Derivative Convergence for
Iterative Equation Solvers

Andreas Griewank
Christian Bischof
George Corliss
Alan Carle
Karen Williamson

CRPC-TR93326
July 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Accepted for publication in Optimization Methods and Software.

Derivative Convergence for
[terative Equation Solvers*

Andreas Griewank and Christian Bischof, Argonne National Laboratory
George Corliss, Marquette University and Argonne National Laboratory
Alan Carle and Karen Williamson, Rice University

July 16, 1993

When nonlinear equation solvers are applied to parameter-dependent problems, their iterates can be inter-
preted as functions of these variable parameters. The derivatives (if they exist) of these iterated functions
can be recursively evaluated by the forward mode of automatic differentiation. Then one may ask whether
and how fast these derivative values converge to the derivative of the implicit solution function, which may
be needed for parameter identification, sensitivity studies, or design optimization.

It is shown here that derivative convergence is achieved with an R-linear or possibly R-superlinear rate
for a large class of memoryless contractions or secant updating methods. For a wider class of multistep
contractions, we obtain R-linear convergence of a simplified derivative recurrence, which is more economical
and can be easily generalized to higher-order derivatives. We also formulate a constructive criterion for
derivative convergence based on the implicit function theorem. All theoretical results are confirmed by
numerical experiments on small test examples.

KEY WORDS: Derivative convergence, automatic differentiation, implicit functions, preconditioning, Newton-
like methods, secant updates.

1 INTRODUCTION AND ASSUMPTIONS ON F(z,t)=0

Many functions of practical interest are defined implicitly as solutions to differential or algebraic equations.
The values of these functions are typically evaluated by iterative procedures with a variable number of
steps and with various, often discontinuous, adjustments. The corresponding computer programs contain
branches, and the results are often (strictly speaking) not everywhere differentiable in the data. Then one
may ask whether and how automatic differentiation can still be expected to yield derivative values that are
reasonable approximations to the underlying implicitly defined derivatives.

Automatic, or computational, differentiation is a chain rule based technique for evaluating the derivatives
of functions defined by algorithms, usually in the form of computer programs written in Fortran, C, or some
other high level language. If the program theoretically can be unrolled into a finite sequence of arithmetic
operations and elementary function calls, then derivatives can be propagated recursively. Exceptions arise
when there is a division by zero or when one of the elementary functions is evaluated at a point of non-
differentiability. These local contingencies are easily detected and arise only in marginal situations where
the undifferentiated evaluation algorithm is already poorly conditioned. For a general review of the theory,
implementation, and application of automatic differentiation, see [16].

Rather than as a practical problem for automatic differentiation, one can also view the question raised
here as a purely theoretical one, namely, whether the iterates generated for parameter-dependent problems
converge not only pointwise, but also with respect to some Sobolev norm involving derivatives with respect

*This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-
38, by the National Aerospace Agency under Purchase Order L25935D, by the National Science Foundation through the Center
for Research on Parallel Computation under Cooperative Agreement CCR-9120008, and by the W. M. Keck Foundation.

to the parameters. This theoretical aspect will not be fully explored here, as only pointwise convergence of
the derivatives is established. Throughout we will analyze the situation where a nonlinear system

F(z,t) = 0 with F :R"xR~—R"
is solved for z(t) for fixed ¢ by an iteration of the form
Try1 = (Pk(zk,t) =z — PkF(z'k,t), (D

where Pi is some n X n matrix, which we will consider as a preconditioner. Without loss of generality, we
have restricted our framework to the case of a single scalar parameter ¢ € R since multivariate derivatives
can always be constructed from families of univariate derivatives [2]. Total derivatives with respect to ¢ will
be denoted by primes, and partial derivatives (with = kept constant) by the subscript ¢.

In this paper, we consider two approaches to computing the desired implicitly defined derivative z'(t).
The “simplified” approach treats the P as if they were independent of t. The “fully differentiated”
approach differentiates the entire iterative algorithm.

Obviously, any sequence {zx}r>o for which F(zk,t) never vanishes exactly can be written in form (1),
unless we place some restriction on the n x n matrices P; and thus the sequence of iteration functions ®.
The assumptions on the P that we will make are quite natural and almost necessary for a numerically stable
iterative process.

Assumption 1 (Regularity) For some fized t, the iteration converges to a solution, so that
T — z. = z(t) with F(z(t),t)=0.

Moreover, on some ball with radius p > 0 centered at (z(t),t), the function F is jointly Lipschitz-continuously
differentiable and has a nonsingular Jacobian F(z,t) = OF(z,t)/0z with respect to z, so that for two
constants co, L, and for all ||z — z(t)|| < p,

1E7 ()l + I[Fe(z, 1), Fe(z, DIl < <o,

and
I[F=(2,8), Fi(z,)] = [Fe(2a,1), Fia=, Ol < Lllz = 2.,
where we may use lo norms without loss of generality.

Under this assumption, local convergence is guaranteed for Newton’s method with P, = Fe(zg, t)~! or for
the Picard iteration with Py = I if the spectral radius of (I — F;) is less than one. If this condition is not
met by the original system F = 0, one might try to find a fixed preconditioner P, = P so that (I — P F;) is
a contractive mapping. Alternatively, one may select P as a function of zj, for example by performing an
incomplete triangular decomposition, so that we can write

P, = P(z,t) .

Then Pi does not directly depend on the previous iterates, and we will refer to the iteration (1) as a
memoryless contraction provided the following condition is met.

Assumption 2 (Contractivity) The discrepancies
D, = [I — P Fo(zk, t)]

satisfy
b = |IDell € 6<1 (2)
with respect to some induced matriz norm so that in the limit

6. = limpér <6.

For the class of methods satisfying this contractivity assumption (which includes Newton’s method with
analytical Jacobians or divided difference approximations), convergence of the derivatives can be obtained
easily. As an immediate consequence of Assumptions 1 and 2, we note that by standard arguments

[Pl < co(1+68) and [|PFH < co/(1-6). ()

In the case of secant methods [13], the condition (2) is usually imposed for k = 0 and deduced for k > 1 to
guarantee local convergence. If one assumes a certain kind of uniform linear independence for the sequence
of the search directions, it can be shown [19] that 6. = 0. This is a sufficient, but by no means necessary,
condition for Q-superlinear convergence. It can be enforced by taking so-called special steps [19] for the sole
purpose of reducing the discrepancy Di. We will see that 6. = 0 implies R-superlinear rather than just
R-linear convergence of the derivatives. Hence, the extra expense of special updating steps might be justified
on parameter-dependent problems. Secant methods are not memoryless because the preconditioners P are
computed recursively from step to step. Therefore, they must be considered as functions of all previous
points z; and of the initial choice Pp. Since in formula (1), the matrix P must also absorb step multipliers,
this functional dependence need not be smooth and may have discontinuities. In that case, the transition
from Tx to Tp4; may also be nondifferentiable, so that the classical chain rule is not directly applicable.

Even when zo, Py, and all subsequent Pj are smooth functions of t, it may be uneconomical to calculate the
corresponding derivatives explicitly. For example, in the case of Newton’s method, the explicit calculation
of derivatives would involve the propagation of derivatives through the triangular decomposition of the
Jacobian, a process that involves n3/3 arithmetic operations in the dense case. However, we know from the
implicit function theorem that

Fu(2(t),)2'(t) = —Fe(x(t),1) . (4)
In particular, this means that z'(t) is defined in terms of the first derivatives of F alone and does not depend
on the second derivatives Fyz and Fy; . Yet these tensors come implicitly into play if derivatives with respect
to z are propagated through the Newton iteration function ®x(zk,t) = zi — Fz(Zk, t)~!F(zk,t). The same
applies to any other iteration where the preconditioner P depends in some way on derivatives of F' with
respect to z or t. Therefore, we will examine a simplified derivative recurrence, where the P are considered
as (piecewise) constants with respect to the total differentiation of the recurrence (1) with respect to t. We
call this the simplified approach.

On the other hand, it may be difficult to determine which quantities in a complicated nonlinear equation
solver need to be differentiated and which can be considered as constants because they belong to the cal-
culation of the preconditioner P;. This distinction must then be conveyed to the automatic differentiation
software by suitably annotating the code or retyping some of its variables. Therefore, one may prefer to
adopt a black box approach and differentiate the whole iterative algorithm as though it were a straight line
code. This is what we call the fully differentiated approach. Also, the derivative i, = dzi/dt of the iterate
z; that is finally accepted does represent the local tangent of the approximate solution set, which should be
close to the exact solution curve if the convergence occurs with some degree of uniformity.

For either the simplified or fully differentiated approach, it seems pretty clear that the derivatives cannot
converge faster than the iterates themselves, unless the problem is linear or has some other very special
structure. We will show for Newton’s method and for secant updating methods that the derivatives converge
R-quadratically and R-linearly, respectively. Especially in the case of secant updating methods, we must
therefore expect that the derivatives may lag behind the iterates during the final approach to the solution.
Fortunately, we can constructively check the accuracy of any derivative approximation so that a premature
termination can be avoided if accurate derivative values are required.

