HPFF Meeting Notes for the
January 27-28, 1992 Meeting

High Performance Fortran Forum

CRPC-TR93310
May 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Notes from the First High
Performance Fortran Meeting

Houston Plaza Hilton, Houston, TX
January 27-28, 1992
Notes taken by Charles Koelbel

With contributions from Geoffrey Fox,
Guy Steele

Overview

The High Performance Fortran Forum is a working group
convened by Ken Kennedy and Geoffrey Fox to create an informal
standard for Fortran extensions aimed at data parallel computation.
The meeting lasted for one and a half days. The first day was
characterized by Kennedy as “fact finding”; companies and university
research groups made presentations of several proposals for possible
sets of extensions. The second day was primarily concerned with
planning future directions for the HPFF, in particular creating a
smaller working group to create a unified proposal. Some 10-minute
research presentations were also made on the second day. This
report gives an overview of the first day's talks, particularly
audience reactions, and reports on the second day's business
meeting. (Relatively little technical detail is included because
PostScript versions of most of the full proposals is available via
anonymous FTP; that source should be used for detailed comments.
Another summary will offer point-by-point comparisons of the
proposals.) Remarks on the short presentations on the second day are
not included because 1 was not present; if somebody wants to write a
short summary of them, I will be happy to incorporate it in a future
edition of the minutes.

HPF Proposal (presented by David Loveman, Digital
Equipment Corporation)

Although this proposal lent its name to the meeting, it was not
presented as having any special standing. Rather, it was primarily an
overview of what a new set of Fortran extensions should do, and the

HPFF Meeting Notes - 1

tradeoffs involved in choosing them. The major features of the DEC
HPF language were presented after that discussion.

In the credit-where-credit-is-due department, the HPF draft was
originally written by employees of COMPASS, working under contract
to DEC to define a technology for parallel programming. The draft
has been revised significantly since the demise of COMPASS.

The major objectives that Loveman put forward were

1. Hardware independence

2. A comprehensive language (meaning that the language
should be complete for the type of problems it was
meant to solve)

3. Support for standards (meaning that existing formal
and de facto standards should be fully supported)

4. Phased implementation (meaning that incremental
adding of features would be encouraged, rather than
forcing an all-or-nothing compiler effort)

DEC's assumptions in making tradeoffs (mainly between language
completeness, implementation constraints, and other costs) included

1. “Dusty programmers, not dusty decks” (phrasing
attributed to Bert Halstead - meaning that programs
would still have to be rewritten to take advantage of
new machine architectures and/or language
extensions, but the underlying language would still be
Fortran)

2. Array-based parallelism (and possibly also support for
Geoffrey Fox's “embarrassingly parallel” problem class,
in which no communication between tasks is needed)

3. Environment support (debuggers, performance
estimators, annotated listings, etc. to help users make
sense of what their programs are doing)

This analysis led to a set of design issues which were presented as
orthogonal:

1. Base language for the extensions (DEC proposed full
Fortran 90 - it is notable that they were the only
group making this a requirement)

2. I/O features (DEC proposed staying away from parallel
I/O since there is not widespread consensus yet)

3. Intrinsics (DEC proposed a new category of intrinsics
-system inquiry functions - initially containing one
member NUMBER_OF_PROCESSORS)

4. Directives (DEC proposed all extensions be in the form
of structured comments which would not change the
program result if assertions mad by the directives

HPFF Meeting Notes - 2

were true. Such comments could then be ignored by

non-HPF compilers.
Vendor-specific extensions were also allowed in the same style.)

The full HPF draft was then presented. The briefest possible

description of it would be “Full Fortran 90 + static Fortran D data
distributions + single-statement FORALLs” (see the actual proposal
for more information). Some comments from this part of the
presentation (Q=audience question, A=Loveman answer, X=audience
comment without answer):

Q: Can NUMBER_OF_PROCESSORS() be used as a constant?

A: It is a constant if the module is compiled with a fixed
number of processors, and a specification expression
(see Fortran 90 standard) otherwise.

