Problem Formulation for
Multidisciplinary Optimization

Evin J. Cramer,

J. E. Dennis, Jr.,
Paul D. Frank
Robert Michael Lewis and
Gregory R. Shubin

CRPC-TR93334
August 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Problem Formulation for Multidisciplinary
Optimization

Evin J. Cramer * J. E. Dennis, Jr. | Paul D. Frank *
Robert Michael Lewis | Gregory R. Shubin *

August 25, 1993

Abstract

This paper is concerned with the optimization of systems of coupled simulations.
In computational engineering, this frequently is called multidisciplinary (design) opti-
mization, or MDO.

We present an expository introduction to MDO for optimization researchers. We
believe the optimization community has much to contribute to this important class
of computational engineering problems. In addition, this paper presents a new ab-
straction for multidisciplinary analysis and design problems as well as new decomposi-
tion formulations for these problems. Furthermore, the “individual discipline feasible”
(IDF) approaches suggested here make use of existing specialized simulation analysis
codes, and they introduce significant opportunities for coarse-grained computational
parallelism particularly well-suited to heterogeneous computing environments.

The key issue in the three fundamental approaches to MDO formulation discussed
here is the kind of feasibility that must be maintained at each optimization iteration. In
the most familiar “multidisciplinary feasible” (MDF) approach, the multidisciplinary
analysis problem is solved multiple times at each optimization iteration, at least once
everytime any problem function or constraint or derivative is evaluated. At the other
end of the spectrum is the “all-at-once” (AAO) approach where feasibility is guaranteed
only at optimization convergence. Between these extremes lie the new IDF formulations
that amount to maintaining feasibility of the individual analysis disciplines at each
optimization iteration, while allowing the optimizer to drive the computation toward
multidisciplinary feasibility as convergence is approached.

There are further considerations in choosing a formulation, such as what sensitivities
are required and how the optimization is actually done. Our discussion of these and
other issues related to MDO problem formulation highlights the trade-offs between
reuse of existing software, computational requirements, and probability of success.

Keywords: Constrained optimization, multidisciplinary design optimization, optimal
design, computational engineering.

*The Boeing Company, P.O. Box 24346, Mail Stop 7L-21, Seattle, WA, 98124-0346

tDepartment of Computational and Applied Mathematics, Rice University, P.O. Box 1892, Houston, TX,
77251-1892. This work was supported by the State of Texas under contract #1059, the Air Force Office of
Scientific Research under grants F49629-92-J-0203 and F49629-9310212, the Department of Energy under
grant DE-FG005-86ER25017, the Army Research Office under grant DAAL03-90-G-0093, and the National
Science Foundation under cooperative agreement CCR-9120008.

1 Introduction

A fundamental challenge for the emerging field of computational engineering is the design
and analysis of systems and products described by coupled simulations. This field is called
multidisciplinary design optimization, multidisciplinary optimization, or (most commonly)
MDO. There is a tremendous economic significance to developing this capability in order
to facilitate rapid prototyping of new designs and to reduce the time-to-market for new
products.

Mathematical programmers have much to contribute to the problem of optimizing com-
plex coupled systems of single discipline simulations, especially through the introduction of
modern algorithms for nonlinear and integer programming to the field of MDO. The mathe-
matical programming community may also be motivated to put more effort into the nonlinear
mixed integer programming (MIP) problems that arise commonly in MDO. Nonlinear MIP
is a fiendishly difficult area, but we hold some hope because, historically, the great advances
in discrete optimization have come from studying particular classes of problems.

Due to the extreme complexity of most MDO problems, we believe it is necessary to focus
on problem formulation methods and their interdependence with nonlinear programming
algorithms. In this paper we present a new abstraction of the MDO problem, and we use it
to examine alternative ways to formulate MDO problems. We do not concentrate here on the
application of mathematical programming algorithms to MDO. The question of formulating
MDO problems is a major topic in the engineering literature on MDO (e.g., [15]).

In part, the genesis of the ideas given here was to find ways to exploit parallel computation
in nonlinear programming. We turned to reformulating the problems because the design of
parallel algorithms for general nonlinear programming has not been very successful. The
new IDF formulations we suggest here have the advantage of a coarse-grained parallelism
naturally suited to a heterogeneous computing environment. We hasten to point out that
parallelism is not the only motivation for this formulation; indeed, even without parallelism,
we expect IDF to be an efficient approach for solving MDO problems.

In Section 2, we present aeroelastic optimization as an example to provide intuition into
the concepts presented in the rest of the paper. In Section 3, we present notation and
definitions describing our abstract model of the multidisciplinary analysis and optimization
problem. This model is used in Section 4 to discuss multidisciplinary analysis, the attainment
of feasibility for MDO. Section 5 is a discussion of the three main formulations for MDO
including one hinted at in other work, but stated explicitly here. Section 6 discusses the
derivative requirements for MDO. Section 7 discusses some issues related to choosing a
formulation. In Section 8, we present our conclusions.

The contents of this paper represent an abstraction and generalization of more specific
material presented in [3]. It is natural to ask whether the generalization is worthwhile, or
whether this paper should have the more limited goal only of introducing optimizers to the
interesting, important, and challenging problem of MDO.

We found the abstraction essential for exposition, which, in retrospect, is no surprise,
since it was necessary to extend our research in order to fill gaps in the exposition. As we
worked together to write the intended expository paper, we found ourselves forced again and
again to refine our earlier formalization to communicate essential features of the structure
of MDO problems even to one other. We have come to regard the abstraction of MDO that

emerged as a useful contribution, and we find that having absorbed it, we see the MDO
structure it represents everywhere we look.

2 Example - Aeroelastic Optimization

A specific problem is very useful in thinking about MDO. For us the model problem is
aeroelastic optimization. We use this example to define some terms, and throughout the text
we will refer to this example to illustrate the model and the various problem formulations.
However, the model and formulations discussed in this paper are meant to apply to general
MDO problems.

In static aeroelasticity we consider a flexible wing of an aircraft in steady flight. The air
rushing over the wing causes pressures to be imposed on the wing, which causes the wing
to deflect and change shape. This change in wing shape in turn causes the aerodynamic
pressures to change. In static aeroelasticity, we assume that these physical processes reach
an equilibrium.

The aeroelastic system in equilibrium is shown in Figure 1. The two analysis disciplines
involved are aerodynamics (D4) and structures (Dg). The computational problems for
these disciplines are generally solved by individual analysis codes, say, a finite difference
computational fluid dynamics (CFD) code for aerodynamics (A4), and a finite element code
for structures (As).

It is very important that the reader understand the significance of the diagrams such as
Figure 1 that appear in this paper, what they convey, and what they do not convey. These
diagrams are intended to show how their components are related, insofar as information
is transmitted between them. In this regard, they capture a purely static feature of the
problem. These diagrams are not intended to be flowcharts, or to express any sequence of
actual calculations or operations. Indeed, the diagrams that we represent have no sources
or sinks, so that they cannot function as flowcharts describing a sequence of computation
with a beginning and end. Nonetheless, we shall see the utility of these diagrams in their
ability to capture the structure of the coupling and communication between components in
the problem.

