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Abstract

SIMD architectures offer an alternative to MIMD architectures for obtaining high
performance computation through parallelism. These architectures can offer impressive
price/performance ratios for certain classes of problems. However, the effectiveness of
such machines is greatly affected by the capabilities of the compilers which produce
code for it. Current compilers have many weaknesses that introduce inefficiencies in
the code that they produce. It is our thesis that advanced compiler techniques can
produce more efficient SIMD code and exploit the massively parallel hardware closer to
its full potential. To validate our thesis, we are designing and implementing compiler
transformations that optimize computation and communication given the constraint
of a single instruction stream.

1 Introduction

Parallel computing has been becoming more and more popular as a method of obtaining
high performance. This trend will continue as parallel computers become less expensive and
more readily available. However, programming such computers is still the major obstacle for
their general acceptance. This is particularly true for parallel computers with distributed
memory, since the programmer has to not only discover useful parallelism but also must
distribute the data and the computation in a way such that communication costs do not
overwhelm the benefits of parallelism.

To address the difficulties of programming distributed-memory parallel computers, Rice
University has embarked on the Fortran D project to develop compilers that will address
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many of the impediments. Fortran D [25] combines the addition of annotations to the Fortran
programming language with advanced compiler technology. The goal of the Fortran D project
is to develop advanced compilers that take programs written in a data-parallel programming
style and annotated with data decomposition statements, and automatically generate code
that can be executed efficiently on different distributed-memory architectures.

The Fortran D source languages include both Fortran 77 [68] and Fortran 90 [5], and the
target architectures may be either MIMD or SIMD. Several aspects of the Fortran D project
are already being addressed. The following three projects are all currently underway:

1. The automatic annotation of Fortran 77 or Fortran 90 programs with data decomposi-
tion statements to produce the corresponding Fortran 77D or Fortran 90D programs [6,
44].

2. The generation of efficient MIMD code from Fortran 77D [30, 36, 64].
3. The generation of efficient MIMD code from Fortran 90D [20].

The scope of the work described in this document will be the generation of efficient code
for distributed-memory SIMD machines from Fortran 90D. Compiling Fortran 77D to SIMD
architectures will not be addressed in this work. However, using the techniques of automatic
vectorization [3, 67] one can transform Fortran 77D into Fortran 90D, at which point the
work described here can be employed to generate efficient SIMD code.

Distributed-memory MIMD architectures and distributed-memory SIMD architectures
share many characteristics. Thus many of the optimizations used for compiling for MIMD
machines are also useful for compiling for SIMD machines. However, the synchronous be-
havior of SIMD machines introduces many challenges not encountered in MIMD machines.
A SIMD compiler must address these challenges, while taking advantage of the synchronous
nature of execution in SIMD machines and the efficiencies that it affords.

It is our thesis that advanced compiler transformations can be used to optimize For-
tran 90D programs for efficient execution on SIMD architectures, and in doing so ezploit the
massively parallel hardware close to its full potential.

The Fortran D project is designed to handle both regular and irregular computational
patterns. This proposal addresses only Fortran D programs with regular computations.
Irregular computational patterns are being addressed by others (31, 32, 33].

The remainder of this proposal is organized as follows. We first give a brief overview
of the target SIMD architecture which this work assumes. Then in Section 2 we discuss
related efforts. Section 3 describes our proposed research. We conclude in Section 4 with
our research plan.

1.1 A Distributed-Memory SIMD Architecture

SIMD is an acronym for Single Instruction stream, Multiple Data streams, and is one of
the four categories proposed in Flynn’s taxonomy of computer architectures [24]. A SIMD
computer contains many data processors operating synchronously, each executing the same
instruction from a single program counter. Each data processor is a fully functional ALU
(Arithmetic Logical Unit). The SIMD architectures in which we are interested associate
some local memory with each data processor. The data processor along with its associated
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memory is referred to as a processing element (PE). The collection of all PEs is called the
PE array. Each PE has an execution flag which can be set on or off to indicate whether the
PE should execute the current instruction.