X: (in various phrasings, from several people) The
programmer should specify the processor layout and
make the compiler map that onto the physical layout,
rather than the other way around (as HPF now does)

Q: Are replicated values (allowed via ALIGN statements)
consistent? (If yes, does this mean there is no private
storage per processor?)

A: Yes, but the compiler may violate this consistency if it
can prove it is safe to do so. There is no concept of
private storage, although compiler should be smart
enough to notice some cases (like loop induction
variables).

Q: Are the data distribution directives absolute rules, or
can the compiler override them?

A: In general, the compiler chooses distributions as it sees
fit, and the directives are “hints”. So we lean toward
no override (but the compiler should provide feedback
when it sees a better way).

MPP Proposal (presented by Tom MacDonald, Cray Research
Inc.)

The proposal from Cray was presented as the programming model
offered on that company's Massively Parallel Processor machine.
Although it was not presented explicitly as a industry-wide proposal,
it was clearly an indication of the way that a major vendor was
headed.

The programming model for the MPP has two major aspects: data
sharing and code sharing. These are treated essentially orthogonally;
it is perfectly possible to distribute an array in contiguous blocks,
and spread the iterations of a loop accessing that array cyclically

HPFF Meeting Notes - 3

among processors. The Cray philosophy was announced as “small
extensions”, but the programming mc 'el was certainly further
removed from sequential Fortran than 1 ZC's proposal. As in the DEC
proposal, directives were represented as comments, although some
comments did change the meaning of the program. The MPP
programming model uses CFT77 as its base programming language.

In the area of data sharing, the situation can be described as
follows:

1. Arrays are private to each processor by default (and
the copies of the arrays on each processor may have
different values).

2. COMMON blocks and local arrays can be marked simply
as SHARED, giving them a canonical distribution
(essentially, cache lines distributed cyclically among
processors). Sequence and storage association are fully
supported for these objects.

3. Dimensional distributions (BLOCK and BLOCK(N)) can be
applied to each array dimension, providing the same
functionality as the DEC proposal (except there is no
alignment). Consistent declarations are needed if
these arrays are passed (COMMONSs redeclared) in
other scopes.

4. Subprograms can either declare the distribution of
their arguments or mark them as UNKNOWN, which
will compile into more general but slower code.

5. Limited forms of redistribution are allowed.

As to work sharing, the situation is more complex:

1. Serial and parallel regions (ala the PCF and X3H5
constructs) are supported. The program begins
execution in a serial region.

2. Within parallel regions, loop nests can be marked as
shared or private. Processors divide the iterations in a
shared nest between themselves (by one of several
mechanisms), while each processor executes all
iterations of a private loop.

3. A rich set of synchronization primitives is supported,
including barriers, locks, events, and critical sections.

4. There is also a rich set of new intrinsics for working
with local array sections within parallel sections
(MYS$HIIDX for the upper bound of the local section,
etc.)

5. Intrinsic functions are provided for reductions, prefix
operations, and segmented scan operations. Complex

HPFF Meeting Notes - 4

semantics are needed for the various combinations of
shared and private array parameters to and results
from these.

Parallel I/O was mentioned only in passing in the talk, although
there is a section on it in the MPP manual. In essence, I/O can be
shared (i.e. all processors read the same file) or private (every
processor has its own file). Values read are automatically distributed
to the correct processor(s) by the underlying system.

Some of the audience comments included:

X: Rounding block sizes to powers of 2 (done to facilitate
subscript generation) is a bad move.

Q: (at several points, for various reasons) Isn't that
nondeterministic?

A: (usually) Yes. Many of these cases can be checked in
the compiler or on-the-fly by inserted code; we'll
develop an environment to do that.

X: This may not be a good thing to have the language lean
on so heavily.

X: (Guy Steele) Note that “nondeterministic” in theory
circles means “the automaton always makes the right
choice”; what these features offer is “indeterminate”
execution. A semantic difference worth preserving.

Q: Can the program check what the actual distribution of
an array parameter is?

A: Yes, but only indirectly.

Fortran D (presented by Chuck Koelbel, Rice University)

This talk presented only the outlines of the Fortran D language.
Most of the emphasis was placed on making the final HPF language
extensible (for language researchers), rather than pushing advanced
features as required parts of the language. Either Fortran 77 or
Fortran 90 can be used as the base language.