Suppose that the structures code has been given a description of the wing structure,
and that both the aerodynamics and structures code have been given a description of the
undeflected wing shape. The aerodynamics code takes as an additional input the wing
deflections (M s), and produces as output the pressures (and velocities, etc.) (Ua) on the
wing surface. The structures code takes as an additional input the load on the wing (Msa),
and produces as output the deflections (and stresses, etc.) (Us) of the wing. We say that we
have single discipline feasibility for aerodynamics when the CFD code (A4) has successfully
solved for the pressures, given an input shape. Similarly, we have single discipline feasibility
for structures when the structures code (As) has successfully solved the structural analysis
equations to produce deflections, given some input forces. Thus, “feasibility” for a single
discipline means that the equations the discipline code is intended to solve are satisfied.

Continuing with the aeroelastic example, we note that the two analysis codes solve their
problems on different grids and interact only at a specific interface. We accommodate this
by following each analysis map, e.g., (A4), by a map (Fs4) that represents something like a

| | | i
| | | |
1 | | !
: Eas [I Esa !

. | I !
. Ma : . Ms :
| | 1 |
I s | |
| oA | oA |
| | | |
| | l !
] UA | I US I
| | | !
]]
| | | |
| | | 1
Da_ | ____ . Ds_ | ____ .

HSA HAS

FIGURE 1: Aeroelastic System

spline fit to the grid values generated, and preceding the following analysis code by a map
(Esa) that represents something like a spline evaluation to generate values at points needed
by that analysis code, e.g., (As).

But this is not enough. Clearly, provision must be made for converting values of pres-
sures from aerodynamics into values of forces (the integral of pressure) for structures, and
converting deflections from structures into changes in aerodynamic shape. We will always
assume that this conversion is done either in the fit or the evaluate routine, but we do not
require that the same choice be made on both sides of a given analysis code. For example,
we assume that pressures are converted to loads either in Fs4 or in Esy. Independently, we
assume that deflections are converted into shape changes either in Fys or in E4s. It will
also be convenient to view a discipline as the analysis code together with all the £ and F'
codes used to get its input and provide its output to other disciplines; this notion is depicted
by the dashed boxes in Figure 1.

We call all of the maps EoF £G interdisciplinary mappings. They represent the coupling
between disciplines, and play a key role in MDO. We tacitly assume that each instance of an
E or an F takes inputs from a single discipline and sends outputs to a single discipline. One
way to handle instances of £ or F' that have more complex communication is to treat the
subject mapping as a new “discipline”. Note that the data passed between the disciplines in
Figure 1 may be considered “compressed” if uss and puys are much smaller vectors than U4
and Us, respectively. This would happen if, for example, the u vectors represented coefficients
of fitting functions with the U vectors as data. We call this “reducing the interdisciplinary

bandwidth.” Note that an approximation would be made in such a fitting operation. As
shown later, this data compression can be used to reduce the dimension of the optimization
problem in certain formulations. These interdisciplinary mappings could also be used to
provide a common interface between codes.

A multidisciplinary analysis is achieved when

1. We have single discipline feasibility in aerodynamics and in structures, and

2. The input to each corresponds to the output of the other via the interdisciplinary
mappings.

We call this situation multidisciplinary feasibility and it corresponds to the simulations in
Figure 1 being in equilibrium. We discuss obtaining multidisciplinary feasibility in Section
4. , \

It is possible to have single discipline feasibility in both aerodynamics and structures
(we call this individual discipline feasibility) and not have multidisciplinary feasibility. This
occurs if the equations in each code are satisfied, but the input to one discipline does not
correspond to the output of the other. This key observation plays an important role later
when we present the “individual discipline feasible” (IDF) formulations for MDO.

We next add optimization to the aeroelastic example. Aerodynamic optimization com-
bines the single analysis discipline aerodynamics with optimization. The design vartables
would typically be some parameters, say spline coefficients, defining the wing’s shape. The
objective function might be to minimize drag, or to come as close as possible to some specified
pressure distribution. There may be design constraints to prohibit undesirable wing shapes
or bad aerodynamic flows. Similarly, structural optimization combines structures and opti-
mization to minimize the structural weight by changing the size of structural components,
subject to stress constraints. In aeroelastic optimization, the combination of aerodynam-
ics, structures and optimization, we will generally have both aerodynamic design variables
(shapes) and structural design variables (sizes, and perhaps shapes). In our model, we lump
all the design variables into a single variable Xp.

The objective function must be some measure of aeroelastic performance, but there seems
to be no generally accepted single measure available in the aeronautical literature. Some
logical choices for the aeroelastic optimization problem are to minimize weight, subject to
the constraint that drag be acceptably small, or to minimize drag, subject to weight being
acceptably small. Alternatively, minimizing a combination of drag and weight might be
appropriate. Ultimately, however, the aeroelastic behavior of the aircraft needs to be tied to
some overall aircraft performance measure, like direct operating cost. This situation, with a
set of conflicting objectives, is to be expected in MDO because engineers in each discipline
will probably have formulated their own objectives for the design. We will not consider
the matter further in this paper, but the reader will note a goal programming approach to
nonconvex multiobjective optimization in these comments.

In order to appreciate the trade-offs between the various formulations of MDO problems
presented later, it is necessary to know something about the size and difficulty of the un-
derlying analysis disciplines. Obviously these depend on the problem, but we assume that
the problem is sufficiently complex that it cannot simply be overwhelmed with computing

power. For example, a practical aeroelastic optimization for a three-dimensional configura-
tion will involve a computational fluid dynamics code that takes hours of supercomputing
time to execute a single analysis. The structural analysis code will typically be less costly,
but may take a significant fraction of an hour. For either code the amount of computing time
is acceptable for engineering analysis. However, many formulations of MDO require tens to
hundreds of such executions; thus the impetus for MDO formulations requiring less compu-
tational work, and the need to employ parallel computing even for the cheaper methods. A
discussion of further considerations in choosing a formulation is postponed until Section 7.

3 A Framework for Describing MDO Problems

In this section, we generalize the two discipline aeroelastic MDO example to an abstraction
for reasoning about general MDO problems. This is important in its own right for the
development of MDO as a research area, but it is also necessary before we can be more
specific about the various optimization formulations. This rigorous summary of notation
and conventions will be very useful, if somewhat tedious and delicate. The reader may want
to make sure of understanding Figure 1 and refer back to the definitions as required. Figure
2 shows the data flow for a single discipline of a many-discipline version of Figure 1.

In our notational convention, X denotes the vector of variables controlled by the optimizer
(nonbasic variables). The original design variables Xy, are always components of X, but in
some formulations, X includes other variables as well. Constraints in the optimization
problem are denoted by C(X). The original design or system constraints Cp(X) are always
components of C, but C can include other constraints.

The notation dC/0X represents the Jacobian matrix of C' with respect to X. Thus,
[0C/0X],s = 0C,/0X, and its rth row is the transpose of the gradient vector of constraint
C,.

An important convention is the way we use subscripts. When a quantity has double
subscripts, the order indicates information flow as in “to-from.” For example, denote a
generic ith single discipline by D;. Then information meant to pass to D; from D; will
be subscripted 7j. It is useful to think of a discipline D; as a grouping of communication
and analysis codes. In terms of the example, the structural analysis code might have an
“evaluator” code to provide loads where they are needed for the structural analysis. It might
also have a “fitter” code to compress its output for communication to other disciplines. To
avoid even more complexity, we allow these routines to pass some variables, like Xp, directly
through.

We use the convention that arguments to the left of a semicolon are inputs to a function
of a vector variable, and those to the right are the dependent variables to be determined by
an equation involving the function.

In Figure 2, we assume that Xp is available to all the computations within the discipline.
We assume that constants that are needed for analysis but are not mentioned in the notation,
such as the Reynolds number of the flow, reside where they are needed.

