K x 2K 6.134 0.364 209.9 128.6 577 353
Livermore 23 256 x 256 0.389 0.035 2.897 2.516 82.7 71.9
Implicit 512 x 512 1.562 0.113 18.19 8.686 154 73.6
Hydrodynamics 1K x 1K 6.252 0.320 122.7 | 31.59 383 98.7
256 x 256 4.791 0.561 10.65 3.604 19.0 6.42
DGEFA 512 x 512 40.61 2.779 104.8 56.50 37.7 20.3
1K x 1K 337.1 16.82 856.9 162.1 50.9 9.64
2K x 2K 6809 109.8 8449 1365 76.8 12.4

Table 5 TMC CM-5 Execution Times (for 32 processors, in seconds)

When comparing Sparc versions of each program, our measurements indicate the current CM Fortran
compiler produces code that is significantly slower than the corresponding message-passing programs gen-
erated by the Fortran D compiler. The difference is especially pronounced for small data sizes, and even
intrinsic functions such as DOTPRODUCT yield very poor performance. The CM Fortran compiler fared best
on data-parallel computations such as Jacobi, Livermore 18, and SHALLOW (4-13 times slower). It appears
to handle pipelined computations and Gaussian elimination poorly (20+ times slower), even when expressed
in a form that contains vector parallelism. Only when the CM Fortran compiler is able to exploit CM-5
vector units does it match the performance of the Fortran D compiler, exceeding it on larger problem sizes.

Based on examining the assembly code output of the CM Fortran compiler, we believe its poor perfor-
mance is due to the fact that the current CM Fortran compiler generates code for executing virtual processes
on each node. This mode of execution requires extensive run-time calculation of addresses and results in
much unnecessary data movement. In addition, the CM Fortran compiler generates code that can be exe-
cuted on any number of processors, whereas the prototype Fortran D compiler targets a specific number of
processors at compile-time.

Because the CM Fortran compiler for the CM-5 is relatively new (though it is the most mature commercial
compiler available), we hesitant to draw too many conclusions. However, it is clear from our results that
severe performance penalties may result if important compile-time decisions are postponed until run-time.
Improvements in an upcoming release of the CM Fortran compiler will allow more meaningful comparisons

with the Fortran D compiler in the future.
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5 Lessons and Implications

Our preliminary experiences have helped us evaluate the current Fortran D compiler prototype. The initial
results, though encouraging, point out a number of areas that require additional work. We summarize our.
appraisal of the Fortran D compiler with these observations:

o It has achieved considerable success in generating efficient code for stencil computations.
o It needs to improve its optimization of pipelined and linear algebra codes.
o It must become much more flexible before it can become a successful machine-independent program-
ming model. Symbolic information and run-time support must be added.
In addition, our experiences confirm that the nature of the computation is the overriding factor in determining

the success of the Fortran D compiler. We discuss each point in greater detail in the following sections.
5.1 Parallel Stencil Computations

By generating output for SHALLOW and DISPER that virtually matched optimized hand-optimized versions,
the Fortran D compiler has demonstrated its success for parallel stencil computations. This is despite the fact
that the compiler is not producing the most efficient communication, since it does not yet support unbuffered
messages. The Fortran D compiler succeeds because it does a sufficiently good job that communication costs
become a minor part of the overall execution time. In particular, scalability is excellent because performance
improves as the problem size increases. Implementing additional optimizations is desirable for achieving
good speedup for small programs or many processors, but is not crucial. Instead, the focus should be on
improving the flexibility and robustness of the Fortran D compiler, as discussed in section 5.3.

5.2 Pipelined and Linear Algebra Computations

In comparison, there is considerable room for improvement when compiling communication-intensive codes
such as pipelined and linear algebra computations. Results for DGEFA and ERLEBACHER show that the
current Fortran D compiler prototype only attains limited speedups. It can achieve noticeable performance
gains by applying advanced communication optimizations. These optimizations are important because com-
munication is performed much more frequently than in parallel stencil computations. Their effect on overall
execution time gain in importance as the problem size and number of processors increases. In particular,
the Fortran D compiler will need to use information from training sets and static performance estimation to

select an efficient granularity for coarse-grain pipelining.
5.3 Increase Flexibility