Gilbert showed in [15] that the derivatives dz/dt converge in the limit to the desired tangent z’ = z/(t)
provided that the spectral radius of d®(z,t)/0z is less than one in the vicinity of (z.,t). This fundamental
result has removed some serious doubts regarding the general applicability of automatic differentiation. It
has been verified on several large codes, including cases 3] where the assumptions of Gilbert’s theorem do
not appear to be satisfied. Therefore, we wish to relax the hypothesis and avoid derivatives that are not
needed either from a theoretical or from a practical point of view. We will also establish rates of convergence,
provide a practical stopping criterion, and extend the theory to higher derivatives and multistep contractions.

The paper is organized as follows. In the next section, we motivate the simplified and fully differentiated
derivative recurrences and develop some basic mathematical relations. In Section 3, we establish R-linear
derivative convergence for the simplified recurrence under Assumptions | and 2 alone and for the fully

3

differentiated recurrence under the additional assumption that the update function of the Pp satisfies a
certain differentiability condition. In Section 4, we present limited numerical experiments to illustrate our
theoretical results. We compare the simplified and the full derivative recurrences for the Davidson-Fletcher-
Powell update, and we consider using automatic differentiation to generate higher-order derivatives. We also
investigate the performance of an optimization code in the more realistic setting of parameter identification
problems when the necessary derivative information is supplied by the application of automatic differentiation
to a function that is defined implicitly. In Section 5, we extend the results in Section 3 on R-linear convergence
to methods such as cyclic reduction that are multistep contractive, but not one-step contractive. We conclude
with a discussion of opportunities for further work.

2 SIMPLIFIED AND FULLY DIFFERENTIATED RECURRENCES

As we have indicated above, the basic recurrence (1) can be interpreted as one step of a Picard, or Richardson,
iteration on the preconditioned nonlinear system

Fi(z,t) = P F(z;t) = 0. (5)

Provided P is nonsingular, as we will assume throughout, the solution set of each Fi = 0 is exactly the same
as that of the original system F' = 0. Consequently, the implicitly defined function z(t) and its derivatives are
independent from the sequence of preconditioners Pj. Their iterative evaluation certainly need not depend
on the derivatives of P, which may not even exist.

Differentiating equation (5) with respect to ¢ with P considered a constant, one obtains the equation
defining z'(t)

P Fe(z(t),t)2'(t) = =P Fe(z(t),t) . (6)

In the following formulae, we will often suppress the dependence on t, which should be understood. Applying
the Richardson iteration to the preconditioned linear system (6) of equations evaluated at the “current”
iterate =, one obtains the recurrence

5:;=+1 = Z} — P [Fz(zk,t) i + Fi(ze,t)] . (7

Here the tilde over #, indicates that these approximations to the derivative z’(t) are in general not the
derivatives of the z; with respect to ¢, which may or may not exist. Subtracting the actual implicitly defined
derivative
gl = —F(z.,t)" Fe(z.,t)
from both sides, we find that
Zepr— T = De(E —zl)+ 7, (8)
where
e = Pe[Fe(zi,t)z, + Fi(zi,t)] = O(||lzi —2.|]) - (9)
Since the perturbation r} tends to zero, equation (8) looks very much like a contraction and promises
convergence of the z, to z,.
If the P; are at least locally smooth functions of ¢ so that the matrices P{ = dPi(z(t))/dt are continuous,
then the derivatives z}, = z},(t) exist, and (1) implies that they satisfy the recurrence

Tiy = T — P [Fo(ze, t)z) + Fi(zk, t)] = Pg F(zk,t) , (10)
which can be rewritten in the contractive form as
Tiy1 — Tw = Di(zf —zl)+7 — PLF(zi,t). (11)

We refer to equation (7) as the simplified recurrence and to equation (10) as the fully differentiated recurrence.
We hope this terminology helps avoid the danger of confusion with the Jacobian and Hessian update formulas
([4] and [5]) that lie at the heart of secant methods.

Provided the P} stay bounded or do not blow up too fast with increasing k, the last term in the linear
recurrence (11) becomes more and more negligible as the residual F(z,t) approaches zero. In the remainder,
we will analyze equation (7) as a special case of equation (10) with P: considered as constant on some

neighborhood of the current ¢. Obviously the two-stage iteration defined by (1) and (10) can be stationary
only at the (locally) unique fixed point (zk,z}) = (z.,z.). In general, iteration (10) will never reach this
fixed point exactly. However, the derivative approximations £}, can have no limit other than the correct value
2!, unless the P} F(zx,t) converge to a nonzero vector. This possibility is remote: it can occur only if || Pg||
tends to infinity exactly at the same rate as the reciprocal 1/||F(zk, t)||. Note that this cannot happen in the
simplified derivative recurrence (7) for which P{ = 0 by definition. In the case of the full recurrence applied
to secant methods, the Q-superlinear convergence rate ensures that the perturbation P{F(z,t) tends to
zero R-linearly, as we will show in the proof of Proposition 2 in Section 3.

In general, we expect the derivatives z}, to exhibit roughly the same convergence behavior as the iterates
zi. To justify this optimism, we note that by Taylor’s theorem,

PkF(:L‘).,, t) = PkF,,-(.’Ek, t) (21: - 2':) - Tk,

where
re = —Pu[F(zk,t) — Fo(ze, t)(z — z%)] = O(|lze — z.||?) . (12)
Consequently, the iterates z; defined by (1) satisfy the contractive recurrence

41— Ta = Di(zi—za) + 71 . (13)
Hence we have essentially the same leading term in (8), (11), and (13). Taking norms, one obtains
lzk4r = zall < [IDkllller =zl + lirell
so that the errors ||z — .|| converge Q-linearly because of the contractivity assumption:

T |zk41 = 2|
lze = z.|

< 6.

No matter how a derivative approximation z/, was generated, its quality can be checked by evaluating the
directional derivative

OF(zp + i, t + 1)

F/(l'k,t,$;¢) or

(14)

=0

= F;(Ik,t):l.‘;,-i-Ft(zk,t) . (15)

This vector can be evaluated cheaply in the forward mode of automatic differentiation, without the need to
form the (potentially very large) Jacobian F(z,t). Note that PrF'(z4,t, z!) = r}, as defined in (9). When
F'(zk,t,z}) vanishes exactly, z}, represents the tangent of the perturbed solution set

{z e R": F(z,t) = F(z, 1)}

If F'(zk,t,z)) does not vanish, one can substitute into the right-hand side of (7) or (10) to improve the
approximation. In general, the z}, can approximate z} only as well as the z; approximate z.. Abbreviating

pe = |lze —z.|l and pe = ||k -zl

and setting
m = (Ley +||PLDpx with ¢ = 2(c3 +1), (16)
one can bound the derivative errors as follows.
Lemma 1 The regularily and contractivity imposed by Assumplions I and 2 imply that
1

1
e < mllPkF'(zk,t,zL)ll+;Z-Lcoclpk, (17)

pes1 < Okpk +come, and ||l < crcoLpr (18)

forall pp < p .

Proof. First we show that the function Fz(z,t)~!Fi(z,t) : R® — R" with ¢ fixed has the Lipschitz
constant Lcgey /2 at z..

||F,(a:, t)-ng(:L‘, t) - Fl‘(z*: t)-lFf(x*’t)”

< Fe(=,) [Fu(=,t) = Fels, Ol + I[Fe(z,8) ™" = Fe(za,)] Fi(2a,)]
< coLllz = zull +1Fe(2,)| - | Fa(ze, 8) = Fe(z)] - [1Fe(za,)7 | - | Fe(es)]
< coLl||z — z.|| + coL||z — zu||co co = co L (c3 + 1)||z — z.|| .

From the definition of F'(z¢,t,z}) in (14), we have
g —z, = F7Y(zp, O)F'(zk,t, z}) — [Fe(zi, t) " Fe(zk, t) + 2l] -
After taking norms and using the Lipschitz constant just derived, we get
pe S |F7H(zr,) (zk, t, 23)l| +co Lerpe/2 -

One can replace the inverse F;!(zk,t) in the first term on the right-hand side by P, noting that by the
Banach perturbation lemma (e.g., [20]) and the definition of D; in Assumption 2

P 2k,)P = I = Die)HE< 1/(1= (I Dell)

which establishes the first assertion.
To prove the third inequality, we derive from (9) by taking norms

7%l | P Fz(zk, t)z!, + P Fe(zk, t)||

< NPe[Fa(zk,t) = Fe(za, Ol - llelll + | Pe[Fe(zi, 8) = Fe(z-, I
< PellL(cd + 1)pr < 2e0L(cd + 1)pe = Leocrpr -
Here we have used that ||z%|| < |[|F5 (zu,)| - || Fe(z+, t)|] < ¢ by Assumption 1. The last inequality follows
since || Pe|| = ||(I = De)F7 || < (1 4 6)co as a consequence of Assumption 2. Finally, we derive from (11),
pesr < Oepe + Ikl + 1 PLF (2,]
< Skpr + (Leocr + || Pelleo)px
< Okpk +comi
where cg is a bound on the Jacobian F, and hence a Lipschitz-constant for F, so that ||F(z,t)|| = ||F(z,t) -

F(znt)” < Ccopk- |

The first equation of Lemma 1 provides us with a constructive stopping criterion for the derivative iteration,
provided we can make some reasonable assumption regarding the sizes of L, co, and §, which are also needed
to bound ||z —z.|| in terms of || F(z, t)|| or || Pc F(z, t)||. The second inequality is the key to our convergence
analysis in the following section.