FIGURE 2: One of many disciplines

3.1 Analysis inputs, equations, and outputs

M; = Inputs to the analysis code A; of discipline D;. Block components M;; of M; are
inputs to analysis code A; needed from discipline D;. The vector M is the block
vector comprised of.all the block vectors M;, for every i. (The M is mnemonic for
“multidisciplinary data.” A; is to be executed with M; and design parameters X as
inputs.)

M, 2 The total number of interdisciplinary inputs to A;, i.e., the length of the vector M;.

A; = The analysis code or solver mapping of the form U; = A;(Xp, M;). Much effort and
talent have gone into developing these codes, and so there are serious advantages to
formulations that preserve their integrity.

U; = Quantities for which A; solves internally when executed in D;. These could include
pressures, velocities, stresses, etc. As above, U denotes the vector of analysis discipline
variables (basic variables) computed in a given formulations by solving the complete
set of analysis discipline equations.

N . .
ny, = Total number of unknown analysis quantities, such as pressure, stresses, etc., asso-
ciated with discipline ¢. For example, an analysis code A; solves ny, equations for ny,
analysis unknowns.
A

Wi Residual function of equations solved in D; by A; to compute the analysis variables
U;. These equations take the form W;(Xp, M;;U;) = 0. We remind the reader that
the variables to the left of the semicolon represent inputs to the system, while those
to the right are the outputs (the variables for which A; solves). There are ny, of these

residuals.

3.2 Interdisciplinary mappings

Gij £ Mapping to the inputs required for analysis code A; from the output of A;. For
example, G;; could be the mapping of the pressures on the aerodynamic grid to the
loads on the structures grid. The functional form of this mapping is M;; = G;;(Xp, U;),
where the G;; are the composition of two mappings E;; o F;; given below. Sometimes
there will be no input to A; from A;. Our convention for this is to set G;; = 0.

Fi; 2 Mapping from the analysis variables from A; to the outputs of D; needed to pro-

duce input to D;. For each ¢, 7, F;; has the role of transforming U; for use in discipline

. This transformation will often involve a data compression to reduce the commu-

nication bandwidth between disciplines. For example, u;; = Fi;(Xp,U;) could map

the pressures computed by aerodynamic analysis to the coefficients of a spline surface
approximation to the pressures or to coefficients for a fit to the load induced on the
wing by those pressures. (The F' is mnemonic for “fit.”) There are n;; such vector

functions. Some may be identity mappings, and some may be zero mappings.

i = Inputs to D; from other disciplines. Block components pi; of p; are sent by the
fitter of D; to the evaluator of discipline D;. Our convention is that u;; may be just
a compression of {/; by F;; which will be transformed into M;; by E;;. Alternatively,
pi; may be the product of a more complicated transmogrification. The symbol x is
mnemonic for “M or U”. It is intended to reflect the nature of p as a surrogate for M
or U depending on the particular pair Fj;, E;;. The vector p is the block vector of all
block vectors y; for every .

Ty 2 The total number of inputs pi; to Di. That is, ny, = 355 52

E;; = Mapping to the inputs required for A; from the compressed y;; from D;. For ex-
ample, M;; = E;;(Xp, pi;) could be the evaluator of a spline approximating structural
loads with coefficients u;;, or if p;; is the vector of coefficients of a spline fit to pressure,
then the convention is that E;; also performs the integration to obtain loads. (The E
is mnemonic for “evaluate.”) We will assume that for each Fj; there is a corresponding
E;;; some of the E;; may be identity mappings, and some may be zero maps.

The reader will see that the separation between A; and its evaluators, and the flow of
information only in the direction from the evaluators to the analysis code, are likely
simplifications of the true relationships of these components. For instance, if A; is a
code involving an adaptive grid, in the course of performing its analysis A; may need
to return to its evaluators to obtain information for the adaptively updated grid. This
complication is not a problem if the reader bears in in mind that the purpose here is
to represent the flow of information between disciplines.

For all of the preceding, A, G, F, E, and W will denote the block vector functions
comprised of all of the corresponding subscripted functions, for all ¢,5. In order to use this
compact notation, it is necessary to keep in mind that the ordering of the components must
be different to be consistent. For example, suppose that D; is aerodynamics and D; is
structures. Then if we order U as Uy, U,, we must order A as Ay, A, and we must order G
as G2, Ga1 in order to have the convenience of writing U = A(Xp, G(Xp,U)) to express the
equilibrium of the aeroelastic system.

3.3 Optimization variables

N
Xp £ Original problem design variables. These could include wing shape parameters,
beam thicknesses etc. There are np original problem design variables.
) g 2

X, Xu, XM S Optimizer supplied values respectively for pu,U, M. These are not used in
all formulations. In some formulations, the optimizer will explicitly control not only
Xp, but also a subset of these surrogates for u,U/, M. They look just like design
variables to D;.

X £ The vector of all block variables Xp and any of X,, Xy, Xum that are explicitly
controlled by the optimizer. For convenience, we will sometimes use X as surrogate
arguments in a function that we have defined above in terms of the original system

variables. For example, if we have specified in a particular MDO formulation that X
has components Xp, X, then we may write M = E(X).

3.4 Optimization objective and constraints

f S Design objective function to be minimized. This could be deviation from desired
pressure distribution, drag, weight, etc. In general, f depends explicitly on the design
variables Xp and the outputs U of all the analysis disciplines.

Cbo = Original problem design constraints. These could include required lift, maximum
allowable stresses, maximum wing length, etc. The constraints in the original problem
depend explicitly on the design variables X and the outputs U of all the analysis
disciplines.

Cauz £ Coupling constraints among or within the disciplines, needed for formulations in
which the optimizer explicitly controls more parameters than Xp. These constraints
ensure that feasibility for the reformulated MDO problem is achieved at optimization
convergence. For example, if the optimizer controls a surrogate Xy for U, then an
auxiliary constraint like Coyr(X) = W(Xp, G(X), Xu) = 0 would be needed for the
MDO problem.

v 2

C

The vector function of residuals of all constraints Cp and C,., to be satisfied by the
optimizer.

4 Feasibility

As described in Section 2, a multidisciplinary analysis, or MDA, is achieved when the coupled
system is in equilibrium. We say that a MDA has been completed when the values of all the
variables do not change upon execution of all mappings shown in Figure 1 without regard
to order. .

MDA can be very costly because of the expense incurred by an MDA algorithm in re-
peatedly executing the analysis codes. One way to avoid some of this cost is not to require
feasibility until convergence to optimality. However, there will be approaches in which we
will require partial feasibility for some very good reasons. The point of this section is to ex-
press the notions of feasibility needed later by using the framework provided in the previous
section. '

We say that a single discipline analysis has been carried out for a particular D; when
Wi(Xp, Mi; U;) = 0 has been solved to yield U; for the given inputs Xp, M;. This would
probably be done by executing A; for the given input. When W;(Xp, M;,U;) = 0 we have
single discipline feasibility for discipline ;. Note that we do not use the semicolon to separate
the arguments into input and output for this point of view. The design variables Xp are fixed
for a multidisciplinary analysis, but of course, they vary for a multidisciplinary optimization.

Likewise, using the residual form, we say that we have individual discipline feasibility
when

W(Xp, M,U) =0 (1)

10

or when U has been computed in explicit form as U = A(Xp, M). Equation (1) states that
individual discipline feasibility implies that every discipline has single discipline feasibility.

