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Abstract

This paper proposes extensions of sequential programming languages for parallel
programming that have the following features:

1. Dynamic Structures The process structure is dynamic: Processes and variables
can be created and deleted.

2. Paradigm Integration The programming notation allows shared memory and
message passing.

3. Determinism Demonstrating that a program is deterministic — all executions
with the same input produce the same output — is straightforward. A program
can be written so that the compiler can verify that the program is deterministic.
Nondeterministic constructs can be introduced in a sequence of refinement steps
to obtain greater efficiency if required.

The ideas have been incorporated in an extension of Fortran, but the underlying se-
quential imperative language is not central to the ideas described here.
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1 Introduction

This paper- describes a concurrent language in which the process/communication structure
can be dynamic, and in which programs can be written in a way that -allows the compiler
and run-time system to verify that they are deterministic. The ideas in this paper are
derived from the Church-Rosser theorem about systems that obey the diamond property
[6, 17] and from the concept of capabilities in operating systems [8, 7]. The ideas have
been incorporated in an extension of Fortran because many people developing scientific
applications use Fortran; we could, however, have chosen some other sequential imperative
language.

1.1 Dynamic Process Structures

Parallel programs with dynamic process structures have computations in which processes
can be created and terminate execution; communication channels can be created, recon-
nected, and deleted; and shared variables can be created and deleted. Programs for reactive
systems, programs that use sophisticated load-balancing schemes, and programs for irreg-
ular scientific problems often have dynamic process structures. In this paper we suggest
extensions to sequential notations for expressing parallel programs with dynamic process
structures. The extensions can also be used for computations with static process structures
in which there are fixed sets of processes, channels, and shared variables.

1.2 Paradigm Integration

The notation integrates message-passing and shared-memory models thus allowing for the
use of heterogeneous networks of computers, where some nodes of the network .can be
shared-memory multiprocessors.

1.3 Determinism

Small changes in the value of a variable can cause an unstable numeric computation to
diverge. Programmers are required to demonstrate that outputs of such programs are
functions of their inputs, though nondeterminism in interleaved execution is acceptable.
The notation presented here allows programs to be written in a way that allows the compiler
and run-time system to verify that programs are deterministic.

Reasoning about deterministic programs is often simpler than reasoning about nondeter-
ministic programs. Also, compiler support for verifying determinacy is extremely helpful
in debugging because debugging nondeterministic programs is even more intractable than
debugging deterministic programs.

A deterministic program will produce exactly the same results on a single workstation or
a multicomputer; this feature allows a programmer to develop a program on a workstation



and later execute the program on a network of workstations or parallel computer, knowing
that the output (for a given input) will remain unchanged.

All executions of a program with the same input produce the same output. In particular,
all executions of a program with the same input must produce the same error file to aid
in debugging. A runtime error causes an error message to be appended to the error file,
and the statement that causes the error remains suspended while other error-free processes
continue execution. The error file is ordered by the process ids in which the errors occur,
and the scheme employed to determine process ids guarantees that a process gets the same
id in all executions of a program with the same input.

1.4 Contribution

The contribution of this paper is to incorporate well-known ideas about the Church-Rosser
theorem, capabilities, channels, distributed shared memory and single-assignment variables
into a widely-used sequential language to get a parallel notation that supports dynamic
process structures, paradigm integration, and” compiler verification of determinism, and
that runs on multicomputer networks or weakly-coherent shared-memory systems. A great
deal of work has been carried out on functional (equational and applicative) languages that
guarantee that the output of a program is a function of its input. See the descriptions of
Id, Haskell, Sisal and Scheme in [9], for example. The theory of such languages is based, in
part, on the Church-Rosser theorem [17].

A great deal of work has also been carried out on-capabilities [8, 14, 13], message-passing
using channels [12], shared-memory programming models on distributed-memory machines
[15], and single-assignment variables [4, 10, 5].

Our contribution is to integrate the earlier work into a simple extension of Fortran: 77 to
allow developers of parallel scientific applications to benefit from the earlier work while
using languages and tools with which they are familiar.