3 DERIVATIVE CONVERGENCE FOR Q-LINEAR METHODS

First we will consider memoryless methods, where we may assume that P, = P(zk,t) is continuously
differentiable near (z,t) so that for some ¢z and all px < p,
1Pell = |Pezl + Pl < ca(pe +1) - (19)

This relation holds trivially with ¢3 = 0 for the simplified iteration (7) where P, = 0.

Proposition 1 Under Assumptions I and 2, condition (19) implies R-linear or R-superlinear conver-
gence for the derivative recurrence (10). That is,

Tm ||z} — 221* < .. (20)

Moreover, for all sufficiently small weights w > 0, the Sobolev norms
llzk = .|| + wllz} —]|

converge Q-linearly to zero. Furthermore, if §; < ||z — z.||, then we have R-quadratic convergence in
that

— k
limy ||z} — 24|V < L,
which applies for Newton’s method, in particular.

Proof. Substituting (19) into the definition (16), we obtain

me < (Ley + c2)pr + capepr

so that by (18)
pr+1 < (6k + cocapr)pr + capr
where c3 = co(Lecy + c2). Because of (12) and (13), we have by standard arguments,

Pr41 < bkpr + Leopy -

Combining the last two inequalities for any w, one obtains the ratio

(Pe+1 + Wpk41) < (6r + wea + Leopr) pr + w(bk + cocapr)ik
(Pe +wpk) ' (P + wpk)
8k +wes + co(Leo + c2)pk -

A

The last bound has the limit superior é. + wcs, since we already know that the pi converge to zero. This
limiting ratio implies Q-linear convergence of the Sobolev norm, provided we choose 0 < w < (1 —6.)/c3.
Consequently, the linear R-factor of the sequence i is less than or equal to any é. + csw, and thus is not
greater than 6., as asserted in (20). With the additional assumption on 6, we have for some c,

pe+1 < ca(pe + ok,

which means that the convergent sequence {y} is bounded by a multiple of the Q-quadratically convergent
sequence {pr—1}. |

Proposition 1 shows that for memoryless contractions, the fully differentiated recurrence (10) yields R-
linear convergence and potentially R-superlinear convergence, a possibility that can occur only if the iterates
themselves converge superlinearly. The same convergence rates are achieved by the simplified derivative
recurrence (7), even when the preconditioners are updated recursively and are not differentiable. In the
important case of Newton’s method, either derivative recurrence converges R-quadratically—a rather satis-
factory result.

Roughly speaking, we can claim in all these cases that the derivatives converge satisfactorily whenever
the iterates z; converge in a reasonably rapid and stable fashion. The simplest condition under which the
Tk, T, and Z} must all converge linearly to their respective limits is that the shifted Jacobians Dy =
(I — Pg Fz(z,t)] converge to a limit whose spectral radius is less than one. This condition was implied by
the hypothesis of Gilbert’s theorem [15] but must be considered quite restrictive. For example, the condition
does not hold for Broyden’s method nor for other popular quasi-Newton schemes, where P, = m,Bk'l. Here,
ok is a step multiplier, and By is an approximation to the Jacobian Fz(z,t), which is not guaranteed to
converge to Fz(z.,t) or to any other limit. However, under the usual assumption for local convergence of
secant updating methods, it can be shown [6] that ey — 1.0 and that || Di|| < 0.5 in the l; norm for all k.
Then it follows from Proposition 1 that the simplified recurrence (7) must converge to the unique limit z7.
This does not necessarily apply in case of the fully differentiated recurrence (10) because a prior: nothing is
known about the existence or the size of the Py.

The differentiability of the secant updates is in question because they contain rank-one terms of the form
Yk/||sk||, where both difference vectors

Sk = Tik41 — Tk and Y = F'(z:k+1,t)—F(:z:),,t) ~ 1‘-',_-(‘.':‘..,t)slc

converge to zero. To prove that the matrix derivatives | PL|| do not blow up too fast, we make the observation
that all classical updates and many other possible schemes can be written in the form

Peyr = U(Pe, Tk, t, 55, Yk) (21)
where the update function
U:R""™xR*'xRxR*xR* — R
has the following property.

Assumption 3 (Lipschitzian Update) There ezist constants ¢ 2 1, p< 00, 6<1, and ¥ < o0 such that
the domain conditions

1PN, 1P <c, llz—zll, llsll <p, and [[Py—sll<dlsll (22)
imply that U is differentiable at the poini (P,z,t,s,y), and ils partial derivatives satisfy
WURll, 10N, 10Nl <7, and (UL, IUlE < 2/Mlsl (23)

where P may be restricted to the open cone of symmetric positive definite matrices in R™*".

The crucial point here is that the partial derivatives with respect to s and y are bounded only by a multiple
of the reciprocal step size 1/||s||, which allows unbounded growth of the matrix derivatives ||P{||. The key
observation of the following proof is that the Q-superlinear convergence rate

lim IZE21 =22l (24)
B |lze =zl

implies that the residuals || Fi|| decline just a bit faster than the || P|| may grow. Before we formulate the
second major result, let us briefly show that the Broyden update [4] and the DFP formula [9], [14], which
do not explicitly depend on (z, 1), satisfy the condition above.

Lemma 2 The Broyden update function ’

(s— Py)sTP
P =
U(!say) P+ STPy
and the Davidon-Fletcher-Powell formula
Py TP ssT
U(P,s,y) = P— /T Py +;ﬂ
satisfy Assumption 3 with all norms || - || induced by the Euclidean vector norm.

Proof. For the nonsymmetric Broyden update, p is arbitrary, and § may be any number between zero and
one. Then we derive from the last domain condition in Assumption 3 that s # 0 and that

llyll = 1P~ Pyll < cllPyll < (1 +8)llsll < 2ellsll

as well as

lisll - liglle > Isll - 1Pyl = 5T Py = sT(Py —5) +s7s 2 (1= 6) [s|* - _
In particular, ||y|| > ||sl|(1 = 6)/c. Now let P(r) = P + 7P for some P, and compute the derivative U of
U(P(t), s, y) with respect to 7 at 7 = 0. Then we have by the chain rule with s and y kept constant,

U=P—PysTP+(s— Py)sTP/ (sTPy) — (s - Py)sTP(sf"!"y)/(sTPy)2 ,
so that by the triangle inequality in the Lz norm
O < 0PI - {2+ (gl - 1P sl + llsli? + sl - I1Pull) /(5T Py)

+ (sl + 1PYIDINPTsll - Nlsll - llwl/(sT Pw)?)
NBI - [+ (2¢2 + 1+ 2¢)/(1 = 6) + (1 + 2¢%)2¢% /(1 = 6)*] .

IA

8

Since the direction P is arbitrary, the derivative Up is uniformly bounded as required. Similarly, we find for
the differentiation in some direction § with s(7) =.s + 75,

W00 < 118l [APTsll + lIs = Pyll - 1PN/ (sT Py) + (llsll + 1PYINIPT]| - [|Pyil/(sT Py)?]
< (SISl - [(L 4+ 1+ 26®)e/(1 = 8) + (2 + 2¢%)2e%) /(1 = 6)?]
which implies that Us||s|| is indeed uniformly bounded. Finally, we derive in the direction y
WO < gl - [1PN - 11PTsll/(sT Py) + (llsll + 1 PYIDIPT slk- 1P sll/(sT Py)?]
< (gl/Nsl) - [e/(1 = 6) + (e + 2¢%)e? /(1 = 6)*],

which ensures that Uy||s|| is also uniformly bounded.
For the DFP formula, we must impose the restriction § < 0.2¢~2. Then we have

yTs=y PP ls > sTP s — [Py —s|| - [[P7M]] - Isl] > (1/c = cd)lIslI* > 0.8]Is]|*/¢c,
where we have used the assumed positive definiteness of P to bound
sTP1s > IslI*/11PI > llsli®/e -
As an immediate consequence, we have
yT Py > yTs —yT (s — Py) > 0.8|sl|*/c = 8llyll - lIsl] > (0.8/c = &2¢)llsl|* > 0.4]Is]|*/c .

The rest of the argument is almost the same as for the Broyden update. Differentiating in some direction P
with s and y held constant, we find
U= P—[Py" P+ Pyy" Pl/(y" Py) - [Pyy" PI(y" Py)/(y" Py)*,
so that, after taking norms,
U< NP L+ 2l - [1Pyli2-5¢/1Isl|® + 1 Pylillvli>6.25¢/lIsi]*]
< |IPI[L + 20¢* + 100¢%] < [|PII(1 + 10c3)? .
The derivatives with respect to y and s can be bounded by multiples of ||s||~! in exactly the same fashion.