We have multidisciplinary feasibility, or MDF, when, in addition to individual discipline
feasibility, the interdisciplinary variables match. In the residual form this is

W(Xp,M,U) =0 and M =G(Xp,U). 2)
In the nonresidual form it is
U= A(Xp,M) and M = G(Xp,U) - (3)
We can combine each of the residual and nonresidual forms into an equivalent equation:
W(XD,G(XD,U),U) =0 or U= A(XD,G(XD,U)) . (4)
For the aeroelastic example, the residu.a,l form of (1) is

Wa(Xp,Mas,Us) = 0
Ws(Xp, Msa,Us) 0 (5)

and the interdisciplinary constraints are

Mys = Gas(Xp,Us)
Mes = Gsa(Xp,Ua) - (6)

Thus in the residual form of MDF, we simultaneously satisfy (5) and (6). The complete
nonresidual form is

Us = Aa(Xp,Mas)
Us = As(Xp,Msa)

Mus = Gas(Xp,Us)
Msa = Gsa(Xp,Ua) - (7)

The residual form of the combined equation (4) that expresses multidisciplinary feasibility
in terms of just the variables Xp and U is

WA(XD,GAS(XD,US),UA) =0
Ws(XD,GSA(XD,UA),US) = 0. (8)

To reiterate, the difference between individual discipline feasibility and multidisciplinary
feasibility is the matching of interdisciplinary input and output variables to reflect equilib-
rium. Since traditional single discipline optimization 1s just optimization under the con-
straint (1) for one discipline, this makes the point that M = G(Xp,U) is the constraint that
distinguishes both MDA and MDO from their single discipline counterparts.

In some applications it may be expedient always to enforce equilibrium between certain
some pairs of disciplines Dj, Dj. We model this case by coalescing the pair into a single
composite discipline. The term “tight coupling” is sometimes used by engineers to describe

11

this coalescence, in which two disciplines D; and D; are conjoined to produce a single analysis
code that simultaneously solves

Wi(Xp,M;U;) = 0
- Wi(Xp,M;;U;) = 0
MJ" Gji(XD,U,‘) . (9)

I

5 MDO Formulations

Up to this point, we have used our framework for MDO to discuss various kinds of feasibility
for the coupled MDA system. The purpose of this section is to widen our discussion to
include optimization.

The key issue in the alternative formulations that we present here is the kind of disci-
pline feasibility maintained at every function, constraint, or sensitivity needed during each
optimization iteration. In the “multidisciplinary feasible” (MDF) approach, complete mul-
tidisciplinary analysis problem feasibility is maintained at every optimization iteration. In
the “individual discipline feasible” (IDF) approach, only individual discipline feasibility (i.e.,
single discipline feasibility for all of the disciplines) is maintained. The interdisciplinary equi-
librium constraints are added as optimization constraints in order to ensure a full MDA at
optimization convergence. In the “all-at-once” (AAQ) approach, all of the analysis variables
are optimization variables and all of the analysis discipline equations are optimization con-
straints. Thus, feasibility in AAO and IDF is guaranteed only at optimization convergence.
(We could refer to “all-at-once” as “no discipline feasible,” but we feel that “all-at-once” bet-
ter describes the formulation.) In all formulations, the set of optimization variables includes
the design variables. Some of the formulations include additional optimization variables as
part of their definitions.

In the following subsections, first we give the general mathematical specification of the
MDO problem formulations and then we give the specialized aeroelastic formulations.

5.1 Formulations for general MDO problems
5.1.1 Multidisciplinary Feasible (MDF) Formulation

The most common way of posing MDO problems is, in our terminology, the multidisciplinary
feasible, or MDF, formulation. In this formulation, the vector of design variables Xp is
provided by the optimizer to the coupled system of analysis disciplines and a complete MDA

is performed with that value of Xp to obtain the system output variable U/(Xp) that is used
in evaluating f(Xp,U(Xp)) and Cp(Xp,U(Xp)). The MDF formulation is

minimize f(Xp,U(XDp))
with respect to Xp (10)
subject to Cp(Xp,U(Xp)) 20

where U(Xp) = A(Xp,G(Xp,U(Xp))).

The reader may recognize MDF as a reduced basis formulation in which Xp is the
nonbasic vector and everything else is a basic vector. To avoid possible conflicts with the
normal usage of the terms basic and nonbasic we will say that Xp is an ezplicit variable and
that U and all the other variables that arise in the MDA part of the problem are implicit.

The reader will see that if a derivative-based method is to be used to solve (10), then a
complete MDA is necessary not just at every iteration, but at every point where f or Cp or
the derivatives are to be evaluated. This can be very expensive, and finite differences would
be especially expensive and tricky because of loss of accuracy in computing U.

5.1.2 The Most General Formulation

For the sake of completeness, we state here the most general formulation of the MDO prob-
lem. This formulation is only for motivation and is unlikely to be useful for MDO. We state
the residual and nonresidual forms together. In this kitchen sink formulation, the optimiza-
tion variables are X = (Xp, Xu, Xy, Xu) and all the conditions for a full MDA are included
as auxiliary constraints:

minimize f(Xp, Xv)

with respect to Xp, Xum, Xy, Xv

subject to Cp(Xp,Xv) =0 (11)
and Xy — E(Xp,X,) =0 and X, — F(Xp,Xu)=0,

and either W (Xp, Xm, Xvu) =0 or Xy — A(Xp,Xm)=0.

5.1.3 All-at-Once (AAO) Formulation

Now we will consider some interesting formulations between the two extremes of two pre-
ceding MDO formulations. The first we call the all-at-once (AAQ) approach. In AAO, we
do not seek to obtain feasibility for the analysis problem in any sense (individual discipline,
multidisciplinary, or even for single equations within a discipline) until optimization conver-
gence is reached. In a way, the optimizer does not “waste” time trying to achieve feasibility
when far from an optimum. We take as explicit variables X = (Xp, Xvu) and write the
formulation in terms of the implicit variable M (X) with the interdisciplinary mapping G as
its defining relation.

minimize f(X) with respect to X = (Xp, Xu)
subject to Cp(X) =0 (12)
aue(X) & W(Xp, M(X), Xu) =0,

where M(X) = G(X).

The drawback to (12) is that for practical problems it will generally involve a very large
number of constraints (the discrete equations from all of the analysis disciplines), and an even
larger number, np + 2_; nu;, of optimization variables. Additionally, some of the constraints
may not be very smooth. In AAO the analysis “code” performs a particularly simple function;
't evaluates the residuals of the analysis equations, rather than solving some set of equations.
Ultimately, of course, the optimization method for AAO must solve the analysis discipline
equations W to attain feasibility. Generally, this means that the solution method must

13

contain all of the special techniques that every single discipline analysis solver contains. It is
unlikely that “equality constraint satisfaction schemes” (e.g., Newton’s method) present in
existing, general purpose optimization codes would be equal to this task in the case where
the constraints represent extremely nonlinear PDE, as in aerodynamics.

5.1.4 Individual Discipline Feasible (IDF) Formulation

Another way to avoid a complete MDA for every function value is to use an IDF formulation
like (13). IDF occupies an “in-between” position on a spectrum where the AAO and MDF
formulations represent extremes: for AAQ, no feasibility is enforced at each optimization it-
eration, whereas for MDF, complete multidisciplinary feasibility is required. Between these
extremes lie other possibilities that amount to specific decompositions of the work between
analysis codes and the optimizer. One such possibility, the IDF approach, maintains indi-
vidual discipline feasibility, while allowing the optimizer to drive the individual disciplines
toward multidisciplinary feasibility and optimality by controlling the interdisciplinary data.