2 The Central Idea

First, we review the central idea of the diamond property and the Church-Rosser theorem
[6, 17], and later use the idea to develop constructs for a parallel extension of Fortran77. -

2.1 Theory

Let G be a labeled directed graph, where each edge of the graph has a single label, and for
each vertex v and each label ! there is at most one edge directed from v with label I. A path
in the graph is defined by the initial vertex at which the path originates, and a sequence of
labels; the path is traversed by traversing the edge from the intial vertex with the first label



in the sequence, then the edge with the second label, then the edge with the third label,
and so on.

A terminal vertex is a vertex without outgc;ixig edges. A mazimal path is either a finite path
that ends in a terminal vertex or an infinite path (i.e., a path that has an infinite number
of edges).

The Diamond Property We restrict attention to graphs G with the following diamond
property. If there are edges from a vertex v with distinct labels | and r, then there are
paths I/, 7 and r,! from v, and both paths end at the same vertex; see figure 1.

Figure 1: The Diamond Property

Theorem Either all maximal paths from a vertex v are finite and end in the same terminal
vertex, or all maximal paths from v are infinite.

Proof: A proof, see [6, 17], is as follows. Let P be a finite path from v that ends in a .
terminal state w, and let R be any maximal path from v. Let P have n edges. We construct
a sequence of paths Q, n > k > 0, from v where (i) Q& ends in state w, all k, and (ii) the
first k labels of @ and R are the same.

The construction is by induction on k with base case ¥ = 0 and Q¢ = P. For k£ > 0,
obtain Q by permuting Qx—; as follows. If the k-th labels of Qx and R are the same,
then Qx = Qi—1. Otherwise, from the diamond property and since Q- ends in a terminal
vertex, the k-th label of R appears after the k-th position in Qk_1; move the first occurrence
of this label after the k-th position to the k-th position, leaving the order of all other labels
unchanged. It follows from the diamond property, that this permutation keeps the final
state unchanged. Hence Q also ends in state w.

It follows from the construction, that Q, ends in state w, and the first n labels of Q and R
are the same. Since, there are no edges from w it follows that there are only n labels in R



and therefore R ends in state w.

2.2 Application

A vertex represents a state in a parallel program, and an edge labeled r represents a state
transition resulting from process r taking a step. If there is an edge labeled r from a vertex
v then process r is executable in state v, and if there is no edge labeled r from vertex v
then process r is suspended in state v. There is at most one edge labeled r from a vertex
v because processes are deterministic, and a process does not choose nondeterministically
from two or more transitions.

In terms of state transitions, the diamond property is as follows. If distinct processes ! and
r are both executable in a state v, and a step by process / takes the program from state
v to a state u, and a step by process r takes the program from state v to a state ¢, then
process 7 is executable in state u and process [ is executable in state ¢, and the state that
obtains after process r takes a step from state.u is the same as the state that obtains after
process [ takes a step from state t. '

Next, we explore mechanisms by which processes can communicate so that parallel programs
have the diamond property, thus guaranteeing that the final state is independent of the
interleaving of process computations.

Single-Reader, Single-Writer Channels The first communication mechanism we ex-.
plore is message passing on channels. Associated with each channel are two tokens: a sender -
token and a receiver token. An invariant of the program is: for each channel there exists at
most one one sender token and at most one receiver token.

A process can send a message on a channel if and only if it holds the sender token for that
channel. Likewise, a process can receive a message from a channel if and only if it holds
the receiver token for the channel. Thus the sender and receiver tokens are capabilities that
confer certain rights to the holder of the tokens [19].

The send command is nonblocking, and the receive command is blocking. The state of a
channel is a queue of messages. Sending a message m on a channel appends m to the tail of
the queue of messages in the channel. Receiving a message from a channel into a variable v
waits until the queue of messages in the channel is nonempty, makes v become the message
at the head of the queue, and then deletes the message from the queue.