Some of the points raised were

1. The DECOMPOSITION represents the finest-grain level
of parallelism of a program, which is mostly machine-
independent. Having this level explicit for the
programmer was thought to promote portable code.

2. The current ALIGN syntax admits certain pathological
cases that the Fortran D group did not intend to plague
implementors (Guy Steele gave the example of ALIGN
A(I) WITH D(INT(LOG(FLOAT()))).) On the other
hand, there are real problems that need highly
irregular alignments, such as finite element codes.

HPFF Meeting Notes - 5

Therefore, we want whatever syntax is accepted to be
extensible to these cases (although we cannot
recommend that the full syntax be implemented
everywhere).

3. DISTRIBUTE represents the machine-dependent level
of parallelism. This is perhaps more naturally
expressed by an explicit processor array like several
other proposals have.

4. Irregular DISTRIBUTIONs are useful for some
problems, and provide a different conceptual
functionality from irregular ALIGNs. (ALIGN concerns
connectivity patterns between different arrays, while
DISTRIBUTE handles reference patterns within the
same array.) Again, an extensible syntax is
recommended.

5. Fortran D has a determinant multi-statement FORALL
loop, and we think both those qualities are desirable in
a parallel loop. If users really want indeterminate
execution, we suggest providing another construct in
addition.

6. Array distributions should be propagated
automatically to procedures, and the compilation
system be responsible for sorting out the actual inputs
and generating correct code. This may be overly
ambitious, since Rice has more interprocedural
analysis experience than many other places.

Vienna Fortran (presented by Hans Zima, University of
Vienna)

Vienna Fortran was presented as a complete proposal, although
more emphasis was placed on the parts of the language which
differed significantly from the preceding talks. Like Fortran D,
Vienna Fortran will eventually have Fortran 77 and Fortran 90-based
versions.

The key issues in Vienna Fortran (as opposed to other proposals)
were

1. Explicit physical processors with user-definable
topology. A default (linear) processor array is always
defined, but the programmer can also define other
structures.

2. No virtual processor mechanism (ala Fortran D
DECOMPOSITION) is provided. It was not considered
necessary.

HPFF Meeting Notes - 6

3. Alignment is provided between arrays directly, rather
than between arrays and (physical or real) processors.
Element-wise alignment is equivalent to the Fortran D
ALIGN, and a different concept of structural alignment
is also provided (useful between different-sized
arrays).

4. Both static and dynamic distributions are provided, but
different syntax is used for them. Either static or
dynamic mappings can use regular or INDIRECT (user-
defined) distributions. Dynamically distributed arrays
can also be annotated with their set of possible
patterns; this may simplify compiler analysis.

5. A variety of parameter passing mechanisms are
provided, by which the programmer can control fairly
precisely whether an array is redistributed on entry to
the subprogram or not.

6. A number of distribution inquiry functions are also
provided, which can be checked at run-time
(particularly useful for parameters).

Data Parallel Fortran (presented by Jorge Sanz, IBM
Almaden)

This talk was a much more theoretical offering than the other
presentations. Sanz presented some recent work at IBM Almaden
aimed at evaluating the expressiveness of parallel languages. As he
said in his disclaimer “I'm going to work on anything I say shortly,
BUT this doesn't mean that IBM will.”

Data Parallel Fortran (DPF) considers the expressiveness of
parallel languages. In particular, it attempts to answer the question
“Is there a safe, portable way to program parallel machines?” The
starting point for this research is looking at sequential and parallel
languages as two endpoints of a spectrum. Most proposals for new
languages are movements from the sequential side towards
parallelism; DPF moves from parallelism towards sequential
languages. The hope is that this approach will show limits of
expressiveness more explicitly than other languages.

The complete model is too complex to fully describe here.
(Interested readers are referred to the author, who is working on a
complete specification.) Its major components can be summarized
as

1. The underlying model is an unbounded number of
recursively nested virtual processors. Each processor
has a local memory which can be initialized (or can

HPFF Meeting Notes - 7

later write to) a global store. Such global accesses are
presumed to be expensive, and must be made
explicitly.