Note that, in this approach, analysis variables have been “promoted” to become opti-
mization variables; in fact, they are indistinguishable from design variables from the point
of view of an individual analysis discipline solver. In IDF, the specific analysis variables that
have been promoted are those that represent communication, or coupling, between analysis
disciplines via interdisciplinary mappings. The rest of this section describes IDF methods.

The next formulation is the first instance of an IDF approach. The relation that de-
fines the implicit variable U(X) is just the nonresidual form of (1). Thus, each individual
discipline is feasible at every optimization iteration. In this method, M is replaced by an
explicit surrogate Xp and the interdisciplinary mapping becomes an auxiliary constraint.
The explicit variables are X = (Xp, Xum).

minimize f(Xp,U(X))
with respect to X = (Xp, Xm) ‘
subject to Co(Xp, U(X)) >0 (13)

Coua(X) & Xy — G(Xp,U(X)) =0

where U(X) = A(X). There are np + ¥; ny; optimization variables in this “uncompressed”
IDF approach.

Notice that an evaluation of I/(X) = A(X) involves executing all the single discipline
analysis codes with simultaneously available multidisciplinary data X. Therefore, these very
expensive computations can be done independently, and communication costs are likely to be
negligible in comparison. Furthermore, the analysis codes vary widely in the types of compu-
tations to be done and will generally be suitable for different hardware environments. Thus
a heterogeneous network of computers may be particularly well-suited for this formulation.

The drawback to the particular IDF method (13) is the large number of optimization
variables. As mentioned earlier, we can take advantage of the data compression pi; =
Fi;(Xp,U;) and elevate u rather than M to be explicit variables:

minimize f(Xp,U(X))
with respect to X = (Xp, Xy)
subject to Co(Xp, U(X)) 2 0 (14)

Cous(X) £ X, — F(Xp,U(X))) = 0.

14

where U(X) = A(Xp, E(X)). Thus, the advantage of this “compressed” or “low-bandwidth”
IDF formulation is that the optimizer controls possibly the fewest explicit variables of any
IDF formulation, namely np + 3_; n,;.

It is possible to write many more permutations, but we will introduce only one more: the
possibility of sequencing the individual disciplines.

5.1.5 Sequenced IDF formulations

In the IDF formulations presented above, the interdisciplinary mapping (coupling) variables
sent to each discipline from the other disciplines were made optimization variables and asso-
ciated auxiliary constraints were imposed. We can create IDF formulations where only some
of the coupling variables are optimization variables and the remainder are the actual com-
puted analysis values. For example, consider a two discipline problem such as the aeroelastic
example. The computations in the above IDF method could be sequenced such that one of
the analyses is completed prior to starting the other one. Since the inputs to the second
analysis would then be available, there would be no need for the optimization variables and
constraints for the associated interdisciplinary mapping variables from the first to the second
discipline. The usefulness of such a “sequenced IDF” formulation depends on factors such
as the difficulty in satisfying the coupling constraints, the cost of computing derivatives for
the coupling constraints, the relative behavior of the optimization objective and constraint
functions for the two formulations, and the lost opportunity for parallelism by imposing a
specified sequence on the analyses. '

Many different IDF formulations can be developed by using the option to sequence the
individual codes. We interpret the formulation represented by equation (12) in [22] as a
sequenced IDF formulation, and so this is not unique to the present work.

5.1.6 Feasible point formulations vs. feasible point algorithms

We think it worthwhile to discuss briefly the distinction between the generalized reduced
gradient (GRG) approach, which corresponds to MDF, and a gradient restoration approach
applied to a full-space problem like AAO. We do this in order to prevent the misunderstand-
ing that the formulations we have presented are not really different, but are instead just
different implementations of algorithms applied to a single formulation.

Some nonlinear programming algorithms, such as gradient restoration methods, approach
optimality along a feasible path by following each optimization step with a step to restore fea-
sibility. This is very different from a generalized reduced gradient approach which maintains
feasibility not just for each iterate, but for any pair Xp, U that ever appears in any context
in the algorithm. In other words, the GRG approach eliminates I/ from the optimization
calculations by using the implicitly defined function U(Xp) in its stead.

If we apply a gradient restoration method to an AAO formulation, then at each optimiza-
tion iteration the optimization algorithm would first take a step in the full space to obtain
a complete new X. This would be followed by a so-called restoration step which would
consist here of an MDA to replace the Xy part of the AAO optimization iterate Xp, Xvu
‘with U(Xp). The next optimization iteration is started from the multidisciplinary feasible
point X = (Xp,U(Xp)) satisfying (4).

However, such an approach to the AAO formulation is not the same as MDF because
Xu is treated as independent of Xp for the purpose of setting the new iterate’s Xp. In the
MDF or GRG approach, Xp is the only variable in the optimization iteration. This means
that the derivatives or sensitivities required in the MDF formulation must be computed with
arguments Xp and values of all the system variables that correspond to an MDA solution
for that value of Xp.

5.2 Formulations specialized to the aeroelastic MDO problem

To further elucidate the formulation ideas, we show how the general formulations apply to
the specific case of aeroelastic MDO.
First is the standard MDF formulation (10)

minimize f(Xp,Ua(Xp),Us(Xp)) with respect to Xp
subject to Cp(Xp,Ua(Xp),Us(Xp)) =0,

where Ua(Xp) = Aa(Xp, Gas(Xp,Us(Xp)))
Us(Xp) = As(Xp,Gsa(Xp,Ua(Xp))) -

(15)

Figure 3 illustrates the MDF formulation. Notice that while Figure 3 provides some
detail about the computations of Us and Uy, the aeroelastic analysis is a “black box” from
the perspective of the optimization code.

If analysis residuals are available, then one might try to avoid so many costly MDA
computations by an All-At Once, or AAO, formulation with U4 and Us made explicit.
Figure 4 illustrates the the AAO formulation. The AAO optimization problem is

minimize f(X)
with respect to X = (Xp, Xv,, Xv,)
subject to Cp(X) >0 (16)

Wa(Xp, Mas(X), Xv,) =0
Ws(Xp, Msa(X), Xus) =0

where MAs(X) = GAS(XD,XUS) and MSA(X) = GSA(XD,XUA)-

Other “all-at-once” (AAQ) formulations for design optimization problems have been men-
tioned in the literature for aerodynamic optimization (e.g., [5, 9, 13, 21]), structural optimiza-
tion (e.g., [6]), chemical process control, and control and inverse problems (e.g., [16, 20]).
In [13] this approach is called the “one-shot” method, and in [6] it is called “simultaneous
analysis and design.” In [5] the authors discuss how AAO can be remarkably efficient for
aerodynamic optimization, provided some computational difficulties can be overcome.

The rest of this section describes two aeroelastic IDF methods. We reiterate the essence
of IDF: at each optimization iteration we have a “correct” aerodynamic analysis and a “cor-
rect” structural analysis; however, it is only at optimization convergence that the pressures
predicted by the aerodynamic analysis correspond to the loads sent to the structures and the
displacements predicted by the structural analysis correspond to the geometry sent to the
aerodynamics code. Again, we remind the reader that one could follow each optimization
step by performing a feasibility restoring MDA, but the optimization problem being solved
would still be an IDF and not an MDF formulation.