Since Assumption 3 can also be verified for the BFGS update, it applies for a wide range of methods.
Now we obtain for these updating methods almost the same result as in the memoryless case. The rather
stringent restriction § < 0.2c2 used in the proof for the DFP formula could be avoided if other conditions
were placed on yTs and yT Py. This would make perfect sense in the context of convex optimization, but
we did not introduce them here because our primary focus is on the nonlinear equations case.

Proposition 2 Under Assumptions I, 2, and 3 with p and § sufficiently small, the fully differentiated
recurrence (10) yields R-linear or R-superlinear derivative convergence:

limy ||z}, — =.[|'/F < 6.

Moreover,

Fme 1Pz — 2.1 <6, ,
which limits the potential growth of the P} relative lo the decline of the errors ||z — z.||.

Proof. Differentiating (21), we use the chain rule, the triangular inequality, and (23) to obtain
-%”Pl:+1” < %llUP Pi+ Uz 2z} + Ut + U, s + Uy il

IN

PN + pie + =il + L+ (llsiell + NyelD/llsell -

To bound the last two terms, we note that by (18) of Lemma 3,

IEA

Zhesr — Zkll < Bes1 + i
< (14 8)pk+come < 2pk + Colk -

Similarly, we find

lell = IF (@1, Thyr) = F'(ziaty 23]
< |NFe(zrrr,)Zhsn — Felzr,)il + | Fe(zesn;t) = Fe(ze, O
< I Fe(zren, t)(@hpr — T + (| Fa(zi,)7 — =)
H|[Fa(zk+1,) = Fe(zrsr,)]l + L(pe+r + px)
< co(prsr + pe) + (c5 + 1D L(Pe+1 + px)
< 2comk + camk + 1k < (3 + 1)k + 1) -

Adding the last two inequalities and noting that ||sk|| > pe — pr+1 = 0.9(1 — 8)px, we find that for some cs,

(sill + NoelD/llsell < esuee + me)/ pe -

Now, since pj is bounded, and e/ pr is bounded away from zero, the first four terms in (25), and an additional
Le¢; can be subsumed into the last bound, with ¢s growing to some cs, so that

Ley + || Peqll < calpk + 1x)/ P
After multiplication by pr41, we get
meer < qr(pe +me) With e = cepesr/pe — 0.
Adding w > 6. times this inequality to the bound (18), we find that

[
< max{5k+-9:—k, Tk +<~'} .

(comesr +wprsr) . colge + w)nk + (coqr + wbk) pk
(come +wpe) ~ (comk +whk)

Since the limit superior of the maximum is w, and one may choose w arbitrarily close to d., we have shown
that the sequences {7k} and {s}x both have a linear R-factor no greater than é.. The last assertion follows
directly from the definition of ni in (16). 1§

This result applies to all standard classical secant methods and suggests that the rate at which the
derivatives z/, converge is the same whether or not the Jacobian updating procedure is differentiated. This
conclusion is valid only if the globalization strategy eventually becomes inactive, so that all later steps are of
unit length. On the one hand, this means that the fully differentiated, or black box, approach is reasonably
safe. On the other hand, it appears that implicitly defined derivatives can be obtained at a much reduced
cost by deactivating the Pk, that is, by treating them as constants as in the simplified updating scheme.
Also, the theoretical possibility that the Py generated in the fully differentiated update may grow unbounded
is numerically worrisome, as it may lead to exponent overflows.

4 NUMERICAL RESULTS

Our limited numerical experiments confirm and illustrate our theoretical results. In Section 4.1, we test
the predictions of Propositions 1 and 2 for the DFP update, and we consider the generation of higher-order
derivatives. We compare the simplified and the fully differentiated derivative recurrences, both without and
with line searches. We find general agreement with the theory, but we cannot choose between the simplified
and the full derivative recurrences in general on the basis of these experiments.

In Section 4.2, we consider the effect on a class of parameter identification problems of using automatic
differentiation of an implicitly defined function to compute the derivative information needed by the op-
timization algorithm. The fully differentiated Newton’s method using the more accurate derivative values
computed by automatic differentiation typically required fewer iterations to find a satisfactory solution than

10

the corresponding finite difference algorithm, but the finite difference version required less total CPU time.
Similar results are given for the fully differentiated Broyden’s method. Finally, we give some numerical results
for a (differentiated) simplified Newton’s method using slightly modified stopping criteria which indicates
that the simplified approach is quite promising.

4.1 THE DFP UPDATE AND HIGHER-ORDER DERIVATIVE RECURRENCES

Our limited numerical experience confirms the theoretical results. We found only a moderate growth of the
P} for our test case, the Davidon-Fletcher-Powell (DFP) secant method. However, there is clear evidence
that the convergence of the first derivatives z}, lags significantly behind the convergence of the iterates zy
themselves. This phenomenon is much more pronounced for secant methods than for Newton’s method,
where the d-th derivative can be shown to lag roughly d steps behind the functional iterate. e have also
propagated higher derivatives for secant methods and found that they converge in a staggered fashion and
at about the same rate whether or not P; is deactivated.
Our numerical experiments were conducted on the test function

F(z,t) = Vzf(z,t) with f(z,t) = %(xTHz-i-tHa:ll“) ,

where H = [1/(i +j — 1)] is the Hilbert matrix of order n, and ||z|| denotes the Euclidean norm. Locally, the
minimizers of f are characterized as roots of the stationarity conditions F =0, so that minimization methods
behave eventually like equation solvers. In the general nonlinear equations case, the progress towards the
solution is usually gauged in terms of some norm of the residual vector F. Often a monotonic decrease of
such a merit function is enforced by a suitable line-search or trust-region strategy [13]. In the optimization
case, one may use the objective function f itself, which we have utilized for a line-search consisting of a
single parabolic interpolation. This simple strategy works here because the objective function is convex and
very smooth. .

Since the unique solution z. = 0 is independent of the parameter ¢, all derivatives .. .zg) must
also vanish, a situation that makes monitoring their errors exceedingly simple. The approximate inverse
Hessian was initialized as Py = diag(i)i=1,...n, Which is somewhat “smaller” than the exact inverse H™!.
Consequently, the inverse form of the DFP update takes a very long time before P and the resulting steps
sk = — Py F(zk,t) become large enough to achieve superlinear convergence. The starting point was always
the vector of ones zo = ¢, and the parameter was set to ¢ = 1.

The simplified iteration depicted in Figure 1 proceeds rather slowly until the Frobenius norm of the error
matrix Dy = I — P H drops below 1 at about the 25-th step. Hence, our theoretical results apply at most
for the last five iterations. Note that D is not exactly equal to Dy since we have neglected the nonquadratic
term. Over the whole range the iterates z, their “derivatives” zj, and the corresponding residuals F(zx,t)
and F'(z,t, =) converge more or less monotonically at about the same rate. Since the iterates themselves
converge so slowly, the derivatives do not noticeably lag behind. The situation is not radically different when
the iteration is fully differentiated as depicted in Figure 2. However, as one can see from the top line, the
preconditioner derivative P{ grows to a Frobenius norm in the hundreds before it finally begins to decline.
As a result, the first derivative of iterates and residuals seems to behave a little bit more erratically in the
intermediate stage of the iteration. While we have not made a timing comparison to see how much overhead
the differentiation of the preconditioner entails, it would seem so far that there is no reward for incurring that
extra cost. On the other hand, if the identification and “deactivation” of P appears to require a significant
recoding effort, one may also just differentiate the whole iteration. In both Figures | and 2. the residual
derivative ||F’(z, t)|| is a fairly reliable indicator of the actual error ||z}, — z.||-

In order to speed up the convergence, let us introduce a line search in the form of exactly one parabolic
interpolation of the objective f per step. The step multiplier was adjusted even when it was close to
the first trial value one, which is known to happen during the final convergence to the solution. The
resulting iteration with an increased dimension n = 3 and the simplified derivative recurrence is depicted in
Figure 3. The convergence is now much more rapid throughout and accelerates again when the Frobenius
norm of the discrepancy Di drops below one, which happens at about the eleventh iteration. Curiously,
at exactly that stage, the derivatives of iterates and the residuals appear to deteriorate significantly before
they begin to converge with a noticeable lag behind the iterates and their residuals. As we can see in

11

(o]
QO - =t= RS S UL LT T L’+‘+- NPE i . R
- +"\

X824 el
% Sx.. O<g :6\0-- *
cq-; ‘x-x-x- \o‘.\
E - i BN
e — 2. N,
TR * ”mk—x*“ \x\\
« IF (i, 9 \N
° “F (mk:mkat)” \\
+ |[I - PBH| | W\
\
' T T T 7 T T T
0 5 10 15 20 25 30

- lterations

Figure 1: Simplified Derivative Recurrence, no line-search (n = 2)

Figure 4, the associated fully differentiated recurrence does not generate that hump and achieves faster
derivative convergence. However, this time P! actually show signs of blowing up as its Frobenius norm
almost reaches a thousand. Obviously, our very limited numerical experiments do not allow us to draw any
general conclusions regarding the relative merits of the simplified and fully differentiated iteration.