The PEs are connected by two interprocessor communication networks. These networks
allow the PEs to access data that is stored in the memory of other processors. The first
network is the global router. The global router allows the transfer of data between arbitrary
pairs of processors. Quite often in the programs we are addressing, communication patterns
are highly regular in that data is transferred between nearest neighbors. To support this
type of communication efficiently, the second network forms a NEWS (North, East, West,
South) grid between the processors. We will assume that the NEWS grid is in the shape
of a two dimensional nearest-neighbor mesh with wrap-around connections (i.e., a toroidal
wrap model).

Finally, there is the serial front end processor or control unit. The front end (FE) processor
has two responsibilities. The first is to drive the PE array by broadcasting instructions and
related data to all PEs. The second is to perform all scalar computations and control flow
operations.

Our target architecture will not support virtual processors as is done on the CM-2 in
Paris mode [21]. Instead, virtualization will be accomplished by the compiler by using strip
mining. Like the MasPar Fortran compiler, we will know the size of the PE array at compile
time, and we will use that knowledge to determine the strip amount.

For a broad discussion of general SIMD architectures see an appropriate computer archi-
tecture book [34, 38]. For a more complete description of the SIMD machines produced by
Thinking Machines and MasPar see [35, 61] and [8, 54, 56] respectively.

2 Related Work
2.1 SIMD Distributed-Memory Compilers

2.1.1 Compass Compilers

Compass (1961-1991) was an independent software house which was involved in the design
and implementation of several SIMD compilers. The front end and the global optimizer
of both the CM Fortran and MasPar Fortran compilers were written by Compass; in fact,
Compass wrote the entire initial CM Fortran compiler (Paris version). The CM Fortran and
MasPar Fortran compilers are described in more detail below.

In addition to the general SIMD compiler development effort, Compass did research in
the area of data optimization [1,40,41,42,43,52]. The purpose of data optimization is
to align data to improve locality and thus minimize interprocessor communication. Their
method assumes an unlimited number of virtual processors. Then based on usage patterns,
it maps arrays to the virtual processors, striving to align them so that communication costs
are minimized. A later stage of the compiler then uses strip mining to map the virtual
processors to the physical processors [65], also known as array distribution. This two stage
approach makes each stage conceptually clean, but prevents them from interacting.

There are others, outside of Compass, who have done research in the area of data op-
timization. Chatterjee, Gilbert, Schreiber, and Teng [14, 15, 28, 29] describe algorithms to
perform automatic array alignment at the statement level and the basic block level. Like



the Compass work, they separate the issues of array alignment from array distribution.

2.1.2 CM Fortran

Thinking Machines Corporation has developed two generations of a distributed-memory
SIMD architecture, the most recent being the CM-2! [61]. CM Fortran, their Fortran deriva-
tive, is an implementation of Fortran 77 augmented with array constructs from Fortran 90.
Their compiler for CM Fortran has also developed through two generations. The first gener-
ation was the Paris (or fieldwise) compiler which uses the bit-serial processors on the CM-2.
The current CM Fortran compiler is the slicewise compiler. The slicewise compiler ignores
the bit-serial processors and uses only the floating-point accelerator chips. The CM For-
tran compiler can take advantage of the slicewise model of the machine in different ways
to improve program performance for many engineering and scientific applications [58]. In
this document, any references to the CM Fortran compiler will be to the slicewise compiler
unless noted otherwise.

Even though the slicewise compiler gives improved performance, it also has several weak-
nesses. The compiler’s shortcomings include the lack of transformations to increase the size
of elemental code blocks, inefficient use of memory for compiler temporary arrays, and gen-
eration of poor code for communication along serial dimensions. Thinking Machines has
documented many of the shortcomings [59], and has suggested methods that programmers
may use to work around them.

Thinking Machines has also done some extensive work on compiling stencils [9]. A stencil
is a computational pattern that calculates a new value for a matrix element by combining el-
ements from neighboring matrix locations. The proper handling of stencils is very important
to SIMD compilers, and can result in substantial performance gains. The performance gains
are obtained by using multiwire NEWS communication, eliminating memory-to-memory
copying of data, and full exploitation of the floating-point registers. In the current im-
plementation of the stencil compiler, it is the responsibility of the programmer to identify
a stencil computation, isolate it into a separate subroutine, and compile it with a special
compiler.