Finally, when evaluating its overall performance, we find that the most serious problem facing the prototype
Fortran D compiler is its lack of flexibility. In the course of conducting our study, we were unable to apply
the Fortran D compiler to a large number of standard benchmark programs, despite the fact they contained
dense-matrix computations that should have been acceptable to the compiler. Even programs that were
written in a “clean” data-parallel manner required fairly extensive rewriting to eliminate programming
artifacts that the prototype proved unable to compile. The causes for this inflexibility can be categorized as
follows:

5.3.1 Immature Symbolic and Interprocedural Analysis

The lack of symbolic analysis in the current Fortran D compiler proved to be a major stumbling block. Unlike

parallelizing compilers for shared-memory machines, simply providing precise dependence information was

insufficient for the Fortran D compiler. The compiler performs deep analysis that requires knowledge of all
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subscript expressions and loop bounds in the program. For most programs, constant propagation, forward
expression folding, and auxiliary induction variable substitution all need to be performed before the Fortran D
compiler can proceed.

The current prototype is also inhibited by missing pieces in interprocedural analysis. It does not under-
stand formal parameters that represent subarrays in the calling procedure or multiple entry points. Both
symbolic and interprocedural analysis need to be completed and integrated with the Fortran D compiler

before many existing programs can be considered.
5.3.2 Lack of Run-time Support

Another problem with the current compiler prototype is its reliance on compile-time analysis. The only
run-time support it requires are routines for packing and unpacking non-contiguous array elements into
contiguous message buffers. The compiler attempts to calculate at compile-time all information, including
ownership, communication, and partitioning. While this approach is necessary for advanced optimizations
and generating efficient code, it limits the Fortran D compiler to computations it can completely analyze.

It turns out real programs contain many components that cannot be easily analyzed at compile-time,
such as indirect references, complex control flow, and scalar computations. These occur fairly frequently in
initializations and boundary condition calculations. In many cases the Fortran D compiler was forced to
abort, despite being able to compile the important kernel computations in the program.

What the Fortran D compiler must provide are methods of utilizing run-time support, trading perfor-
mance for greater flexibility in non-critical regions of the program. The compiler can either apply run-time
resolution or demand more support from the run-time library to calculate ownership, partitioning, and
communication at run-time. Since in most cases the code affected is executed infrequently, the expense of

run-time methods should not significantly impact overall execution time.

5.3.3 Immature Fortran D Compiler

A major part of the problem lies with the immaturity of the Fortran D compiler itself. There are a number of
dense-matrix computations that it is not able to analyze and compile efficiently. For instance, the prototype
compiler does not handle non-unit loop steps or subscript coefficients. It is thus unable to compile Red-Black
‘SOR or multigrid computations, both of which pbssess constant step sizes greater than one. Computations
such as Fast Fourier Transform (FFT), linear recurrences, finite-element, n-body problems, and banded
tridiagonal solvers all possess regular but specialized data access patterns that the Fortran D compiler needs
to recognize and efficiently support. In addition, run-time support for irregular and sparse computations
must also be added. Only when these obstacles are overcome can the Fortran D compiler serve as a credible

general-purpose programming model.

5.3.4 Dusty Decks

Finally, the Fortran D compiler cannot compile a number of “dusty deck” Fortran programs that were
originally written for sequential or vector machines. These programs contain programming constructs that
the compiler does not understand, such as linearized arrays, loops formed by backward GOTO statements,
and storing and using constants in arrays. Dusty deck programs have proven to be very challenging for
even shared-memory vectorizing and parallelizing compilers. Because of the deep analysis required, they
are even more difficult for distributed-memory compilers. It is not a goal of the Fortran D compiler to
be able to automatically parallelize these programs for distributed-memory machines. Requiring users to
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Data Computation Communication | Hand-Optimized
Program Size Amount Type Messages | Size Fortran D
DGEFA o(n?) | o(n®) Pivot O(n) O(n) 0.65-0.91
ERLEBACHER | O(n®) | O(n®) | Pipeline O(n) O(n) 0.50-0.59
SHALLOW O(n?) | O(n?) | Parallel o(1) O(n) 0.95-0.99
DISPER O(nt) | O(n%) | Parallel 0(1) O(n) 0.97-1.03

Table 6 Inherent Communication and Parallelism in Applications

program in Fortran 90 can help prevent such poor programming practices, and is the approach taken by High
Performance Fortran. However, as shown by the poor performance of the CM Fortran compiler, Fortran 90
syntax does not eliminate the need for advanced compile-time analysis and optimization.