16

Optimizer (Controls calculation of f, Cp)

XD US> UA

Aeroelastic Analysis Solver

| |
| |
| |
Eas ! ! Esa
Ma : : Ms
| |
| |
Aa : : As
| |
| |
Ujp | | Us
| |
Fsa : : Fas
| |
| |
A_ | ____ I LS L
USA KAS

FIGURE 3: Multidisciplinary Feasible (MDF) Method

17

Optimizer (Controls calculation of f, Cp)

Xp, Xu,, Xu, Xp, Xv,, Xvs
Aerodynamics Structures
Residual Residual
Computation Computation
Wa Ws

FIGURE 4: All-at-Once (AAO) Method

The “uncompressed” IDF formulation is

minimize f(Xp,Ua(X),Us(X))
with respect to X = (Xp, Xmag) Xmss)
subject to Cp(Xp,Ua(X),Us(X)) =0 (17)

Cas = XMAS - GAS‘(XDaUS(X)) =0
(75,4 = X‘WSA — GS’A(XD,(}A(X)) =0

where Ua(X) = Aa(Xp, Xm,) and Us(X) = As(Xp, Xmg,)-
The low-bandwidth IDF formulation is

minimize f(Xp,Ua(X),Us(X))
with respect to X = (Xp, Xu,e) Xusa)
subject to Cp(Xp,Ua(X),Us(X)) 20 (18)

CAS EAX,,AS - FAs(XD,US X)) =0
Csa = X”SA - FSA(XD, UA(X)) = 0.

where Us(X) = Aa(Xp, Eas(Xp, Xu,s)) and Us(X) = As(Xp, Esa(Xp, Xus,)). Figure 5
shows the flow of information for this low-bandwidth IDF formulation.

6 Derivative Requirements for M DO

We anticipate that most MDO efforts will involve derivative-based optimization algorithms.
For this reason we now will discuss the derivatives required in the MDF, IDF, and AAO

18

Optimizer (Controls calculation of f, Cp, Cas, Csa)

Xp, X;I.As Xp, X#SA
Aerodynamics Structures
Analysis ‘ Analysis
Fs4(Xp,Ua(X)) Fas(Xp,Us(X))
(including, e.g., Ua) (including, e.g., Us)

FIGURE 5: Individual discipline feasible method

formulations that we have presented. If one looks in the previous section, all the formulations
given either use the analysis residuals as a constraint, or else the analysis code solution
mapping is used to define U as an implicit variable. Thus, any derivative-based algorithm
will require either the derivative of the analysis residuals or of the solution operator.

As mentioned above, AAO has the disadvantage that the optimization code must assume
the difficult task of simultaneously satisfying all the analysis discipline equations. The MDF
and IDF formulations have the advantage that they use the specialized software A; that has
been developed for solving the individual discipline equations. But there is a price to be
paid for using the existing software; the MDF and IDF formulations must differentiate the
solution operators implemented by the single discipline solvers.

The most daunting task is to obtain these solution sensitivities. Most attempts at MDO
have used finite-difference approximations to derivatives. This certainly finesses the issue,
but because of problems with accuracy and expense, we believe that a practical alternative
to finite differences must be found if MDO is to become an everyday engineering tool.
There seem to be two alternatives: analytic approaches (implicit differentiation, sensitivity
equations, adjoint equation solution) and automatic differentiation.

Even though there is considerable research interest in analytic methods for sensitivity or
gradient calculations [2, 1, 8, 6, 7, 10, 11], few analysis codes in engineering use today provide
the required derivatives. We hope that automatic differentiation will provide an alternative
approach to retrofit existing codes to produce the derivatives.

Automatic differentiation should not be confused with symbolic differentiation. In AD-
IFOR [17], the automatic differentiation tool with which we are the most familiar, the def-

19

inition of the function is given as a standard Fortran program. The output from ADIFOR
is a program that duplicates the computation of the original program, and in addition, it
includes code to compute the sensitivities of indicated outputs with respect to indicated
outputs. The sensitivities are computed with the same accuracy as the quantities whose
partial derivatives they represent.

We finish our discussion of the problems of finding derivatives with a brief discussion of the
derivatives needed by the various formulations. There seems little point to laboring through
the general case, and so we will restrict ourselves to the aeroelastic example problem. In
the subsections that follow we give the derivatives of the constraints. However, the objective
function f and the design constraints Cp depend on the same parameters. Thus, the gradient
of the objective function is just the transpose of the block row of the constraint Jacobian
corresponding to Cp, with Cp replaced by f.

6.1 Derivatives required for the MDF formulation

For MDF optimization, Sobieski [12] gives a complete presentation of the alternative ap-
proaches, but our MDO model includes the fit and evaluate routines and so the form is
slightly different here.

Using the MDF formulation given by (15), the linearized constraint residual is, noting

X = [Xbp],

() 8Cp | 9Cp 8U, , 8Cp 8Us
[CD + 8Xp + U, 8Xp + s ax; AXp |, (19)

where (..7};) is the value of the constraints at the current approximation Xg) to the solution

of the MDO problem. Remember, for the MDF formulation, Xg) is a full MDA solution
point. The coefficient matrix in (19) represents the Jacobian of Cp with respect to the design
variables Xp.

Computing the partial derivatives 0f/0Xp, 0f/0Uy, 0Cp/0Xp, and 0Cp/0U, for a =
A, S is generally easy; computing the solution sensitivities 0U,/0Xp is generally hard. One
way to obtain these sensitivities is to form and solve a linear system as follows. Notice that
since we need the derivatives at a point Xl()c) for which (7) holds, we can apply implicit
differentiation to the appropriate residual equations to obtain:

AWa(XpMas,Ua) + Wa(Xp,Mas,Ua) [GC"A'; + G 4s 8U~:]
8Xp My 3Xp dUs 8Xp
+3WA(XDvMA‘~'vUA) s _—
30, aXp —

and

Ws(Xp,Msa,Us) + dWs(Xp,Msa,Us) [BGm + 2Gsa 31],,]
3Xp IMga 3Xp U, 8Xp

AWs(Xp,Msa,Us) Us ‘
+ s axy =0 (20)

where we have used the fact that M = G(Xp, U). Every derivative in (20) is assumed to be
available except the derivatives of U. Thus, we can gather terms to obtain a linear system
that can be solved to obtain the sought for [/ derivatives:

AW,4 W4 3G 45 AU 4 AW, + AW, 8Gas

AU 4 OM s BUg 3Xp 3Xp IMus 3Xp
=- (21)

IWs 3Gga AWs alg AWg OWs 9Gsa

IMss U4 AUs 8Xp 3Xp OMs, 8Xp

20

If the residuals are not available, then in a similar way, we can differentiate (7) and rearrange
terms to obtain:

I _0U4 3Gus AU, U, + QU4 3G s
OMyus 0Us 3Xp dXp OMus 3Xp |
= , (22)
_ AUs dGgs4 1 AUs AUs + AUs 3Gsa
Mgy U4 3Xp 3Xp AMgs,s 3Xp

where we have used (7) to replace partial derivatives of A4 and As by partial derivatives of
Uy, and Us, respectively. It is important to remember here that all of these partials must be
evaluated at X Dc), a multidisciplinary feasible point.