2.1.3 MasPar Fortran

MasPar Computer Corporation has also developed two generations of a SIMD distributed-
memory architecture: the MP-1 and the MP-2. Since both are architecturally equivalent
from the compiler’s point of view, we will only discuss the MP-2 [54]. Since Compass wrote
the front-end for both the MasPar Fortran compiler and the CM Fortran compiler, it is no
surprise that the languages the two compilers accept are quite similar.

A significant difference between the MasPar Fortran compiler and the CM Fortran com-
piler is how they handle data distribution. The MasPar Fortran compiler determines data
distribution completely at compile time, whereas the CM Fortran compiler delays some dis-
tribution decisions until run time. Delaying these decisions until run time enables a single
executable to run on machines with different number of processors. The cost of this flexibil-
ity is that the compiler cannot use the knowledge of the number of processors in performing
optimizations.

! References to the CM-2 are meant to include the CM-200 [63] series.



2.1.4 Fortran-90-Y

Yale University has recently embarked on a compiler project for Fortran 90 [17]. The Fortran-
90-Y compiler uses an abstract semantic algebra, Yale Intermediate Representation (YR),
as its intermediate language. YR defines a series of semantic domains and sets of operators
within each domain, and combines them with shapes that represent iteration spaces. The
compiler optimizes a program by performing a sequence of source-to-source transformations
over the YR code. Currently they produce code for the CM-2 by translating YR code into
PEAC code, the same assembly language the CM Fortran compiler produces. Like the
CM compiler and the MasPar compiler, the Yale compiler generates purely element-wise
computations, i.e., all operands must be perfectly aligned; a restriction we will eliminate.
In addition to considering the data optimization problem [19], researchers on the Fortran-
90-Y project have also looked into loop transformations that help optimize the node level
programs when a BLOCK distribution is used [18].

2.1.5 MIMD Emulators

There has been growing interest in determining if SIMD architectures can successfully be
used to handle problems that do not fit the data-parallel model [22, 37, 60, 66]. One method
is to emulate MIMD execution by writing a SIMD program to interpret a MIMD instruction
set. Each PE contains a program to be interpreted and its data. The front end then executes
an interpreter loop where the instruction decode step iterates over all possible instruction
types enabling only those PEs which have that instruction type as their next one to execute.
The execution of that instruction is then simulated on the enabled PEs. This method is not
particularly efficient though it does use the SIMD architecture in an interesting manner.

2.2 MIMD Distributed-Memory Compilers

The amount of research addressing compilation issues for distributed-memory MIMD ma-
chines is too voluminous to cover in depth in this paper. However, we will mention several
related projects. All projects mentioned here exploit data-parallelism by using a Single Pro-
gram Multiple Data (SPMD) model, in which the compiler generates a single node program
which is executed on all the processors.

2.2.1 Fortran D

The effort at Rice University to compile Fortran 77D to MIMD machines has resulted in
many advanced compiler analysis techniques and optimizations [30, 36, 64]. Many of the
analysis techniques (e.g., reaching decompositions) will also be very important for a SIMD
compiler. However, many of the optimization techniques take advantage of the asynchronous
nature of the processors and cannot be used on SIMD machines.

2.2.2 Crystal

The Crystal project at Yale University [16, 48, 50, 51] researched the issues of compiling a
high-level functional language for SPMD execution. They made major contributions to the
issues of automatic data alignment and identification of collective communication primitives.



2.2.3 Vienna Fortran

The Vienna Fortran project at the University of Vienna (7,13, 70] is very similar, in both
goals and methodologies, to the Fortran D project. The Fortran language is extended to allow
the user to specify alignments and distributions, and the compiler automatically generates
a message-passing SPMD program.

3 Proposed Research

Given a Fortran 90D program where all the parallelism is explicit, we propose a Fortran 90D
SIMD compiler that will compile it for the target distributed-memory SIMD machine. During
this compilation, several optimizing transformations will be performed. The main optimiza-
tions performed by the compiler deal mostly with communication issues. The importance of
such optimizations cannot be overstated. They are much more important for SIMD machines
as compared to MIMD machines, since all processors in the PE array must step through the
communication instruction sequence even if they are not involved in the communication (in
which case they ignore the instructions). ‘
The Fortran 90D compiler will start by performing data optimization and identifying
opportunities for collective communication. Stencil analysis and optimization will be per-
formed next. That will be followed by context optimization. Finally, several phases will be
performed that optimize communication operations by exploiting multichannel communica-
tion and handling offset arrays. Each of these phases is explained in turn.