Finally, let us consider the computation of second and higher derivatives. For the simplified recurrence,
where the P are deactivated, the following informal argument establishes the convergence of the higher
derivatives z) = diz(t)/dt!. Differentiating equation (6) j < m times with respect to t, we obtain the
following linear system for the (j + 1)-st derivative from Leibnitz’s rule:

ai j N aj-i ‘
Po Faa(t),)20+ = ~P (g Fi(a(0), 0] + 3 (7) g a0 z<‘)(t)) . (25)

i=1

Here we have assumed that F(z,t) is m times jointly Lipschitz-continuously differentiable. Replacing the
z())(t) by approximations # for i =0,1,...,], one may interpret the right-hand side as a vector function

—P.RY = —P.RY (t,zk,i;,...,if)) :
While this may seem a very messy expression, the residual vectors
Fa(zi(t),t) 28+ + Re(i), fori=0,1,....J

can be evaluated simultaneously for any given ¢ and (55,"),-=0,1__,,,,~+1 by one forward sweep of automatic
differentiation (8]. The complexity of this Taylor series propagation is O(j*) times that of one function

12

o I
o}
5 A 23929 .
o - N
..
- IR
\é +
3 .
- |k — |
/ /
o * ”xk - LL'*“
' < IF ()l
o || F'(z, 2k,)|
+ | - PH|
=1 |
o | o
' T T T — T T T
0 5 10 15 20 25 30

- lterations

Figure 2: Full Derivative Recurrence, no line-search (n = 2)

evaluation F(z,t) if ordinary polynomial arithmetic is used. This asymptotic complexity bound can be
reduced to O(j logj) through the use of the fast Fourier transform, but that is likely to pay off only when
j is significantly larger than 10. As a generalization of (7), one may now iterate for j =0,1,...,m—1 and
k=0,1,...

Ei‘i_l:l) = 5£i+1) - P [Fz(zk(t),t) :E%H-l) + Rg)

This family of linear recurrences is again of form (7) with the same leading linear term. By induction, one
sees that if all i'f:) for i < j converge to the correct values J:E.'), then the Rﬁ’) converge to the right-hand

side of (25), and the ii’ *+1) can converge only to the unique fixed point 29D of its recurrence. The linear
R-factor is again at least 6., but the higher derivatives tend to converge in a staggered fashion.

To demonstrate this, let us look at the second, third, fourth and fifth derivatives of the iterates zx generated
by the simplified recurrence for n = 2 without line search and the full recurrence for n = 3 with line-search.
These two cases are depicted in Figure 5 and 6, respectively. The most striking feature of both graphs is
that the derivatives are staggered very nicely behind the iterates themselves. The convergence behavior is
quite smooth and looks ultimately superlinear. This seems to suggest that the errors Dy tend to zero, so
that our theorems assert R-superlinear convergence of the derivatives as §. = 0.

The fully differentiated recurrence without line-search for n = 2 and the simplified recurrence with line
search for n = 3 exhibit about the same average speed, but the convergence looks significantly rougher. We
have not included the corresponding graphs in the paper and are still investigating the reasons for this less
desirable behavior. In fact, we have currently no explanation why the full recurrence appears to work better
on the iteration with line-search. In a practical code, the line-search becomes eventually inactive, so that
one might expect the simplified recurrence to yield more accurate derivatives at a lower cost.

The numerical results reported in this section were obtained in double precision on a SPARCstation 2

13

Logqo(-)

x || F (@,)l TN
° “F,(:B;caxk,t)“ x\
+ I = PH| ’
1 I \ 1
0 5 10 15

Iterations

Figure 3: Simplified Derivative Recurrence. parabolic line-search (n = 3)

14

ey — 0 —

Logqo(-)

-
PO N A ~ N

< ||F(e) ~

o | F/(&h 2, 1)

« 1T - PAH|

121
o _
‘ | I i 1
0 5 10 15

lterations

Figure 4: Full Derivative Recurrence, parabolic line-search (n = 3)

15

(o_
N
= T A
8

N_
|
=
S, o 4
2
SN—

o N 4

=

=]

3]

= < 4
©

[

T I 1 | T

0 10 20 30 40
lterations

Figure 5: Simplified Derivative Recurrence for first five derivatives (n = 2)

w -

Logyg (“xk(j) _ m*(j)”)
-10

-15

T i 1 1 | I

0 5 10 15 20 25

lterations

Figure 6: Full Derivative Recurrence for first five derivatives (n = 3)

using the automatic differentiation package ADOL-C described in [17].

4.2 APPLICATION TO PARAMETER IDENTIFICATION PROBLEMS

In this section, we study the effect of using the automatic differentiation of an implicitly defined function
to generate the first-order derivative information needed at each iteration of an optimization algorithm. In
particular, we consider the impact of both the fully differentiated and simplified approaches on the solution
of parameter identification problems.

Given a parameterized system of ordinary differential equations

¥ =g(r,y;p) (26)

and a set of data points (7j,J;), the parameter identification problem is to find values of the parameters p.
to minimize the discrepancy between the solution y(7;p.) of the ODE model (26) and the data points. The
data points are measurements of the solution trajectory y(j,p.) at various times 7;. Given a particular
vector of parameters p;, the elements of the residual vector R(p;) are the discrepancies between the solution
of the model i = g(7,y; p;) and the data points. Then, the optimization problem to be solved can be loosely
stated as

- minimize %R(P)TR(P) (27)
> v
subject to ¥’ = g(7,¥;p) -

The initial values for the ODE (26) can either be treated as fixed constants, y(m0) = Yo, or as additional
unknown parameters. We apologize for the change in notation; in this section the parameters are denoted
by p instead of ¢ since ¢ usually represents time in the context of differential equations.

Using orthogonal collocation at the Gauss points, the differential equation (26) is discretized so that the
solution trajectory is approximated by a piecewise polynomial with coefficients z. Certain conditions must be
imposed to ensure that the approximating polynomial adequately represents the solution to the differential
equation, and these collocation and continuity conditions yield a nonlinear system of equations F(z;p)=0.
For each parameter vector p;, this nonlinear system must be solved to obtain the coefficients z(p;) of the
polynomial approximation to the solution trajectory y(r;p;). A more detailed description of the problem
formulation and the collocation scheme can be found in [12].

Thus, using collocation, we can replace the ODE in (27) with a nonlinear system of equations. The “black
box” formulation of the parameter identification problem can then be written as

minimize +R(p, =(p))” R(p,=(p)) (28)
p

where z(p) solves
F(z;p) = 0 (29)

for a fixed p. To solve the resulting optimization problem (28), we will use the nonlinear least-squares package
NL2SOL [11]. NL2SOL is an implementation of an augmented Gauss-Newton trust region method [10] that
exploits the structure of the nonlinear least-squares problem.

For each parameter vector p;, (where i denotes the i-th optimization iteration), the evaluation of the
residuals R(p;, z(p;)) requires the solution of the nonlinear system of equations (29) for the implicit variables
z(p:). We consider both Newton’s method and Broyden’s method for the solution of this nonlinear system;
in particular, the implementations found in MINPACK (18], (LMDER and HYBRJ). Thus, given p; and an
initial guess for z(p;), the nonlinear equation solver generates a sequence of iterates

zo(pi), z1(pi), z2(pi), - - -, z=(Pi) = z(p:)

until an acceptable solution is found. At the first optimization iteration, the initial guess zo(po) is generated
by linear interpolation of the data points, but at each subsequent iteration, the starting point is chosen to

17

be the solution of (29) at the previous iterate, i.e., zo(pi) = z«(pi-1)- LMDER uses analytical derivatives,
Fz(z,p), while HYBRJ starts with the analytical Fy(z,p) and then uses Broyden’s method to update the
factorization at subsequent iterations. Both algorithms use a trust region globalization strategy.