6.2 Derivatives required for the AAO formulation

The AAO formulation has much easier derivative requirements because the derivatives do
not have to be evaluated at MDA solutions. In fact, for formulation (12), there is no
feasibility required at arbitrary evaluation points. The linearized constraint residual is,

noting X = [Xp, Xvy] and Xy = [Xv,, Xvg],

- e ac ac aCp 1
¢ 9Cp D D _
(j(D) 3Xp 3XUA 3/\'1/3 AXD
() W, W4 W4 .
WA + dXp 9Xy, OXug AXUA ’ (23)
(C) 3Wq 3W¢ BW\‘ AX .
L Ws™] | 5%p 3xu, 03Xy, | L TOUs
1) (@ Nt . . :
where (Cp’, W57, Wg5”) 1is the residual of the constraints at the current point.

The blocks 0W,4/0Xy, and OWs/0 Xy, in (23) are the Jacobians that would appear in
Newton solvers for the two disciplines, respectively. The derivatives 9W4/0Xp, 0Wa/0Xvs,
OWs/0Xp, and OWs/0Xy, represent the sensitivities of the analysis discipline equation

residuals to their inputs from other disciplines. We assume that these derivatives are avail-
able.

6.3 Derivatives required for the IDF formulations

The linearized constraint residual for the IDF formulation (17) is

(o
0%,: AXp
y(¢ ¢
Cas | T | AXmas (24)
c$) AXmsa
where)
dCp 3Cp 08Uy, aCp _dUg T
dXp AW p 0Xp s dUs 90X,
_8Gas _ 8Gas 8Us I __8Gas _8Us (25)
3Xp alUs dXp s 0Xms, | 9
_0Gga _ 8Gga dUy _0Ggus 93Uy I
X p aUs 8Xp s 0Xp g]

21

dCp _ 9Cp , 9Cp 0Us 9Cp 3Us
iXp ~ 0Xp | 0UA dXp ' 9Us 0Xp’

(26)
and (]}f), .7((40;%, C_Q)T is the value of the constraints at the current point. Derivatives similar
to the above can be derived for the low-bandwidth IDF formulation (18).

The expensive derivatives for the IDF method are those of the form 0U;/0Xp, 0U;/0 X m;;,
and 0U;/0X,,,, which are all sensitivities of the individual discipline analysis solutions with
respect to either uncompressed or compressed analysis inputs. Note that the derivatives
required for the IDF formulation are the same as those required in (22) and by Sobieski [12]
(in his GSE2 approach) for computing MDF problem derivatives. However, in contrast to
the MDF method, here they only need to be evaluated at an individual discipline feasible
point.

7 Considerations in Choosing a Formulation

In this section, we will discuss briefly some important issues related to choosing an MDO for-
mulation for a specific problem: multipoint design, and the opportunities to exploit parallel
computing.

Because MDO problems come in all sizes and shapes, and because there are very often
discrete optimization variables, it is impossible to say much about how to choose an opti-
mization algorithm for a general MDO problem. Given a problem and an NLP code, we do
offer in the next section some advice on choosing a formulation.

Generally, in MDO as elsewhere we will choose between different optimization tech-
niques based on problem size, smoothness, derivative availability, and sparsity. Frank et
al. [4] investigated the applicability of derivative-based methods (nonlinear programming
techniques), response surfaces, expert systems, genetic algorithms, simulated annealing, and
neural networks to MDO problems.

As one would suspect, they concluded that for problems where derivative-based methods
can be applied, these methods are much more effective than the other techniques. Thus, they
recommended that, whenever possible, MDO problems be posed as smooth differentiable
problems so that derivative-based methods can be applied. However, they recognized that
this cannot always be done.

They also discuss global optimization for MDO problems. Even in this case, derivative-
based methods were recommended to solve the local optimization subproblems.

7.1 Parallelism

As previously mentioned, the IDF formulation is well-suited to implementation in a hetero-
geneous computing environment comprised of computers suitable for each particular disci-
plinary analysis. Such a computing environment would enable us to take advantage of the
effort made in many disciplines to optimize the performance of analysis codes on particular
machines. Moreover, the computational expense we can expect inside many of the individ-
ual disciplinary analyses makes such loosely coupled parallelism natural. At the same time,

22

this environment is possibly the only practical one for many MDO problems, since no single
computer may be large enough to run the entire large MDO problem.

There is also an attractive logistical reason for exploiting such parallelism. An MDO
design group made up of single discipline design groups already conducting single discipline
designs could implement the IDF method in parallel on a network of the machines that
already run the individual disciplines’ analysis codes.

The MDF and IDF methods, since they leave intact the disciplinary analysis codes, do not
lose any of the parallelism that might have been developed there by disciplinary specialists.
In contrast, the AAO method is forced to provide its own approach to solving the analysis
equations. Thus, an AAQO implementation is on its own to provide ways to exploit parallelism.
Since the algorithm to be used will probably have a huge sparse quadratic program as its
computational kernel, this is quite problematic.

A similar issue arises for the IDF approach. Figure 5 shows the interdisciplinary con-
nectivity for our model problem of aeroelastic optimization. These connections reveal, to
a degree, the patterns of communication in a parallel implementation of the optimization
solution. For instance, this diagram shows the independence of the bulk of the computation
needed to compute function and constraint values. However, there is an important level of
detail that is omitted from this diagram. We have not indicated the patterns of communica-
tion inside the computational kernel of the optimizer. Depending on the size of the problem
and the nature of the optimization algorithm, this may be significant to an efficient parallel
implementation.

If the optimization algorithm has as its primary computational subtask the solution of
a relatively small model problem (one in which the model gradient and Hessian can be
assembled), then we likely need not worry about the patterns of communication inside the
optimizer. On the other hand, for very large MDO problems, the pattern of computation
and communication inside the optimization algorithm should reflect that of the problem as
it is presented in Figure 5. Otherwise, the computations inside the optimization and the
parallelism of the coupled disciplines may be at odds, limiting the boon we can expect from
parallelism in the IDF approach.

In particular, this means that the optimization block in Figure 5 should not be viewed as
a monolithic block residing on a single computational unit. Instead, it may be distributed
among the computational units together with the individual disciplines. This would enable
the optimization algorithm to take advantage of the block structure of the MDO problem
in the execution of the optimization subtasks, while respecting the distribution and flow of
information inherent to the MDO problem.

7.2 Multipoint design

MDO problems will often involve design over several cases, or design points. In the aeroelastic
problem, for example, there may be stress constraints for several flight conditions such as
pull-up or dive maneuvers. There may also be minimum performance requirements for off-
design values of velocity, altitude, etc. In fact, different analysis codes may be used for
different design points. For example, a low-fidelity aerodynamics analysis code may be
acceptable for computing pressures for a dive maneuver, while a high-fidelity aerodynamics
analysis code may be required for computing drag and lift at cruise.

23

MDO over multiple design points can be readily couched in the formulations presented
here by considering the analyses at each point to be a separate “discipline”.

8 Conclusions

In Table 1 we compare the features of our three main approaches to MDO formulation. In
Table 2 we speculate on the performance that might be achieved by the approaches. These
hypotheses are supported by the experimental results shown in [23, 18].

The multidisciplinary feasible (MDF') and individual discipline feasible (IDF) approaches
have the advantage of using, with moderate or no modification, existing single discipline
analysis codes. An additional advantage of IDF is that it avoids the cost of achieving full

(Compressed).
Individual Multidis-
All-at-once Discipline ciplinary
(AAO) Feasible Feasible
(IDF) (MDF)
Use of existing Full, no direct Full, but must
analysis codes None coupling of couple the

analysis codes

analysis codes

Discipline None until Individual Multidisciplin-

feasibility optimal, then discipline ary feasibility
all disciplines feasibility at at each
feasible each optimiz- optimization

ation iteration iteration

Variables the Design variables | Design Variables | Design

optimizer controls. and all analysis | and interdiscip- | variables

(Thus, these are discipline linary mapping

independent variables || unknowns (coupling)

in sensitivities.) parameters

Number of optim-

ization variables.