3.1 Data Optimization

Two major tasks of a compiler for a distributed-memory machine are to distribute the data
across the distributed memory and to assign computations to the processors. Fortran D
directives enable a programmer to specify how the data is to be laid out across the memory
of the machine. Compilers then often use the owner computes rule [12, 57, 69] to determine
which processors will perform which computations. The owner computes rule states that
computations are performed on the processors which will store the result of the computation.

Although the data distribution directives and the owner computes rule greatly simplify
the distributed-memory compiler’s task of determining where operations are to be evaluated,
they can result in less than optimal code [42, 39]. Often it would be more efficient to compute
intermediate results on processors other than those that are the target of the final results, or
to change the processors on which the final results are stored. Issues include where operands
reside with respect to each other, the cost of communication, and the amount of data to be
moved. The task of determining where data should reside and where operations should be
performed is known as data optimization.

In a Fortran D program, the programmer specifies a desired layout and alignment of all
user declared arrays. Our proposed data optimizer will use the programmer’s declarations
as a starting point, and it will only be constrained by the fact that arrays are required to be
in their declared positions at procedure entry and exit. Other than at the entry and exit of
a procedure, arrays may be located such that communication costs are reduced. The data
optimizer will also introduce temporary arrays as needed to allow intermediate results to be
computed on different processors so as to decrease communication costs. We will also employ
interprocedural analysis to determine which arrays need not be in their declared locations



around CALL sites. An array does not need to be in its declared location if it is not referenced
or modified in the called procedure.

Our data optimizer will also handle explicit communication primitives that are available
in Fortran 90. Our analysis will be able to examine intrinsics such as EOSHIFT, CSHIFT, and
TRANSPOSE. When possible (and profitable), the optimizer will align the target array with
the source array, thus eliminating the need for communication.

The structure of our data optimizer has not yet been finalized. We are thus not able
to make a preliminary comparison against existing data optimization techniques. We are
currently intending to use an annotated program dependence graph (PDG) [23] rather than
using a preference graph as described by Knobe, Lukas, and Steele [41]. We believe annotat-
ing the PDG with regular section descriptors [10] will express the required array relationships
in such a way to ease the analysis and produce alignments that require less communication.
Not only will this framework ease the analysis required for data optimization, but it will
also indicate locations to place the residual code motion, something that is currently done
separately.

3.2 Collective Communication

After data optimization has been performed, the Fortran 90D SIMD compiler will generate
explicit communication statements. It is desirable to make communication explicit as soon
as possible so that it may be optimized by subsequent phases. This is the earliest point at
which it is feasible to make communication explicit, since data optimization will affect what
communication is necessary.

The research proposed in this phase consists of recognizing opportunities to exploit system
supplied collective communication primitives that are optimized for the machine architec-
ture to perform any communication that is required by the program. In particular, NEWS
communication (i.e., CSHIFT and EOSHIFT) will be used whenever possible. As stated in the
beginning of this section, the exploitation of such system primitives is particularly impor-
tant for SIMD machines, since SIMD machines cannot hide the communication latency by
overlapping communication with computation.

For example, Figure 1 shows two versions of a short section of code. Assuming that data
optimization has not altered the alignment specified by the programmer, this phase will
recognize the need for communication, make the communication explicit, and isolate it in a
separate statement. Notice how the second statement now contains only perfectly-aligned,
element-wise array computations.

This work will be similar to that of Li and Chen [46, 47, 49, 50]. But whereas their work
was based upon pattern matching of reference patterns, ours will be based upon pattern
matching of dependence patterns within the annotated program dependence graph. It is our
belief that this will ease the recognition process and allow us to match complex patterns
without the need to break them into simpler components.