2. MAP functions are provided to move (distribute) global
data to the local memories. Once a MAP has been
performed, the processor may only access its own
data.

3. FORALL statements specify parallel execution. Since no
off-processor accesses are allowed within a FORALL,
execution is determinant. Communication and
synchronization are performed at FORALL entrance
and exit.

Comments on the HPF Draft (presented by Guy Steele,
Thinking Machines Corporation)

This presentation gave constructive criticism of the HPF draft
(actually, a somewhat older draft than was presented earlier) in four
areas: Fortran 90 compatibility, data alignment and distribution,
SPMD programming support, and miscellaneous features. The talk
was generally very well received.

In the area of Fortran 90 compliance, Thinking Machines believes
that requiring full Fortran 90 as part of HPF will hinder (short-term)
acceptance. They propose only requiring a subset at first, and
moving to full Fortran 90 at a later date. The subset they propose is
essentially the new array operators and intrinsics, allocatable arrays,
and the WHERE statement.

In the area of data alignment, Guy characterized Fortran D's
ALIGN as too general and HPF's restrictions as too limited. He
proposed a new syntax that would allow dynamic alignments, but
only a simple subset of HPF's ALIGNment patterns (essentially affine
translations of arrays). The syntax had the key advantage that
alignment functions were guaranteed to be invertible (required for
efficient implementation), but the disadvantage that it was not
extensible (even transpose could not be supported). Potential users
in the audience seemed satisfied with this tradeoff, although
language researchers seemed less enthusiastic. A PROCESSORS
declaration was also proposed, leading to an interesting (and
unresolved) debate on how many levels of mappings were sufficient
and necessary.

In the area of SPMD programming support, Guy suggested LOCAL
code sections containing code to be executed on each processor. In
contrast to the Cray parallel sections, no off-processor references
could be made in a LOCAL section (except through a complex syntax).

HPFF Meeting Notes - 8

Arrays would be referenced relative to their local sections, rather
than by global indices. This proposal generated a great deal of
comment from the audience, mostly at least generally favorable on
the grounds that LOCAL sections provided low level control. On the
down side, however, it was observed that LOCAL sections changed
the semantics of programs (for example, array indexing changed),
and that the feasibility of LOCAL sections was tied closely to the
generality allowed in ALIGN statements.

Because of time constraints, the discussion of miscellaneous
features was cut short. The features proposed (parallel prefix
operations, for example) did not appear controversial, however.

Views on the HPF Drafts (presented by Joel Williamson,
Convex Computer)

This talk was in much the same spirit as the Thinking Machines
talk (i.e. constructive criticism), but did not propose any new
features. Joel did, however, have one of the more noteworthy quotes
of the day, regarding shooting holes in proposals: “I'm well aware
that the ducks in this gallery are armed with automatic weapons.”

Some of the comments included

1. The Thinking Machines proposal was generally seen as
the best of the lot, although there was still room for
improvement (particularly for explicit
synchronization).

2. Real-world criteria were needed for validating the
proposal, in particular rewriting significant scientific
codes (such as the PERFECT club benchmarks). This
was followed by a lively debate on the difficulty of
choosing ALIGN and DISTRIBUTE statements for a
shallow water model benchmark, Joel defending the
“It's hard” viewpoint.

3. Requiring full Fortran 90 was not a popular idea
because of that language's complexity.

4. Extending the HPFF extensions from Fortran to C is
something that Convex feels must be done (by
someone).

Business Meeting (chaired by Ken Kennedy)
The business meeting started with a short discussion by Ken
Kennedy summarizing the proposals made the day before. He then

presented a list of suggested issues, principles, and procedures for
future development of a High Performance Fortran standard. There