Processes can send sender tokens and receiver tokens to other processes. Therefore differ-

ent processes can send or receive messages on the same channel at different points in a
computation.

The proof that parallel programs that use this (and only this) communication mechanism
have the diamond property is straightforward. See figure 2.

A bounded-buffer channel in which the sender is blocked while the channel is full (and with



channel c is nonempty

receive from channel ¢
into variable v

send message w on
channel ¢

receive from channel c.
into variable v

send message w on
channel ¢

<

Figure 2: Channels with the Diamond Property

at most one sender token and at most one receiver token) also has the diamond property.

Deterministic Shared Variables Next we describe constructs that allow concurrent-
processes to share variables so that parallel programs have the diamond property.

Associated with each shared variable is a number of identical tokens. A process can write
a shared variable at a point in a computation only if it holds all tokens associated with the
variable, at that point. A process can read a shared variable at a point in a computation
only if it holds at least one token associated with the variable, at that point. If a process p
can write a shared variable v at a point in the computation then no other process can read
or write v at that point because p holds all the tokens associated with v.

Processes can send tokens to each other. Therefore, at different points in a computation,
different processes can read or write a shared variable.

A process can modify the number of tokens associated with a shared variable at points in
the computation at which the process holds all the tokens associated with the variable. .

Programs in which processes share deterministic shared variables (and do not share any
other type of variable) satisfy the diamond property because concurrent reads can occur in
arbitrary order, and no operation on a shared variable can occur concurrently with a write
to the variable.

Deterministic Single-Assignment Variables A useful variant of the deterministic
shared variable is the deterministic single-assignment variable (DSAV). A DSAV differs
from the deterministic shared variable described in the previous section in that a DSAV is



assigned a value at most once in a computation, and execution of a process reading a DSAV
is suspended while the DSAV is unassigned.

+

Associated with each DSAV is at most one writer token. A process can assign a value to a
DSAV only if it holds the writer token associated with the DSAV. When a value is assigned
to a DSAV, its writer token disappears; thus a DSAV can be assigned a value at most once
in a computation. ‘

A pointer to a DSAV can be used to read, but not write, a DSAV. Any process can acquire
a pointer to a DSAV. Execution of a read of a DSAV is suspended while the DSAV is
unassigned. The writer token associated with a DSAV can be sent from process to process.
Likewise, pointers can be sent between processes.

The proof that the DSAV has the diamond property is straightforward.

(v is unassigned
assign value to v

(reads of v are suspended)

v is assigned

assignvtoy

assign v to x

assignvtoy assign v to X

Figure 3: Deterministic Single-Assignment Variables

Though there are other communication protocols that satisfy the diamond property, those
described here appear to be adequate for many applications. Next, we describe the com-
munication mechanisms in detail in the context of Fortran M. The ideas described here are,
however, language-independent.

3 Processes

The state of a program is defined by a four-tuple: (i) a set P of processes, (ii) a set C of
shared variables where a shared variable is a channel, a deterministic shared variable or a



deterministic single-assignment variable, (iii) the state of each process in P and (iv) the
state of each variable in C.

A process declaration is syntactically identical to a subroutine except that (i) the keyword .
process replaces the keyword subroutine, (ii) the arguments of a process can be tokens,
(iii) all parameters other than tokens of processes are passed by value, and (iv) the body
of a process can include statements and data types, described later, that are not in the
sequential language.

Processes are created by executing a parallel block which has the form

PROCESSES
list_of_process_calls
ENDPROCESSES

where list_of process_calls is a list of process_calls with end_of line as the separator between
successive elements of the list, where a process;call has the same syntax as a subroutine call
except that the keyword PROCESSCALL is used in place of the keyword CALL. An example of
a parallel block is:

PROCESSES
PROCESSCALL P(V, W)
PROCESSCALL Q(A, B, C)

ENDPROCESSES

where P, and Q, are process names, and V, W are the arguments of P, and 4, B, C are the
arguments of Q.