At each optimization iteration, we must estimate the necessary first-order derivative information, J(p, z(p)),
where J denotes the Jacobian of the residuals R(p, z(p)), i-e., Jj. = OR;(p, z(p))/0p. The Jacobian can be
computed by finite differences, or it can be constructed from values of dz(p;)/dp. We will apply automatic
differentiation to the nonlinear equation solver to obtain an iterative procedure for computing dz(p;)/dp.
Applying the automatic differentiation tool ADIFOR (1] to LMDER and HYBRJ, which are both written in
Fortran, yields a fully differentiated Newton’s method and a fully differentiated Broyden’s method. Given
the current optimization iterate p; and initial guesses zo(pi) and dzo(p;)/dp, the resulting (Fortran) code
generates a sequence of derivatives

dzo(p:) dzi(pi) daa(p) dza(pi) _ dz(pi)
dp) dp ’ dp Yyt dp - dp b

in addition to the original sequence of iterates {zk(pi)}-

We used six parameter identification problems from [12] to evaluate the effectiveness of the algorithms.
We tested two formulations of each problem, and Table 4 identifies the problems using the convention that
“problem 1” refers to problem 1 with fixed initial conditions while “problem 1i” refers to problem 1 with
the initial conditions treated as additional, unknown parameters. Table 4 also indicates the size of each
problem, both the dimension of the parameter vector p and the size of the nonlinear system F(z,p) = 0.
Each ODE model (26) was discretized using a collocation scheme with ten uniformly spaced subintervals and
a polynomial approximation of degree three on each subinterval. While this discretization is adequate to solve
all of the problems, a more efficient discretization could be chosen for each individual problem. In addition to
the standard starting point, (which can be found in [12]), problems la and lai used po = (15,20)7, problems
4a and 4ai used po = (1 x 1073, 1 x 10~3)T, and problems 4b and 4bi used po = (1x 10741 x 1097,
resulting in sixteen different test cases.

Using Newton’s method (LMDER) to solve (29) for the implicit variables z(p;), we first compared the
effect of a forward difference Jacobian with a Jacobian constructed from dz.(p:)/dp produced by the fully
differentiated Newton’s method. We tested the fully differentiated code as if it were a “black box” in the
sense that we did not modify the code produced by the automatic differentiation tool to take into account
our knowledge that we had differentiated Newton’s method. Specifically, the stopping criteria in the fully
differentiated code are the original stopping criteria used to judge the convergence of zr(pi) — z«(pi) and
have not been modified to take into consideration the convergence of dzk(pi)/dp — dz.(p:)/dp.

The top section of Table 2 gives the number of optimization iterations, the number of residual calculations,
(i.e., the number of objective function evaluations), and the approximate running time of these algorithms
for each problem. As the numbers show, the fully differentiated Newton’s method performed better than
the finite difference code in terms of the number of optimization iterations required to reach an acceptable
solution. In fact, the fully differentiated code saved ten optimization iterations overall.

However, the total running time for the fully differentiated Newton’s method was slightly more than twice
that of the finite difference code. With the exception of problem 4bi, the individual times show that the
fully differentiated algorithm required roughly two to five times more CPU time than the finite difference
method. It should be noted that the performance of the fully differentiated code suffers since the small
number of parameters for these problems magnifies the loop overhead for each of the intermediate gradient
computations.

Some of the running time differences are due to the ilerative nature of the residual calculation. One would
expect that each column of the finite difference J acobian would require approximately the same amount of
work as the corresponding residual computation, but this was often not the case. For example, consider
problem 3, which has three unknown parameters, (i-e., the Jacobian has three columns.) Both methods
required six optimization iterations to solve the problem, and they also used the same number of iterations
to compute each R(p;,z(p;)). The number of LMDER iterations it took to solve F(z,p;) = 0 for each
residual calculation is given in Table 1. Overall, 35 iterations were performed by the nonlinear equation
solver. Thus, if each column of the finite difference Jacobian cost as much as the corresponding residual
calculation, then we would predict that it would take 35*3 = 105 LMDER iterations to compute all of the
necessary finite difference Jacobians. However, instead of the predicted 105 iterations, Table I shows that

18

only 63 iterations of LMDER were required. So, due to the iterative nature of the residual calculation, the
finite difference algorithm was substantially cheaper than it would have been if the cost of each column of
the Jacobian were as expensive as the corresponding residual calculation.

Also included in Table 2 is an estimate of the relative error in the computed values of dz.(p;)/dp. Unlike
the example in the previous section, we do not have an analytical expression for either z.(p;) or dz.(p;)/dp.
Therefore, we use dz(p;)/dp to denote the numerical solution determined by the differentiated nonlinear
equation solvers. From the implicit function theorem, we know dz.(p;)/dp satisfies the linear equation (4).
Thus, for each Jacobian calculation, we can estimate the relative error in the computed value of dz(p;)/dp
as

Relative Error (dz(p;)/dp) = (30)

| Fz(za(pi), pi) - dz(pi)/dp + Fp(z-(pi), pi)ll - Cond (Fz(z(pi), Pi))
|1 Fz(z«(pi), pi)ll - lldz(p:)/ dpl| '

We then have an estimate of the relative error in dz(p;)/dp for each optimization iteration i. The numbers
reported in Table 2 in the column labelled “Rel Error” are the maximum relative error estimates over all of
the optimization iterations for each problem.

Although the fully differentiated Newton’s method (LMDER) used the stopping criteria for the underlying
z1(pi) — z.(p;) convergence, the relative error estimates for dz(p)/dp are on the order of machine precision.
This indicates that the convergence of derivative did not noticeably lag behind the convergence of the zj
iterates for Newton’s method. This is not surprising, for the work of Gilbert [15] shows that theoretically
Newton’s method is “special” in that the derivative convergence should only lag one iteration behind the
iterate convergence. On the other hand, based on the step size, we would estimate a relative error of around
10~2 for the finite difference Jacobian. Over all of the test cases, the extra accuracy in the Jacobian obtained
from the fully differentiated Newton’s method (LMDER) saved ten optimization iterations and six Jacobian
calculations over the finite difference method. However, the finite difference method required slightly less
than half of the time needed by the fully differentiated Newton approach.

In a similar manner, the fully differentiated Broyden’s method uses Broyden’s method (HYBRJ) to solve
the nonlinear system (29) and a fully differentiated Broyden’s (HYBRJ) method to estimate dz.(p;)/dp.
Again, the algorithm was tested as a “black box,” and the fully differentiated code used only the stopping
criteria for the z(pi) — z.(pi) iteration.

As one would expect, the fully differentiated Broyden’s method required slightly more optimization iter-
ations but slightly less CPU time than the fully differentiated Newton’s method. These results are shown
in Table 2. Each Broyden iteration is cheaper than a Newton iteration, O(dim(z)?) versus O(dim(z)?), and
so, each fully differentiated Broyden iteration is cheaper than a fully differentiated Newton iteration. How-
ever, the relative error (30) is significantly larger for some of the problems then the relative error estimate
generated by the fully differentiated Newton’s method.

Figure 7 shows the convergence history of the initial Jacobian, J(po, z(po)), computation for problem 4b
using the fully differentiated Broyden’s method. The differentiated HYBRJ required 50 iterations to find an
acceptable solution z.(po) and thus dz(po)/dp. Since neither z.(p) or dz(p)/dp are zero, we used relative

[Optimization iteration | 0 | 1 | 2 | 3 | 4 [5 [6 [Total |
Number of iterations
to compute z(p;) 7 7 6 5 4 3 3 35

Number of iterations
for each column of J 3,3313,331333(333]333]3,33]3,3,3 63

Table 1: The number of LMDER iterations required to compute z(p;) and the number of LMDER iterations
used to compute each column of the finite difference Jacobian J(p;, z(pi)) at each optimization iteration for
problem 3.