HPFF Meeting Notes - 9

was then a lively discussion, which resulted in a consensus for going
ahead with a standard drafting process. Below are Ken's lists, a very
brief list of important points made in the discussion, and a summary
of the future of HPFF.
Proposed features:
From DEC's HPF proposal:
All of Fortran 90 (plus some other standards)
Static data distributions
Single-statement FORALL
From others:
Block FORALL statements
Parallel loops (ala PCF)
Dynamic redistributions
Local procedures
Irregular data distributions
Issues for discussion:
Minimum vs. Maximum Standards (Time to implement
vs. comprehensiveness)
Data Distribution (Dynamic? Is ALIGN necessary?)
Parallel Loops (Block FORALL? PCF DOALL?
Synchronization between iterations?)
Subroutines (Redistribution on input and/or output?)
Porting vs. Programming (Will users rewrite?)
Directive Strategy (Can non-parallel machines really
ignore them?)
Test Suite
Compatibility with Advanced Features (of Fortran 90 and
other dialects)
Principles for HPFF:
Maximum Compatibility (with existing practice and
standards)
Minimum Requirements (for first prototypes)
Machine Independence
Leave out features that give major
advantages/disadvantages to specific machine types
Consider near-term first
Leave an evolutionary path (for research)
Procedures for HPFF:
One-year project (finished draft by Christmas '92)
People committed to multiple meetings (to ensure
continuity)
One person per organization (plus a named alternate)
Meeting costs

HPFF Meeting Notes - 10

Materials fee for copying (could be avoided by use
of anonymous FTP)
Meeting fee for actual attendees
Test suite built separately (but coordinated activity)
Major discussion topics
(Speakers are identified, but remarks are paraphrased. Not all
comments are recorded, but I hope I've gotten the most important
ones.):
Q: What exactly are the goals?
Ken Kennedy: Develop a portable language that can
be compiled for high performance on a variety of
parallel machines
Rich Shapiro: Users need to know the features NOW,
for planning future codes
Q: How do we make this standard work (unlike certain
other languages that were mentioned in negative
lights)?
Ken Kennedy: Get the vendors to agree, thus
forming a de facto standard
Clemens-August Thole: Lots of groups are already
working, try to unify them
Dave Presberg: Get coordinated fast, hold that
momentum
Peter Belmont: Draft will get done faster with a
strong leader and willing helpers, rather than a
true democracy (Ada used as an example)
Bob Metzger: Build the test suite, let that serve as
the standard
An informal survey drew about 20 vendors (and other parties)
who were willing to commit to the process outlined above. This was
deemed a good size for a working group (i.e. small enough that real
work could be accomplished in reasonable time, unlike the conditions
at the first meeting). Chuck Koelbel collected names to coordinate
the next meeting, which would focus on producing a clear statement
of goals and principles. With that statement in hand, it was expected
that work on language design could be divided more rationally.
Current plans are to have the next meeting in Dallas toward the end
of February. Mail lists for meeting attendees and for other
interested parties will be set up in the very near future. It is hoped
that future language drafts will be available by anonymous FTP (in
raw ASCII form, to reduce difficulties in printing). Geoffrey Fox is
coordinating the collection of the test suite.

HPFF Meeting Notes - 11

HPF Benchmark Suite (presented by Geoffrey Fox)

Geoffrey Fox proposed the establishment of a HPFF application
suite which would be “experimental data” with which to test and
evaluate language design. Eventually it could evolve into a test suite
to certify the compiler. He contrasted this with the existing Fortran
77, 90D test suite where we are developing at least 6 versions of
each code:

1. Fortran 77 Original
2. Fortran 77 + Message Passing (Express or Intel)
3. CMFORTRAN
4. Fortran 77 written so it can be parallelized (possible
language and/or algorithm changes)
5. Fortran 77D
6. Fortran 90D _
The HPFF application suite would record for each application in it:
1. Source of and reason for application being present
2. Fortran 77 OR Fortran 90 original
3. At least one good parallel version e.g. Fortran 77+MP
and/or CM Fortran and/or MasPar Fortran ...
4. If necessary the parallelizeable Fortran 77 or Fortran
90 version (as in item 4 of Fortran 77,90D benchmark
suite)
5. One or more HPFF versions written in different
proposed dialects.
There seemed to be a good deal of enthusiasm at the meeting for this
project, particularly in view of earlier remarks regarding having
real examples. Please email gcf@npac.syr.edu if you are
interested in creating or using this facility. This HPFF
application suite would be available by netlib or anonymous FTP.

HPFF Meeting Notes - 12