The user program may already contain calls to communication intrinsics, many of which
may be embedded in expressions. We will take this opportunity to extract such calls from
the expressions and place them in a separate assignment statement which defines a compiler
temporary variable. The best alignment and distribution of the temporary will be determined
by the compiler. The temporary variable will then be used in the original expression. This
separation is necessary to prepare for subsequent phases which will attempt to optimize the



Before: REAL, ARRAY(500) :: A, B, C, D
DECOMPOSITION DEC(500)
ALIGN A, B, C, D WITH DEC

A(1:100) = B(1:100) * €(2:101) * D(1:100)

After: REAL, ARRAY(500) :: A, B, C, D, TMP
DECOMPOSITION DEC(500)
ALIGN A, B, C, D, TMP WITH DEC !TMP is aligned with the other arrays
TMP = EOSHIFT(C,1,1) 'TMP(1:100) will receive C(2:101)

A(1:100) = B(1:100) * TMP(1:100) * D(1:100)

Figure 1 Collective Communication Insertion

communication primitives.

3.3 Stencils

Many engineering and scientific applications have computational kernels that can be classified
as stencil computations. A stencil computation calculates a new value for a matrix element
by combining elements from neighboring matrix locations. The elements are often combined
by calculating the sum of products. Figure 2 shows a code segment performing a stencil
computation that requires neighboring elements from the north, east, west and south.

The recognition and proper handling of stencils is very important to SIMD compilers,
and can result in substantial performance gains. The performance gains are obtained by
using multiwire NEWS communication, eliminating memory-to-memory copies and making
excellent use of floating-point registers. The importance of stencils cannot be overstated;
they occur as the computational kernels in many scientific and engineering applications.

Bromley et al. at Thinking Machines Corporation have already done some impressive
work on compiling stencils [9]. They have developed a compiler called the convolution
compiler, however most people simply refer to it as the stencil compiler. There are, however,
still several opportunities for improvement. First of all, the task of identifying stencils rests on
the shoulders of the programmer. The programmer must recognize the stencil computation,
separate it out into its own subroutine and compile it with a special compiler. We proposed to
develop a general recognizer for stencils. With the development of such a recognizer, stencil
compilation will simply become a component of the general SIMD compiler that is invoked
whenever a stencil computation is encountered. To incorporate recognition of stencils as part

REAL, ARRAY(1000,1000) :: DST, SRC
C1 * CSHIFT(SRC, 1, -1)

C2 * CSHIFT(SRC, 2, -1)

C3 * SRC

C4 * CSHIFT(SRC, 2, +1)

C5 * CSHIFT(SRC, 1, +1)

+ 4+ + 4+ 0

Figure 2 A Five-Point Stencil Pattern




of a general compiler, it must be robust enough to identify a stencil that may be spread out
over several statements and interspersed with other statements. For this reason a recognizer
would probably not work well at the source level or on an abstract syntax tree (AST). The
recognizer we propose to build will work on the same annotated program dependence graph
that is used during data optimization.

Our second improvement will address the stencil compiler’s inability to handle large
stencils. The current stencil compiler cannot be directly used on larger stencils since the
register requirements exceed the machine’s resources. We will address the issue of machine
resource management in stencil code to alleviate this problem. This will be accomplished by
weighing the cost of spilling registers used in the computation of the stencil against the cost
of performing multiple substencil computations and combining the results. Determining the
cost of computing multiple substencils is complicated by the fact that one must not only find
an optimal partition of the stencil into substencils but must determine where the substencils
are to be computed.

3.4 Context Optimization

Recall that in a SIMD architecture there is a dichotomy between the front end processor
and the PE array. They are physically separate entities. Due to this, a SIMD compiler must
generate two separate code streams: one for the front end and one for the PE array. The
code for the front end makes calls to routines in the PE array code stream. These routines
are called PECODE blocks.

All low-level optimizations, such as register allocation and instruction scheduling, are
performed on each PECODE block separately. However, PECODE blocks tend to be quite
small, thus limiting the usefulness of such optimizations. There are several factors that cause

PECODE blocks to be small:

e Context changes: The code within a PECODE block executes elemental operations
only on arrays which are conformable. Conformable arrays have the same shape and
layout, or simply the same context. If statements operate on nonconformable arrays,
the statements will be placed in separate PECODE blocks. For example, in Figure 3
arrays A, B, and C are one dimensional and arrays X, Y, and Z are two dimensional.
Thus the three statements will cause three PECODE blocks to be generated.

e Communication: All communication operations are initiated by the front end. For
this reason, a communication operation in the midst of array operations will cause
separate PECODE blocks to be generated. See Figure 4 for an example.

e Scalar code: All scalar code is executed by the front end, and thus it necessarily
causes surrounding parallel code to be placed in different PECODE blocks. Figure 5
contains an example.