19

Finite Difference Newton Fully Differentiated Newton

Problem || # lter (# Res) | Time (sec) || # lter (# Res) [Time (sec) | Rel Error

1 9 (13) 14.0 9 (13) 345 [5x 1077'°

L 9(13) 22.3 9 (13) 45.5 | 3x 10716

la 7(9) 13.8 7(9) 29.9 | 4x 10718

lai 9 (11) 25.2 9 (11) 53.0 | 5x 10716

2 9 (11) 21.4 7(9) 42.4 | 2x 10716

2i 8 (10) 25.4 7(9) 53.3 | 3x 10716

3 6 (7) 15.8 6 (7) 61.6 | 2x 10716

3i 6 (7) 20.5 6 (7) 78.3 | 3x 10718

4 8 (11) 3.3 8 (11) 10.0 | 5 x 10~16

4i 8 (11) 4.0 7 (10) 10.7 | 5x 10718

4a 7 (12) 3.4 7 (12) 9.4 |3x10°1

4ai 6 (10) 3.4 6 (10) 9.1|6x10"1¢

4b 13 (19) 14.0 12 (23) 23.3 | 1 x 10718

4bi 12 (17) 49.0 10 (15) 243 | 1x 10713

5 9 (10) 26.5 8 (9) 127.8 | 6 x 10716

5i 10 (13) 38.6 8 (11) 184.1 | 3x 10713

6 6 (7) 264.6 6 (7) 604.5 | 3 x 10716

6i 6 (7) 449.2 6 (7) 926.1 | 3 x 10716

[Totals || 148 (198) | 1014.4 || 138 (193) | 2327.3 | |
Fully Differentiated Broyden Simplified Newton
Problem || # Iter (# Res) | Time (sec) | Rel Error || # Iter (# Res) [Time (sec) | Rel Error
1 9 (13) 307 [4x 107" 9 (13) 172 [5x 1071°
li 9 (13) 39.9 | 4x 10716 9 (13) 15.4 | 3x 10716
la 9 (14) 36.9 | 3x 107!° 10 (12) 18.0 | 2x 10~M
lai 9 (11) 46.9 | 8 x 10716 9 (11) 19.6 | 4 x 1071¢
2 9 (11) 438 | 9 x 10717 10 (12) 17.0 | 3x 10~12
2i 8 (10) 55.3 | 4 x 10717 8 (10) 16.3 | 3 x 1071¢
3 8 (9) 44.7 | 8 x 101 6 (7) 20.5 | 2 x 10712
3i 7(8) 51.4 | 4x 107! 6 (7) 19.8 | 4 x 10~12
4 8 (11) 7.8 | 1x 1071 8 (11) 5.2 | 1x 10712
4i 8 (11) 9.0 | 1 x 10! 8 (11) 5.1 | 2x 10713
4a 7 (12) 74| 1x 1071 7 (12) 51| 1x 10713
4ai 6 (10) 7.6 | 2x 1071 6 (10) 43| 6x 10713
4b 12 (23) 24.5 | 1x107° 12 (23) 152 | 1 x 10712
4bi 11 (16) 20.7 | 2x107° 11 (16) 16.0 | 5 x 1072
5 11 (12) 83.8 | 1x107° 9 (10) 425 | 2x 10-13
51 10 (13) 100.7 | 7x107?° 10 (13) 50.8 | 3 x 10712
6 6 (7) 579.2 | 2 x 10718 6 (7) 138.8 | 3 x 1071°
6i 6 (7) 888.3 | 1 x 10~1° 6 (7) 139.1 | 3 x 1071¢
[Totals || 153 (211) | 2078.6 | | 150 (205) | 565.9 | B

Table 2: The number of optimization iterations, (number of residual, R(p, z(p)), calculations) and the time
in seconds required to solve each of the parameter identification problems, and a relative error estimate for

dz /dp.

20

10 r | | |
OOOOOOOO O~O°°°0°900060 -..;-.;.'oo"“”... T
i @ O, " 6 o.%0 %o
5 et °° ° oooooo -
><. .. ooo
’ XX OOo o
Xxx
gé) o 00
O MSag Rkt B % Xy Kk ¥k o]
=
(@]
- Xy x***x
5 |z — .|/l o
AV EA]
x || F(zk,p)ll x
A0F o || F(l, i Pl _
- Lower bound for || P(||
-15 - - - . |
lterations

Figure 7: Fully differentiated Broyden’s method for the first Jacobian calculation in problem 4b.

error estimates of the form

e (p) — 2. ()]l2 =L (p) — Z(@)llF
ok 2 T el

where z, a is convenient shorthand for dz(p)/dp. (All of the plots in Figure 7 are log,q(-) of the respective
quantities.) Also included in Figure 7 is the norm of the nonlinear system, ||F(z;p)|l2, and the graph
shows that it closely follows the decrease in the relative error in zi. Similarly, the plot of the norm of the
total derivative, ||Fz(zk,p) -) + Fp(zk,p)|| matches the trends in the relative error in dzg/dp, but it is
substantially larger. o

We derived a lower bound for the derivative of the inverse of the Broyden approximation, Pj. Since the
implementation in HYBRJ uses the factored form of Broyden’s method, it is difficult to obtain Py itself.
The fully differentiated derivative recurrence (10) can be written as

zhyy — Tk — Pel[Fa(zk,p) - 2k + Fp(zx, P)] = Pi-F(zk,P) -
Taking the norm of both sides and applying the triangle inequality yields
lzhs1 — 2k — PelFe(zr,) - Tk + Fp(ze, DL < 1 PEIL- 17 (2, P -

This gives us a lower bound on P{ of the form

€01 = 2 — PelFe(zk,p) - 74 + Fp(z Pl _ 1)
< Il (31)
IF (zx, P)I| < 112l

and we can compute the qualities on the left-hand side of (31) using the machinery already in HYBR«? to
apply Pe to Fz(zk,p) - T, + Fp(zk, p). Since thisis a fairly expensive computation, none of the calculations

21

needed for Figure 7 are included in the timings given in Table 2. Note that the derivative recurrence (10),
where Py is the inverse of the Broyden approximation to F.(zk,p), does not necessarily hold if the trust
region globalization strategy modifies the direction and length of the step. However, full “Broyden” steps
were always taken in this particular example. The graph of the lower bound for || PL|| given by (31) is shown
in Figure 7. The plot indicates that the lower bound on ||PLl| is increasing as Tk — Z- and this supports
the hypothesis that the differentiation of P; can be unstable. It should be noted that in this particular case,
I = PeFz(zk, Pl > 1, and this is most likely due to the fact that the starting guess po is “far” from the
solution p.. '

Finally, we obtained a (differentiated) simplified Newton’s method (LMDER) from the fully differentiated
Newton’s method by deactivating the differentiation of P by hand. We tried using the simplified Newton’s
method with only the stopping criteria for the z — z. iteration, but the results were not particularly
successful on some of the problems. Thus, we introduced an additional stopping condition requiring that
the relative error estimate, (30), must be less than a small constant. For these tests, we chose the constant
to be macheps(?/3) ~ 4 x 1071, If the relative error estimate does not satisfy this stopping condition, we
forced the simplified code to take additional simplified Newton steps until =/, satisfied the new relative error
test. The results for the (diﬂ'erentia.ted) simplified Newton’s method are given in Table 2, and the relative
error estimates range from 10-!! to 10~'6. The larger relative error estimates are probably an artifact of
the constant in the new stopping condition, i.e., when the zx — Z. iteration converged, z'(p) just barely
passed the relative error test, and no additional steps were taken. Over all of the test problems, an additional
40 (differentiated) simplified Newton steps were required to satisfy the relative error test, and the number
of extra steps required by the simplified Newton’s method to solve each optimization problem is given in
Table 3. As this table shows, there is a definite correlation between the number of additional steps and the
resulting maximum relative error in z'.

Returning to the results in Table 2, overall, the simplified Newton’s method required slightly fewer op-
timization iterations and residual calculations than the fully differentiated Broyden’s method but slightly
more than either the finite difference method or the fully differentiated Newton’s method. However, because
the factorization of Fz(zk,p) is the dominant cost of each Newton iteration, deactivating the differentiation
of P makes the (differentiated) simplified Newton’s method the fastest method we tested. Overall, it is
about four times faster than the fully differentiated Newton’s method and roughly twice as fast as the finite
difference method.

Thus, we have demonstrated that the automatic differentiation tool ADIFOR can successfully differentiate
the complex library routines LMDER and HYBRJ from MINPACK to provide derivatives of variables defined
by implicit functions. The derivatives obtained directly from the fully differentiated Newton and Broyden
codes provided sufficiently good approximations to the Jacobian, and using these Jacobians, the optimization
code was able to solve this set of parameter identification problems. However, the fully differentiated codes
were slower than the finite difference code. The results for the simplified (differentiated) Newton’s method
show that simplified, or deactivated approaches can work on practical problems, but currently, they may
require some user (expert) intervention. However, the simplified approach shows the most promise for
generating fast, accurate derivatives. ' ,)

The numerical results reported in this section were obtained in double precision on a SPARCstation 2
using the automatic differentiation package ADIFOR. described in (1.

5 CONVERGENCE RESULTS FOR MULTISTEP CONTRACTIONS

Unfortunately, many methods of great practical importance are not one-step contractive in the sense that
most or all of the D have a spectral radius greater than or equal to one. For example, this is true for any
iterative method that keeps some components of z; fixed at each step, such as cyclic reduction or any form
of alternating projections. In those cases, one would still hope that over a cycle of iterations. a significant
contraction is achieved in the following sense.

Assumption 4 The precondilioners P. are chosen uniformly bounded so that

NPl + 1P € o <o forallk, (32)

(3™
M

Problem | Additional | Relative Error
steps
1 6 5x 1018
li 2 3 x 1016
la 2 2 x 10—11
lai 2 4 x 1016
2 4 3x 10-12
21 3 3 x 10-16
3 1 2 x 10-12
3i 0 4 x 1012
4 1 1x 10712
4 1 2x 10-13
4a 1 1x 1013
4ai 2 6 x 1013
4b 1 1 x 1012
4bi 1 5% 10~12
5 2 2x 10"13
5i 3 3 x 1012
6 4 3x 10-16
6i 4 3 x 10-16

Table 3: The number of additional simplified (differentiated) Newton steps required to satisfy the relative
error test over the solution of each test problem.

Problem dim(p) | dim(z)
1 | First-order irreversible chain reaction 2 80
li 4 78
2 | First-order reversible chain reaction 4 80
2i 6 78
3 | Catalytic cracking of gasoil 3 80
3i 5 78
4 | Bellman’s problem 2 40
4i 3 39
5 | Barnes’ problem 3 80
51 5 78
6 | Thermal isomerization of a-pinene 5 200
6i 10 195

Table 4: Parameter Identification Test Problems

23

and there erisis an induced mairiz norm and a cycle length m > 0 such that
_— 1 .
6m = Tim; ||Djtm - Djtm—1-+Dj42 - Dimall™ < 1. (33)
We will argue at the end of this section that any method for which this condition is not met is numerically
unstable.