The execution of a parallel block in a process t causes all the processes in its list of process
calls to be created and the states of the newly created processes are their initial states. The
processes created within the parallel block in a process t are called the children of process t.
Execution of process t is suspended while any of its children are in execution, and execution
of t is resumed when all its children terminate. A computation of a parallel block is a fair
interleaving of the computations of its constituent processes.

An argument of a process can be a variable passed by value or it can be'a token. A runtime
error occurs if the same token is passed to more than one child process in a parallel block.

The initial value of an uninitialised local variable is a specified default value to ensure that
initial states are deterministic.

A Fortran M program is initiated as a single process executing the main program; the
program terminates when this process terminates execution.



4 Channels

Types A typein the extended language is a type in the underlying sequential language or
is of the form outport(T) or inport(T), where T is a type in the extended language. The
value of a variable of type outport(T) is either a special symbol NULL or a sender token
for a channel of type T. Likewise, the value of a variable of type inport(T) is NULL or a
receiver token for a channel of type T.

Channels are typed. A message in a channel of type T is a value of type T or a special
message end_of_channel.

For now, assume that processes communicate only by sending and receiving messages on
channels, and that processes do not share any other type of variable. (This restriction will
be relaxed later.) Therefore, all variables of a process are either local variables of the process
or arguments of the process.

Statements that Operate on Channels Next we describe the four additional state-

ments in the extended language dealing with message-passing. The statements for commu- .

nication are designed to be similar to statements in Fortran for operations on files.

In the following, keywords are capitalized, variable names are italicized, oport is variable of
type outport(T) and iport is a variable of type inport(T) for some T, vis a variable, and
Isis a statement label.

1. CHANNEL(QUT=oport, IN = iport) _
This statement creates a channel of type T, and makes oport become the sender token
associated with the channel and iport become the receiver token associated with the
channel.

2. SEND(PORT = oport) v
The value of oportis a sender token or NULL. If oport = NULL when the send is executed,
an error occurs. If oportis a sender token, a message with value vis sent on the channel
corresponding to the token. If the message itself is a token, (i.e:, if the value of vis a
token), then after the message is sent, v becomes NULL because the sender no longer
holds the token after the token is sent.

3. ENDCHANNEL (PORT = oport)
If oport = NULL when the statement is executed, an error occurs. If the oport is a
sender token, then an end_of_channel message is sent on the channel corresponding
to oport and then oport becomes NULL. Making oport NULL destroys the sender token
. corresponding to the channel; thus, no further messages can be sent on the channel.

4. RECEIVE(PORT = iport, END = Is) v
If iport = NULL an error occurs. If iport is a receiver token, then a message is received
into variable v from the channel corresponding to the token if the message is not
end_of _channel. If the next message is end_of _channel, then v remains unchanged,



iporé becomes NULL (which destroys the receiver token for the channel), and execution
continues from the statement labeled Is.

Example We describe a process sieve that is used in a prime number sieve program.
The specification of

"sieve (myprime,relatively_prime.in,primes_out)
is as follows.

1. The value of inport variable relatively prime_in is a receiver token for a channel of
type integer. The message sequence received on this channel is the sequence of positive
integers, in increasing order, that are less than or equal to n, for some arbitrary n,
and are relatively prime to the first k primes, for some k, and where myprime is the
k+1-th prime. :

<

2. The sequence of messages sent by the process on the channel with sender token
-primes_out is the sequence of primes that exceed the k-th prime and are less than or
equal to n.

PROCESS sieve(myprime,relatively prime_in,primes_out)

c declare parameters of the process
INTEGER myprime
INPORT(INTEGER) relatively.prime_in
OUTPORT(INTEGER) primes_out

¢ declare local variables
INTEGER msg

¢ declare ports for internal channels
OUTPORT(INTEGER) filter_out
INPORT(INTEGER) filter.in

¢ Send myprime on primes_out
SEND(PORT=primes_out) myprime

¢ Discard incoming messages that are divisible by
myprime until either the end-of-channel message is
c received, or a message is indivisible by myprime
RECEIVE(PORT=relatively prime_in, END=20) msg
DO WHILE(divisible(msg,myprime))
RECEIVE(PORT=relatively.prime_in, END=20) msg
ENDDO

(]

10



Since msg is not relatively prime to myprime create a

network consisting of processes sieve and filter with an

internal channel from filter to sieve. Process filter

sends on incoming messages not divisible by myprime.