It should be clear from the three examples that separate PECODE blocks can have a big
effect on execution time. In each case, the use of the array A in the last statement cannot be
made from a register and must access storage since register allocation does not span multiple
PECODE blocks.

During execution the instructions in a PECODE block are broadcast to the PE array.
These instructions may be executed within a loop if the size of the array being operated



REAL, ARRAY(1024) :: A, B, C
REAL, ARRAY(32,32) :: X, Y, Z

A=B=x*C ! generates three PECODE blocks
X=Y+12 ! due to different array contexts
B =A% 3.141
Figure 3
REAL, ARRAY(1024) :: A, B, C
A=B=x*xC ! the CSHIFT will cause two
B = CSHIFT(C,1,1) + A ! PECODE blocks to be generated
Figure 4

REAL, ARRAY(1024) :: A, B, C
REAL SCALAR1

A=B=x*C ! the assignment to SCALAR1 will

SCALAR!1 = SCALAR1 + 1 ! cause the array operations to be

B = SIN(A) + SCALAR1 ! in separate PECODE blocks
Figure 5

upon is larger than the size of the PE array, in which case each PE handles multiple array
elements. This loop is called the subgrid loop, as it iterates over the subgrid of local data
that each PE has from the original array. _

If the size of an array is not the multiple of the number of PEs, then when the array is
distributed over the PEs some PEs will be given more data elements than others. Due to the
single instruction stream, the number of iterations of a subgrid loop must be equal to the
maximum number of elements that any one PE receives. When this occurs the PECODE
block must include code to set the execution flags so that PEs do not execute the instructions
currently being broadcast if they no longer have local data elements on which to operate.
The code to set the execution flags is said to set the contezt of the PE array. This context
setting code can account for a substantial amount of the execution time of a PECODE block.

3.4.1 High Level Context Optimization

To alleviate the problem caused by small PECODE blocks, we propose an optimization
phase that will use a combination of dependence analysis and context analysis (considers
array shape and layout) to perform code motion that will create separate blocks of scalar
code, conformable parallel code, and communication code. The goal of this phase will be
to maximize the size of PECODE blocks while maintaining the original semantics of the
program. We call this optimization context partitioning.

As an example, the code in Figure 5 will be changed into that in Figure 6, for which a
single PECODE block will be generated.

Cowie and Chen [17], in their work on the Fortran-90-Y compiler, state the goal of
blocking computations over the same shape to form computational phases separated by
communication phases. However, they currently only support a single transformation to
address this goal: parallel loop fusion. Loop fusion is lacking in that it only considers
adjacent loops.

The CM Fortran compiler performs this optimization, but only to a small extent [58].
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REAL, ARRAY(1024) :: A, B, C
REAL SCALAR1
SCALAR1 = SCALAR1 + 1

A=B=x*xC ! a single PECODE block will
B = SIN(A) + SCALAR1 ! be generated
Figure 6

The CM Fortran compiler also only considers adjacent loops, but it will attempt simple code
motion to cause two loops to become adjacent. However, since it only performs minimal
dependence analysis, the only code motion attempted is to move compiler-inserted scalar
code if a larger parallel PECODE block will result.

Not only will this phase assist low-level optimizations, but by grouping communication
code together it sets the stage for subsequent phases which optimize communication opera-
tions.

3.4.2 Low Level Context Optimization

There are optimizations which we may be able to perform at a much lower level. They
attempt to optimize context changes that occur when some processors receive fewer elements
of an array. Initially these optimizations consist of altering the code generation of strip-mined
loops used for virtualization. We call this optimization context splitting.

To reduce the cost of context setting code (i.e., code to set the execution flags on the
PEs), we propose to alter the order that local elements are computed to reduce the number
of context changes. The goal of the alteration is to process all elements that exist under one
context before moving on to elements that exist under a different context. This alteration
is achieved by modifying the strip-mined loops used for virtualization. By employing loop
splitting and loop distribution we propose to isolate the iterations that require a context
change. The code to set the PE context can then safely be hoisted from the strip mining
loops, greatly reducing the number of times it is executed.