Proposition 3 Under Assumptions 1 and 4, the iterations (1) and (7) converge with a linear R-faclor no

less than
6, = infén < 1
m

to their respective limits z, and z.. Thus, we have

Ve < 6. (34)

Tmg [|ze — z.]|'/* < 6. and Timi ||} — =]
Proof. Abbreviating Z; = zx — z. and with 7 as defined in (12), we have by (13)

m-—i

m m
Tegm = HDIc+m—j T + Z H Diym—j | Te+i-1 (35)
j=1 i=1 i=1

over a cycle of m steps. Because of the assumed con\"ergence of the z; and (32), the D; are uniformly
bounded in norm by (1 + ¢o)?, so that by (33) for any € and sufficiently large k, we have

m
[Ze+mll < (Bm +)™ lIZ6ll + Orsr}a<~‘§nllrk+i||Z(1 +c5)' !

i=1

IN

(b + &)™ 1Bl + max lireaill(1+ D)™ /3 (36)
Because of (13), the assumed convergence, and the uniform boundedness of the D;, the Z; grow at most
linearly. Therefore, for some constant ¢z = e7(m)

resill < collzel® for 0<j<m. (37)
Hence we have by (35) for fixed m
img [|Zk4mll /112l < (6m +8)™

which ensures m-step Q-linear convergence with a limiting ratio no greater than 67, since € may be chosen
arbitrarily small. This implies the R-linear convergence assertion for the z; by well-known results [20] and
by taking the infimum of 6, over m.

For the derivatives, we obtain from (7) the recurrence for the z}, =z — z.,

m m m—i

=~ —_— -~ . /

Tktm = H Diym-j | T, + Z H Digm—j | Tk4i-1) (38)
i=1 i=1 ji=1

where 7, is as defined in (8). Since the last bound in Lemma 1 was proven without any reference to
Assumption 2, it can be used here to derive from the R-linear convergence of the z that for some constant
¢s = ca(m,) 2 2 K+
/
02’}3&’5"”7'“:'”(1 + e /c5 < ca(bm +€)° T (39)

Substituting this bound into the “primed” version of (36) and then dividing by (ém + €)k*+™, we obtain the
inequality

el _ W
(6m + 5)k+m (6m + f)k -
Summing for k =imoveri=0,1,...,j—1, we obtain

125 mll /(6m + €Y ™ < HZ0H +5cs -

24

Since the m j—th root of the right-hand side converges to one, we obtain the asserted result, namely, that
the z}, converge with the same linear R-factor 6. to z,. 1

As we have noticed above, the z; may converge superlinearly. In those cases, the recurrence for z} will
soon be almost exactly linear, so that one may seriously consider accelerating the derivative convergence by
Richardson extrapolation. Since we have a constructive test on the quality of these extrapolated derivatives,
it should be easy to determine the best candidate.

Finally, let us briefly examine the possibility that an iterative method of the general form achieves con-
vergence but that assumption (33) is never satisfied. Then equation (36) suggests that a small perturbation
6z of the iterate z; in the direction of the largest singular value of Diym - Dik4m—1- - Di42 - Diyy will
not be damped out over an arbitrarily large number m of steps. This would indicate that the method is
numerically rather unstable. We cannot make this claim rigorously, however, because the perturbation 6z
might alter the Di4; in such a fortuitous way that it is damped out after all. For example, it is currently
not clear whether conjugate direction methods can be interpreted in form (1) such that assumption (33) is
satisfied. Derivative convergence has been observed for the classical conjugate gradient method, but this
experimental observation cannot be supported by Proposition 1 and its corollaries.

6 CONCLUSION AND DISCUSSION

In this paper, we have described conditions under which derivative convergence is achieved, albeit possibly
at a slower rate than the underlying function iteration. This observation applies to the fully differentiated
iteration as well as the simplified recurrence, in the latter case also for higher derivatives. Our purpose was
mainly analytical, and we do not claim that either derivative recurrence is the most efficient procedure for
calculating implicit derivatives. However, our numerical results do show that both the fully differentiated
iteration and the simplified approach do provide sufficiently accurate derivatives.

One might argue that if a P; with contractive Di = I — PiF, is known, the linear system F.z’ = —F;
can be solved iteratively after the solution z. has been computed with satisfactory accuracy. This approach
has long been used by engineers, as evidenced for example in some references of [3]. It certainly may be
advantageous to start the derivative recurrences (7) or (10) with an initial z), = 0 only when the underlying
iteration has reached the vicinity of the solution point.

If for some weight vector w, one actually wants to calculate the adjoint sensitivity

wlzh = —wT F7 R,

then one should first compute w? F! iteratively using the approximate inverse PT of FT. This approach
is particularly useful if ¢ is actually a vector so that several linear systems need to be solved for computing
z),. This iterative variant of the reverse mode for implicit gradients has been advocated and analyzed by
Christianson in [7]. However, it should be noted that his analysis, if not the method itself, assumes that
the Jacobian of the iteration function is not only contractive but also Lipschitz continuous in the current
argument. This condition is certainly not satisfied by secant updating methods. Moreover, there are some
important schemes like nonlinear conjugate gradients, which do not satisfy our slightly weaker assumptions
either. The question of what happens under those circumstances and several practical implementation
aspects remain to be investigated.

ACKNOWLEDGEMENTS

We are indebted to John Dennis for his insistence that black-box differentiation be analyzed.

References

(1] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hoviand. ADIFOR-
Gienerating Derivative codes from Fortran Programs. Scientific Programming, 1:11-29, 1992.

25

[2] Christian Bischof, George Corliss, and Andreas Griewank. Structured second- and higher-order deriva-
tives through univariate Taylor series. Preprint MCS-P296-0392, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, 1l., March 1992. ADIFOR Working Note #6.

[3] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, K. Haigler, and Perry Newman.

Automatic differentiation of advanced CFD codes for multidisciplinary design. Preprint MCS-P339-

1192, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., January
1993.

[4] C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19:577-
593, 1965.

(5] C. G. Broyden. The convergence of a class of double rank minimization algorithms. J. Inst. Math. Appl.
6:222-231, 1970.

(6] C. G. Broyden, J. E. Dennis, J. J. Moré. On the local and superlinear convergence of quasi-Newton
methods. J. Inst. Math. Appl. 12:223-245, 1973.

(7] Bruce Christianson. Reverse Accumulation and Attractive Fixed Points. Numerical Optimisation Centre
Report 258, University of Hertfordshire, 1992.

[8] George F. Corliss. Overloading point and interval Taylor operators. In Andreas Griewank and George F.
Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
pages 139-146. SIAM, Philadelphia, Penn., 1991. '

[9] W. C. Davidon. Variable metric method for minimization. Report ANL-5990 (Rev.), Argonne National
Laboratory, Argonne, Illinois, 1959.

[10] J. E. Dennis, Jr., D. M. Gay and R. E. Welsch. An Adaptive Nonlinear Least-Squares Algorithm.
TOMS, 7:348-368, 1981.

(11] J. E. Dennis, Jr., D. M. Gay and R. E. Welsch. Algorithm 573 NL2SOL-An Adaptive Nonlinear
Least-Squares Algorithm. TOMS, 7:369-383, 1981.

[12] John E. Dennis, Jr., Guangye Li and Karen A. Williamson. Optimization Algorithms for Parameter
Identification. ‘Technical Report CRPC-TR92277, Center for Research on Parallel Computation, Rice
University, 1992.

[13] J. E. Dennis and J. J. Moré. Quasi-Newton methods, motivation and theory. STAM Review, 19:46-89,
1977.

[14] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization. Comput. J.,
6:163-168, 1963.

[15] J. Ch. Gilbert. Automatic differentiation and iterative processes. Optimization Methods and Software,
1:13-21, 1992. Also appeared as a preprint, INRIA, Le Chesnay, France, 1991.

[16] Andreas Griewank. Automatic evaluation of first- and higher-derivative vectors. In R. Seydel, F. W.
Schneider, T. Kiipper, and H. Troger, editors, Proceedings of the Conference at Wirzburg, Aug. 1990,
Bifurcation and Chaos: Analysis, Algorithms, Applications, volume 97, pages 135-148. Birkhauser Verlag,
Basel, Switzerland, 1991.

[17) Andreas Griewank, David Juedes, Jay Srinivasan, and Charles Tyner. ADOL-C, a package for the
automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Software, to appear. Also
appeared as Preprint MCS-P180-1190, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., November 1990.

(18] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for MINPACK-1. Technical Report ANL-
80-74, Argonne National Laboratory, 1980.

(19] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz, editor, Numerical Methods
for Nonlinear Algebraic Equations, pages 87-114. Gordon and Breach, London, 1970.

[20] J. M. Ortega and W. C. Rheinboldt. [terative Solution of Nonlinear Equations in Several Variables,
Academic Press, New York, 1970.

26