CHANNEL(OUT = filter.out, IN = filter_in)

PROCESSES
PROCESSCALL filter(myprime,relatively prime_in,filter_out)
PROCESSCALL sieve(msg,filter_in,primes_out)

ENDPROCESSES

oo oo

return

c Close channel corresponding to primes_out and terminate
20 ENDCHANNEL (PORT=primes._out)

END
c completes definition of process

5 Deterministic Shared Variables

Operations The syntax for declaring deterministic shared variables is similar to that for
pointers in Fortran 90.

REAL, POINTER nx
REAL, DETERMINISTIC_SHARED_VARIABLE :: y

In Fortran 90, x is of type pointer to a real value. Likewise, y is of type deterministic shared
real variable.

A variable y of type T, DETERMINISTIC_SHARED_VARIABLE is a reference to-a data structure
of type T or a special symbol NULL. In addition two inquiry functions (defined in Fortran90)
return attributes of the deterministic shared variable:

1. TOTAL_TOKENS(y) is the total number of tokens associated with deterministic shared
variable y.

2. TOKENS_HELD(y) is the number of tokens associated with y held by the process in
which the function call is made.

An invariant of a process p is: TOKENS_HELD(y) = 0 in p if and only if y = NULL in p.

All operations on a deterministic shared variable y other than SEND, RECEIVE, ALLOCATE
and MOVE (described later), and parameter passing to processes, are operations on y itself,
and not on the tokens associated with y. The operations SEND, RECEIVE, ALLOCATE, and
MOVE, are operations on the tokens associated with y and do not modify the value of y.

11



Dynamic Storage Allocation of Shared Variables Statements for dynamic storage
allocation are similar to allocation statements in Fortran90.

c declare variables
REAL, POINTER X
REAL, DETERMINISTIC_SHARED.VARIABLE: y

c allocate variables
ALLOCATE(x)
ALLOCATE(y)

The first allocate statement is a Fortran90 statement that allocates storage for a new data
item of type REAL and makes x become a pointer to it. Likewise, the second allocate state-

ment allocates storage for a new data item y of type REAL DETERMINISTIC_SHARED VARIABLE.
Exactly one token is associated with a deterministic shared variable immediately after it is

created. Hence TOTAL_TOKENS(y) = 1 immediately after y is allocated, and TOKENS_HELD(y)

= 1 in the process in which the allocate statement is executed, immediately after execution

of the statement.

Modifying the Number of Tokens The statement

SET_TOKEN_COUNT(y,n)

where y is a deterministic shared variable, and n is an integer, can be executed if and only
if the process in which the statement is executed holds all the tokens associated with vy,
and n is a positive value. A postcondition of this statement is that the number of tokens
associated with y is n.

Deallocation of Deterministic Shared Variables A statement
DEALLOCATE(y)

where y is a deterministic shared variable can be executed at a point in a computation
if and only if the process in which the statement appears holds all the tokens associated
with y at that point; the statement deallocates the space associated with the variable (as
in Fortran90).

Sending Tokens Execution of:
SEND(PORT = op) y(COUNT=k)

sends k tokens associated with variable y. Therefore, if

12



TOKENS_HELD(y) = m )

before the send, where m > k, then after the send:

TOKENS_HELD(y) = m - k.

An error is posted if m < k before the send because a process cannot send more tokens
than it holds.

For convenience, if COUNT does not appear explicitly in the send statement, a default of
COUNT = 1 is used; so,

SEND(PORT = op) y(COUNT=1) and SEND(PORT = op) y

are equivalent.