EXAMPLE: Consider an array B(11,11) distributed on a 2 x 2 processor grid.
Each processor will allocate a local array B_LOCAL(6,6). All processors will have
local data in elements B_LLOCAL(1:5,1:5). However, the two processors on the
right side of the grid will not have data in their sixth column. Likewise, the two
processors on the bottom of the grid will not have data in their sixth row. Note
that the lower right processor is special as it is in the intersection of these two
groups. Now when we process the statement B = B + 1 the usual strip mining
loops for virtualization will look like that in Figure 7.

However, we know what the processor context is when processing the region
B_LOCAL(1:5,1:5) — all processors have have data in these local elements.
Similarly, we know the context when processing the regions B_.LOCAL(1:5,6),
B_LOCAL(6,1:5), and B_LOCAL(6,6). We can take advantage of this knowledge
by modifying the strip mining loops with a combination of loop splitting and
loop distribution. Figure 8 shows the strip mining loops that eliminate redun-
dant context changes. Note that this new code sets the context only four times
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compared to the 36 times in the original code. O

The above example is simplified by the fact that each processor receives the same amount
of data whether the data is distributed (BLOCK,BLOCK) or (CYCLIC,CYCLIC). In general how-
ever, a processor may receive different amounts of data for different distributions. We have
algorithms to handle BLOCK, CYCLIC, and BLOCK_CYCLIC distributions.

3.5 Multichannel Communication

Some SIMD architectures (i.e., the CM-2 in slicewise mode) have the capability to transfer
data between two neighboring nodes in both directions simultaneously. This capability,
known as multiwire NEWS communication, allows a node to send and receive data from each
neighbor within the same communication operation. We propose to exploit this multiwire
NEWS capabilities to reduce total communication costs.

Thinking Machines supplies a library routine (PSHIFT) which allows a programmer to use
multiwire communications. One may combine several CSHIFTs and/or EOSHIFTs into a single
PSHIFT. Such a combination is valid if the shifts are over different directions or axes and
there are no dependences between their arguments. We also propose to investigate program
transformations that will create opportunities for PSHIFT, such as breaking dependences
between shift operations via use of compiler generated temporaries. Note that the analysis

X_EXTENT = (11 + (NXPROC-1)) / NXPROC ! NXPROC = 2
Y_EXTENT = (11 + (NYPROC-1)) / NYPROC ! NYPROC = 2
DO I=1, X_EXTENT
DO J=1, Y_EXTENT
set processor context based on I & J ! set 36 times
B_LOCAL(I,J) = BLOCAL(I,J) + 1
ENDDO
ENDDO

Figure 7 Naive strip mining loop

set processor context to turn on entire PE array
DO I=1,(X_EXTENT-1)
DO J=1,(Y_EXTENT-1)
B_LOCAL(I,J) = B.LOCAL(I,J) + 1
ENDDO
ENDDO

set processor context to turn off right edge
DO I=1,(X_EXTENT-1)

B_LOCAL(I,YEXTENT) = B_LOCAL(I,YEXTENT) + 1
ENDDO

set processor context to turn off bottom row
DO J=1, (Y_EXTENT-1)

B_LOCAL(X_EXTENT,J) = B_LOCAL(X_EXTENT,J) + 1
ENDDO

set processor context to turn off right edge and bottom row
B_LOCAL(X_EXTENT,Y_EXTENT) = B_LOCAL(X._EXTENT,Y_EXTENT) + 1

Figure 8 Redundant context changes eliminated
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required here is greatly simplified by the context analysis phase which has already grouped
together much of the communication operations.

3.6 Offset Arrays

Shift operations (CSHIFT, EOSHIFT, and PSHIFT) occur frequently in Fortran 90 programs,
either inserted by the programmer or by the compiler (see Sections 3.2 and 3.5). These
operations take a source array, a shift amount and a dimension indicator as input. They
then shift the source array the specified amount along the indicated dimension and store the
result in the target array. For very large arrays distributed in a BLOCK fashion, memory-to-
memory copying of the array within the local memories of the PEs dominates the execution
time of such operations; up to 75% in some cases. But only in a few cases is the memory-
to-memory copying actually necessary. Unfortunately, all the SIMD compilers mentioned in
Section 2.1 make no attempt to determine if an entire copy of the source array must be made
and thus they always incur the cost of this undesirable copying.