(Thus, the number np + > Ny, np + 3 ; Ny, np

of sensitivities
required.)

Optimization Very large and | Moderate, size Small and
problem sparse ' and sparsity dense
size and sparsity dependent on

coupling

“bandwidth”

TABLE 1: Comparison of formulation features

24

Individual Multidis-

All-at-once Discipline ciplinary
(AAO) Feasible Feasible
, (IDF) (MDF)
Probable compute || Low, evaluate | Moderate, Very high,
time for objective | residuals for | separately full multidis-
and constraints all disciplines | analyze each | ciplinary
discipline analysis

Expected overall
speed of optim- Fast Medium Slow
ization process
Probability of

unanalyzable Low Medium High
intermediate :

designs

Probable

robustness Unknown High Medium

TABLE 2: Comparison of predicted performance

multidisciplinary feasibility at each optimization iteration, a procedure that is probably
wasteful in MDF when far from optimization convergence. Furthermore, the IDF method
makes it easy to replace one analysis code with another (as when additional modeling fidelity
is required), or to add new disciplines.

On the other hand, the IDF approach requires the explicit imposition in the optimiza-
tion of the nonlinear constraints involving the interdisciplinary maps and the calculation of
additional sensitivities corresponding to the variables communicated between disciplines. If
the number of such variables and constraints can be kept small, we project that the overall
cost of IDF optimization will be significantly less than MDF optimization.

No matter what approach is chosen, the efficient calculation of sensitivities will be crit-
ical for success. In our opinion, with the increasing complexity of analysis codes and the
increasing number of design variables that will probably be used in future MDO applications,
it is unlikely that finite difference sensitivities will be affordable. In this area, the role of
automatic differentiation remains to be conclusively determined. Our guess is that, for very
large problems, only some kind of analytic or implicit sensitivities will be used. The other
alternative, of course, is to use simplified analyses in the optimization and then to correct via
iterative refinement. For example, this approach has been used in multidisciplinary design of
helicopter rotors [14]. We observe that this approach dovetails well with the IDF approach,
where an existing multidisciplinary analysis procedure can be viewed as “one discipline,”
and information of higher fidelity for a single analysis code can be the “second discipline”
[19]. The iterative refinement outer loop could build a response surface model of the higher
fidelity code. The iterative refinement optimization loop would then use the IDF method

25

with the multidisciplinary analysis as one discipline and the response surface model as the
second discipline.

We feel that the all-at-once (AAQ) approach remains theoretically attractive because of

the probability that it will be the least expensive computationally. Unfortunately, it requires
a higher degree of software integration than is likely to be achieved in the near future for
realistic applications.

References

1]

[2]

[6]

[7]

[9]

[10]

Baysal, O. and E.M. Eleshaky. Aerodynamic design using sensitivity analysis and
computational fluid dynamics. Technical Report ATIAA-91-0471, AIAA, January, 1991.
Presented at the 29th Aerospace Sciences Meeting, January 7-10, 1991, Reno, Nevada.

Borggaard,J., J.A. Burns, E.M. Cliff, and M. Gunzburger. Sensitivity calculations for
2d, inviscid, supersonic forebody problem. Technical Report 93-13, ICASE, March,
1993.

Cramer, E.J., P.D. Frank, G.R. Shubin, J.E. Dennis, Jr., and R.M. Lewis. On alter-
native problem formulations for multidisciplinary design optimization. ATAA-92-4752,

4th Symposium on Multidisciplinary Analysis and Optimization, September 21-23, 1992,
Cleveland, OH.

Frank, P.D., A.J. Booker, T.P. Caudel, and M.J. Healy. Optimization and search meth-
ods for multidisciplinary design. AIAA-92-4827, 4th Symposium on Multidisciplinary
Analysis and Optimization, September 21-23, 1992, Cleveland, OH.

Frank, P.D. and G.R. Shubin. A comparison of optimization-based approaches for a

model computational aerodynamics design problem. Journal of Computational Physics,
98(1):74-89, 1992.

Haftka, R.T., Z. Gurdal, and M.P. Kamat. Elements of Structural Optimization. Kluwer
Academic Publishers; 1990.)

Jameson, A. Aerodynamic design via control theory. Technical Report 88-64, ICASE,
November, 1988.

Korivi, V., A. Taylor, III, P. Newman and G. Hou, and H. Jones. An approximately
factored incremental strategy for calculating consistent discrete CFD sensitivity deriva-
tives. ATAA-92-4746, 4th Symposium on Multidisciplinary Analysis and Optimization,
September 21-23, 1992, Cleveland, OH.

Rizk, M.H. Aerodynamic optimization by simultaneously updating flow variables and
design parameters. AGARD Paper No. 15, May 1989.

Shubin, G.R. Obtaining “cheap” optimization gradients from computational aerody-
namics codes. Technical Report AMS-TR-164, Boeing Computer Services, June, 1991.

26

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Shubin, G.R. and P.D. Frank. A comparison of two closely-related approaches to aero-
dynamic design optimization. In G.S. Dulikravich, editor, Proceedings of the Third
International Conference on Inverse Design Concepts and Optimization in Engineering

Sciences (ICIDES-III), October, 1991.

Sobieszczanski-Sobieski, J. Sensitivity of complex, internally coupled systems. AIAA
Journal, 28(1):153-160, 1990.

Ta’asan, S., G. Kuruvila, and M.D. Salas. Aerodynamic design and optimization in
one shot. AIAA Paper 92-0025, 30th Aerospace Sciences Meeting, Reno, NV, January,
1992.

Young, D.K. and F.J. Tarzanian Jr. Structural optimization and Mach scale test vali-
dation of a low vibration rotor. 47th Annual Forum of the American Helicopter Society,
Phoenix, Arizona, 1991. -

AIAA Technical Committee on Multidisciplinary Design Optimization (MDO). White
paper on current state of the art. American Institute of Aeronautics and Astronautics,
1991.

H.T. Banks and K. Kunisch. Estimation techniques for distributed parameter systems.
Birkhauser, 1989.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR: generating
derivative codes from Fortran programs. Technical Report CRPC-TR91185, Center for
Research on Parallel Computation, December, 1991.

J.E. Dennis, Guangye Li, and Karen Williamson. Optimization algorithms for param-
eter identification. Technical Report CRPC-TR92277, Center for Research on Parallel
Computation, January, 1992.

Grose, D.L. private communication.

F.-S. Kupfer and E. W. Sachs. A prospective look at SQP methods for semilinear
parabolic control problems. In Optimal control of partial differential equations: proceed-
ings of the IFIP WG 7.2 International Conference, pages 145-157, 1991.

C.E. Orozco and O. N. Ghattas. Massively parallel aerodynamic shape optimization.
preprint.

R. T. Haftka, J. Sobieszczanski-Sobieski, and S. L. Padula. On options for interdisci-
plinary analysis and design optimization. Structural Optimization, 4(2):65-74, 1992.

Shubin, G.R. Application of alternative multidisciplinary optimization formulations to
a new model problem for static aeroelasticity. Technical Report BCSTECH-93-022,
Boeing Computer Services, August, 1993.

27