Receiving Tokens The execution of
RECEIVE(PORT = ip) y
suspends until a message arrives and receives a message from the channel corresponding to
input port ip into y in the following way.
Let the message received be MSG.
1. An error is posted if y is nonnull, and y and MSG reference different data items because

all the tokens associated with y must reference the same data item.

2. If y is nonnull, and y and MSG reference the same data item, then the number of tokens
held by the receiver corresponding to y is increased by the number of tokens in the
message.

3. If y is NULL before the receive, then after the receive y references the same data
item as MSG, and the number of tokens corresponding to y held by the receiver is the
number of tokens in the message.

Moving Tokens A move statement has the form
MOVE(y(COUNT = k), z)

where y and z are deterministic shared variables in the same process, and k is a positive
integer; execution of the statment has the same effect as sending y(COUNT=k) and then
receiving that message into z.

13



Tokens as Process Parameters Tokens are passed to processes as parameters in exactly
the same way as sends and receives; the number of tokens held by the caller is decreased
. and the"number held by the called routine is increased by the number specified in the call.

Deterministic Shared Arrays A deterministic shared array is a single object and not an
array of deterministic shared elements; therefore, a deterministic shared array has a single
set of tokens associated with the entire array. A process that holds a token corresponding
to a deterministic shared array can read the entire array, and a process that holds all tokens
corresponding to the array can write the entire array.

Implementation on Distributed Memory The deterministic shared variable is an
architecture-independent programming construct that can be implemented particularly ef-
ficiently on even weakly coherent shared-memory architectures. Next, we describe an im-
plementation on distributed memory.

Associated with each shared variable is a master copy. Each token corresponding to the
variable contains a pointer to the process and location at which the master copy is stored
and the number of tokens associated with the variable.

A process that acquires the right to read, but not modify, a variable is given a read-only
copy of the variable. Writes to the read-only copy cause an error to be posted. When a
process relinquishes its right to read (and not modify) the variable by sending all its tokens
corresponding to the variable, the read-only copy is discarded.

A process that acquires the right to modify a variable is given a read-write copy of the
variable. When a process relinquishes the right to modify the variable, by sending away at
least one token, its read-write copy is copied into the master copy; then its read-write copy
becomes a read-only copy if the process continues to hold at least one token corresponding
to the variable, and its read-write copy is discarded if the process no longer holds any token
corresponding to the variable.

In a straightforward implementation, the location of the master copy remains unchanged,
though in a sophisticated implementation the location can change as computation proceeds.

Copies- do not have to be made in a shared-memory system. In a heterogeneous system,
such ‘as a network of shared-memory multiprocessors, copies are made if the process that
acquires the right to access a shared variable is in an address space that is different from
‘that of the master copy.

Example

Specification Next, we present a very simple example of concurrent processes with shared
memory. The example is a 3-dimensional mesh computation. Let n be the dimension of the
mesh in some direction, and and let T" be the time horizon.

14



Let z},for 0 < i < nand 0 <t < T be the value of the i-th slice of the mesh at time ¢- (Where
a slice of a three-dimensional mesh is a two-dimensional mesh) The program computes zt,
for 0 < i < npand 0 <t < T, given the boundary values z? for all ¢, and z and z!, for all
t, using the formula:

t—=1 _t—-1
2: = f(zt—l’ i %

The function f is given.

Program The program uses processes indexed i where 0 < i < n. Each process has two
variables. that it modifies: current and previous where on the ¢-th step of process i, for
all i and ¢ > 0: previous ="z}~ and the value of current computed on the ¢-th step by
process 1 is zf. Each process ha.s two variables that it reads (but does not modify), and
these are left_value and right_value. On the t-step of process i

left_value = xi -1

right.valye = Tl

There are 3 tokens assocla.ted with current a.nd previous for each process. At the begin-
ning of step ¢, process 7 holds one token corresponding to each of 1eft_value, right_value
and prev:.ous, and 1t holds all three tokens of current; therefore it can read (but not
modify) ziZ 1, zi7t, zi7] and it computes z}.