To alleviate this, we propose to perform compile-time analysis to determine whether an
entire copy of the source array must be made for a call to a shift routine. If the analysis
determines that an entire copy is not required, then we can treat the target array specially.
We'll call such an array an offset array. Such arrays allow us to avoid the memory-to-memory
copying; only the cross-processor data will be moved. We will exploit overlap areas [27] to
store the communicated data locally within a PE. The use of overlaps will greatly simplify
the task of generating code to drive the PE array when offset arrays are referenced. Program
transformations, such as loop reversal, will also be used to allow more arrays to be treated
as offset arrays.

This work has similarities to sectioning/strip mining of array syntax [2], vector register
allocation [4], and scalarization of Fortran 90 code [67]. We hope to exploit this previous
work in the analysis phase. The program transformations of the previous efforts will also be
useful, but they will need to be augmented with distributed-memory specific transformations.
Finally, the proper handling of offset arrays in Fortran 90 is useful for distributed-memory
MIMD architectures as well.

4 Research Plan

This section describes our plans for implementing the Fortran 90D SIMD compiler, and a
validation methodology to support our thesis.

4.1 Compiler Implementation

Our distributed-memory SIMD compiler will be implemented within the ParaScope pro-
gramming environment [11]. It will be a source-to-source translator similar to other com-
pilers/tools in ParaScope. Given a Fortran 90D program, the SIMD compiler will translate
it into an equivalent program written in a subset of Fortran 90 suitable for a vendor’s na-
tive Fortran 90 compiler. We will refer to this Fortran 90 subset as Compass Fortran, since
Compass Incorporated wrote the front ends of both the CM Fortran and MasPar Fortran
compilers. The output of the compiler may then be compiled by the Fortran compiler of the
target SIMD machine [53, 62].

To support the analysis and optimization of Fortran 90 programs we will develop and
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implement within our compiler algorithms for analyzing the usage of whole arrays and array
sections. Regular Section Descriptors (RSD’s) [10] will form the foundation on which these
algorithms will be built. Data optimization, context optimization, and collective communi-
cation recognition will rely heavily upon the analysis performed by these routines.

Not only will this compiler support the validation of our thesis, but it will also establish
the basis for future work on analyzing and optimizing Fortran 90 programs. This future
work may include investigating compiler techniques for automatically generating SIMD code
for loosely synchronous or wave-front style problems [26, 45] that is more efficient than the
MIMD emulation methods described in Section 2.1.5.

4.2 Validation

To test the effectiveness of our optimizations, we will measure the improvements they pro-
duce above the system compiler on the target SIMD architectures, the CM-2 and the MP-1.
The test cases we will use come from the Fortran D benchmark set [55]. We will time two
versions of each Fortran 90D program in the benchmark set: the original Fortran 90 version
and an optimized version that has been created by our SIMD compiler. The two versions
will be compiled by the system compiler and their execution times compared. Even though
this strategy will limit us to the capabilities of the system compiler, we should be able to
show worthwhile improvements. At the Fortran 90 source level, we can perform data opti-
mization, and high-level context optimization, as well as exploiting collective communication
and multichannel communication.

Since low-level context optimization and the handling of offset arrays cannot be expressed
at the Fortran 90 source level, we will not be able to test their usefulness with a source-to-
source translator. To test these, we will be required to hand code them in a lower-level
language (PEAC on the CM-2 or MPL on the MP-1).

As part of our validation work, we plan to perform an extensive investigation of data
optimization. This investigation will evaluate the capabilities of different data optimization
strategies, and validate their existence in SIMD compilers. The investigation will focus on
the data optimizer we create as well as those introduced in Section 2.1.1. We will also study .
the relationship between data optimization and user directives such as the Fortran D ALIGN
statement. We will investigate the use of data optimization in the following cases:

e the user supplies no alignment directives,

e the user supplies a set of naive directives for the major arrays, and

e the user supplies expert directives, complete with dynamic realignment where prof-
itable.

5 Conclusion

Massively parallel SIMD machines offer an attractive method for obtaining significant per-
formance improvements on parallel applications. Our thesis seeks to show that advanced
compilation techniques can more fully exploit the SIMD hardware, thus increasing the use-
fulness of such machines. It should be noted that many of the optimizations proposed in
this document are also applicable for compiling Fortran 90 for MIMD distributed-memory
machines.
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