5.4 Nature of Applications

We close by considering implications for future success.of the Fortran D approach to data-parallel program-
ming. We believe that problems with the immatutity of symbolic‘ analysis, interprocedural analysis, run-time
support, and the Fortran D compiler can be solved in the short term. No breakthroughs are required, simply
a major investment in development effort.

Problems with dusty deck codes will remain. Simply adding data decomposition specifications to existing
sequential, vector, or parallel programs does not ensure they will be compiled by the Fortran D compiler.
Users of massively-parallel machines will eventually recognize that current compiler technology cannot auto-
matically extract parallelism from such codes. They should be willing to rewrite important programs once in
a “clean” machine-independent form using either Fortran 77 or Fortran 90, if advanced compiler techniques
will ensure these programs can be executed efficiently across a wide range of machine architectures.

Compilation technology and dusty deck codes, however, are not the key limitations confronting the
Fortran D compiler. Instead, it is the amount of parallelism and communication present in the input
Fortran D program. Our experiences show that this is the most significant factor determining the success
of the Fortran D compiler. Because the Fortran D compiler does not change the input algorithm or data
decomposition, there is an inherent amount of communication and parallelism in a Fortran D program. The
nature of the application thus dictztes the performance achievable by the Fortran D compiler.

Consider the classification of programs and their communication requirements in Table 6. It categorizes
the programs we examined by their data, computation, and communication requirements, then compares the
effectiveness of the Fortran D compiler against hand-optimized versions for the largest problems measured. As
the amount of communication increases, the discrepancy between the Fortran D compiler and hand-optimized
codes worsens. The table thus clearly demonstrates the correlation between the amount of communication
performed and the success of the Fortran D compiler.

Our experiences with the prototype Fortran D compiler leads us to believe that within a few years,
compilers for languages such as Fortran D or High Performance Fortran can match the performance of
hand-optimized code for applications with high parallelism and low communication. However, prospects for
programs with low parallelism or high communication remain unclear. These applications are much more
sensitive to communication overhead, and it will be difficult for the compiler to automatically perform the
optimizations programmers apply by hand to achieve high performance. Much additional research will be

needed to develop automatic compilation techniques for these problems.
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6 Related Work

The Fortran D compiler is a second-generation distributed-memory compiler that integrates and extends pre-
vious analysis and optimization techniques. It is similar to ASPAR [19], BOOSTER [24], Callahan-Kennedy (5],
ForGE9O [2], P3C [10], SUPERB [12, 32], and VIENNA FORTRAN [6] in that the compilation process is based
on a decomposition of the data in the program. The Fortran D compiler can automatically detect and
efficiently exploit parallelism in sequential Fortran 77 programs with very few language extensions. Other
projects require the user to specify single assignment (CRYSTAL [22], ID NouvEAU (26]), all parallel loops
(KaL1 [21], MopuLA-2* [25]), parallel functions (C* [27], DATAPARALLEL C (15], DiNo [28]), parallel code
blocks (OXYGEN [29], PANDORE [1]), or parallel array operations (CM FORTRAN [30], PARAGON [7]).

7 Conclusions

An efficient, portable, data-parallel programming model is required to make large-scale parallel machines
useful for scientific programmers. We believe that Fortran D provides such a model for distributed-memory
machines. This paper describes compiler techniques developed in response to problems posed by linear
algebra computations, large subroutines, and whole programs.

The performance of the prototype Fortran D compiler is evaluated against hand-optimized programs on
the Intel iPSC/860. Results show reasonable performance is obtained for stencil computations, though room
for improvement exists for communication-intensive codes such as linear algebra and pipelined computations.
The prototype significantly outperforms the CM Fortran compiler on the CM-5.

The compiler requires symbolic analysis, greater flexibility, and improved optimization of pipelined and
linear algebra codes. We believe the Fortran D compilation approach will be competitive with hand-optimized
programs for many data-parallel computations in the near future. However, additional effort is required
before the compiler will be as effective for partially parallel computations requiring large amounts of com-
munication.
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