The code for the steps of process i, other than the boundary processes at either end of the
mesh, is:

D0Ot=1,T
holds 3 tokens of current and 1 token of previous
holds 1 token of left_value and 1 token of right_value

c left_value = z,_l , previous = zt71, right_value = zf;}
CALL F(left_value, previous, right.value,current)

c current = f(left.value, previous, right_value)

c current = zt

c send one token each of left_value and current to left

SEND(PORT = to_left) left_value, current

c send one token each of right_value and current to right
SEND(PORT = to_right) right_value, current

c receive one token each of left_value and previous from left
RECEIVE(PORT = from left) previous, left_value

c left_value = z¢_,

c receive one token each of right_value and previous from right

15



RECEIVE(PORT = from right) previous, right_value

c right_value = z},,
c process holds one token each of left_value, right_value
c process holds one token of current and 3 of previous

CALL inter;:hange(current, previous)
ENDDO

6 Deterministic Single-Assignment Variables

We describe deterministic single-assignment variables (DSAV) in Fortran M briefly. Associ-
ated with each DSAV is at most one writer token and an arbitrary number of reader tokens.
We use reader tokens rather than pointers because pointers in Fortran 90 can be used to
read and write, and we want to emphasise that a reader token provides the limited capabil-
ity of reading but not writing. A DSAV is created (i.e., allocated in Fortran 90 terms) with
a single writer token and a single reader token. Reader tokens can be duplicated whereas
writer tokens cannot be duplicated. Assigning a value to a DSAV destroys the writer token
associated with it.

The syntax for declaring writer and reader tokens and for allocating DSAVs is as follows:
c declare variables

REAL, WRITER :: w
REAL, READER :: r

c allocate variables
ALLOCATE((WRITER = w, READER = 1))

Execution of a statement that reads r such as x = r+5 is suspended while the DSAV
corresponding to r is unassigned, and when the DSAV becomes assigned the statement is
executed. Reader and writer tokens can be passed along channels in the usual way. A
reader token r0 is duplicated to obtain a duplicate r1i as follows:

DUPLICATE(rO,r1)

The proof that these constructs are deterministic is straightforward.

We do not give examples of single-assignment programs. There are several languages that
use single-assignment and execute on distributed-memory machines such as Sisal [4], Strand
[10], and PCN [5].
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7 Nondeterminism

A programmer may want to allow potential nondeterminism to improve efficiency or to
- make programs simpler. For instance, a programmer may want to design a process p to
- accept messages from either process q or process r, in arbitrary order. Fortran M has two
nondeterministic constructs: MERGER and PROBE for such situations. In addition, Fortran
M uses the INTENT(IN), INTENT(OUT) mechanism of Fortran 90 to pass parameters to
processes; this parameter-passing mechanism is potentially nondeterministic because the
same variable may be read and modified by concurrent processes.

A method for designing parallel scientific applications is to first develop and debug the
application using a language with compiler support for verification of determinism, and
later add nondeterministic constructs (if necessary) to improve efficiency.

MERGER A MERGER is similar to a channel except that it can have more arbitrary
(positive) number of output ports; like a channel, a MERGER has a single input port. A
statement:

MERGER(OUT = opi, OUT = op2, IN = ip)

créates a merger linking output ports opl and op2 with input port ip. The sequence of
‘messages delivered to input port ip is a fair merging of the sequences of messages sent on
output ports op1 and op2. '

PROBE The command:
PROBE(PORT = ip, EMPTY = v)

where ip is an input port, and v is a boolean' variable, sets v to false only if there is a
message.in the channel corresponding to input port ip [16]. Variable v can be set to true
by the command, even if thereis a message in the channel (because the message is still in
transit and has not yet arrived at the input port ip). All messages sent arrive at the input
- port eventually, and therefore, the following loop will terminate if there is a message in the
channel associated with input port ip:

v = .TRUE.
WHILE(v) DO

PROBE(PORT = ip, EMPTY = v)
ENDDO
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8 Earlier Work

The contribution of this paper is to incorporate well-known ideas-about the Church-Rosser
theorem, capabilities, channels, distributed shared memory and single-assignment variables
into a widely-used sequential language to get a parallel notation that supports (i) dynamic
process structures, (i) paradigm integration and (iii) compiler verification of determinism,
and that runs on multicomputer networks or (weakly-coherent) shared-memory systems.
Nondeterministic constructs can be included, if required.

A comparison of Fortran M with data-parallel languages [21, 11, 1] and high-level languages
[4] highlights some of the weaknesses and strengths of Fortran M. Fortran M employs
processes explicitly, and uses explicit exchange of tokens between processes. Care must be
taken by the Fortran M programmer to avoid starvation: processes waiting for tokens that
never arrive. Qur experiments with writing libraries suggest that avoiding starvation is not
difficult in Fortran M because if there exists any computation in which processes do not
starve, then processes do not starve in all computa.txons so, we merely need to demonstrate
one correct computation, and that is often easy to do by showing that the communication
of tokens and messages in the Fortran M program corresponds to data flow in the sequential
program. Some of this work could be handled automatically by a compiler using data-flow
technology. Data-parallel languages [21, 11] and applicative languages [4] do not require
the programmer to deal with processes, messages or tokens.

Applications such as multidisciplinary design require task-parallel coupling of data-parallel
programs. Fortran M can be used to provide such coupling. Data-parallel communica--
tions on arrays of channels provide a simple mechanism for coupling multiple datasparallel
programs.

A weakness of Fortran M is that it is a small extension of Fortran, a sequential imperative
language, whereas high-level languages such as Id and Sisal are designed from the outset
to be functional. On the other hand, Fortran M uses theory from functional languages
to provide a deterministic parallel extension to a language that is widely used by scientific
application programmers. Since Fortran M compiles to Fortran, powerful Fortran optimizing
compilers available on most platforms can be used to advantage. Furthermore, the central
ideas of this paper can be used with other sequential imperative languages.

A comparison of Fortran M with parallel programs using message-passing libraries such as
P4 [3] or PVM [20] is also instructive. A focus of Fortran-M is the development of reliable
programs by (i) separating deterministic and nondeterministic components (and allowing
simpler reasoning and debugging for the deterministic parts) and (ii) type-checking messages
(since channels are typed). Also, Fortran M allows dynamic process structures, and can
be used to integrate shared-memory, distributed-memory and data-parallel paradigms. Li-
braries, by their very nature, provide no compile-time type checking and are not guaranteed
to be deterministic. Also, libraries do not (generally) support dynamic process structures.
Users of libraries can, however, continue to use the sequential language and compiler with
which they are familiar, whereas Fortran M users have to learn the extensions to Fortran
and use the Fortran M compiler. The extensions are simple, and the time required to learn
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the extensions is of the same order as the time required to learn a message-passing library.

Debugging Fortran M programs is simpler than debugging parallel programs that use mes-
sage libraries because replaying Fortran M programs requires only that nondeterministic
choices made at the MERGER and PROBE constructs be recorded in a computation to obtain

a replay of that computation. Replay of programs that do not use MERGER or PROBE require
nothing special, because such programs are deterministic. Subtle race conditions can occur
in processes communicating using message libraries, and replay requires recording every
resolution of a potential race condition in a computation.

A major difference between Fortran M and actor-based languages [18, 2] is the Fortran M
focus on separating deterministic and nondeterministic constructs.

An implementation of Fortran M (with channels but without shared variables) is available

from anonymous ftp server info.mcs.anl.gov (directory Xpubs./pcn) at Argonne National
Laboratories.

Fortran M has been used to develop libraries .of parallel programs in linear algebra, spec-
tral methods, mesh computations, computational chemistry, computational biology, and to
explore the integration of task-parallel and data-parallel programming.
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