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Abstract

There have been some previous predictions of possible parallel
speedups which seem to be overly pessimistic in their prognostications
for the advantages to be gained by parallel processing in numerical ma-
terial dynamics. There seems to be no insurmountable sublinear limit
to the growth of the speedup in certain carefully designed parallel
material dynamics algorithms for parallel machines with appropriate
architectures.

1 Introduction

The origin of the basic idea of parallelization speedup is lost in prehistorical
antiquity. Current conventional wisdom and recent opinion has been influ-
enced by Amdahl(1967), Lee(1977,1980), Buzbee(1983), Flatt(1984), Lar-
son(1984), Hwang & Briggs(1984). The producers of this paper have also
been prone to proliferating the prose on parallelization paradigms 4, 8, 18,
19, 20, 21].

Examples of material (solid, liquid, gas, plasma, multiphase) dynamics
applications and background references may be found in reference [9]. Com-
putational experiments with a variety of parallel algorithms for material dy-
namics on a variety of parallel machines [5, 7, 8, 10, 11, 12, 13, 18, 19, 20, 21]
suggest the speedup models presented here. In particular, some results on
parallelized versions of the von Neumann-Richtmyer(vNR) scheme[6] will be
discussed.

2 Speedup Models

Let T(n) be the run time of a parallel computation using n processors. We
have considered timing models of the following form

T(n) =T, + Tp/n + To(n) (1)

where the parallelization overhead for n processors, To(n), satisfies To(1) = 0
and thus T(1) = T, 4 Tp; T is due to the part of the program which must
be run in serial; T}, is due to the part of the program which may be divided
into n equal subparts and run in parallel. Typically it is assumed that the
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model for the overhead time, To(n), is unboundedly increasing with n; e.g.,
it is often assumed that To(n) has linear or at least logarithmic growth with
n. We refer to (1) as the T,,0 model.

We have used the T,,0 model along with empirical data from our compu-
tational experiments to predict the limits of the growth of such architectures
as found in the HEP, ELXSI, Cray, Intel iPSC, et cetera on algorithms such
as our parallelized vNR [4, 8, 18, 10, 11, 12, 13, 18, 19, 20, 21]. We also have
used the Ty,0 model to study the marginal gain efficiency and the number of
processors to use for optimal cost effectiveness[4, 18].

Caveats: We have the following caveats to pronounce on the Tsp0 model,
related models and their prognostications.

First, although it is not necessarily obvious, one can get into an ill-
conditioned calculation in attempting to fit the Tspo model to timing
data[18]. Thus the results of such exercises must be taken cum grano salis.

Second, the amount of parallelization overhead is strongly influenced
by the nature of the dependences in the parallel algorithm. For example,
distributed memory machines with mesh topologies, when used for certain
material dynamics calculations having only nearest neighbor mesh topol-
ogy dependences, appear to have an effective parallelization overhead which
becomes negligibly small as the granularity size becomes sufficiently large.
Further, the effective parallelization overhead for these calculations does not
appear to be an unboundedly increasing function of the number of processors.

Finally, the Ty,0 model, as given in (1), does not fit the natural model
for certain parallel algorithms for material dynamics.

To illustrate, let us take the case of a parallel calculation where both the
algorithm and the machine have the topology of a one-dimensional mesh. In
particular we will consider a numerical material dynamics problem.

Let each processor have z zones to advance computationally. Suppose it
takes each processor the same time, ¢,, to advance z zones one computational
cycle (e.g., a timestep). Further, suppose the amount of time that processor
p, 1 < p < n, takes to complete communications with its left and right
neighbors on one cycle and/or compute boundary values is 7,. (We call
the values communicated in this example “internal boundary values” for the
obvious reason.) Then, the total time for processor p to advance z zones
by one cycle, communicate with its neighbors and/or compute boundary
values, and be prepared to start the next computational cycle is ¢, + 7,. Let
Tmax(7) = MaXi<p<n Tp; Tmax(N) is Not necessarily increasing unboundedly
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as n increases. There are, of course, communication protocols which would
make Tmax(n) increase unboundedly with n. However, there are also simple
communication protocols which do not have Tmax(1) InCreasing unboundedly
with n.

Consider a parallel material dynamics algorithm with the following steps
in its computation-communication cycle. The communications are all done
in asynchronous mode. That is, the transmissions may be thought of as
asynchronous, buffered transfers from the sending processor’s local memory
to the receiving processor’s local memory. The leftmost (rightmost) processor
has index p = 1(p = n), does not send internal boundary values to the left
(right) and gets its left (right) side information by evaluating the left (right)
boundary value functions.

The steps for each computational cycle are:

1. Compute (includes fetchs from and stores to local memory) for time 2.
9. Transmit internal boundary values leftward (except p = 1).
3. Transmit internal boundary values rightward (except p = n).

4. If the number of computational cycles desired is completed, then stop;
else, go to (1).

Let 7;4(7y4) be the time it takes to compute the left (right) boundary
values; 74(7-) be the time to transmit the internal boundary values to the
left (right), then

Tmax(l) =T+ Trb 5
Tmax(2) = max(7p + Ter , Te + Trb) ;
Tmax(3) = rna,x(m, + T, T+ Ter, T + Trb)
Note that, for n > 3, Tmax(n) is not increasing with n, it is a constant,
ie.,
Tmax(n) = 7'max(3)
forn > 3.
Remarks: 7j5 + Trb , i-€., Tmax(1), is, in our experience, usually (although

not always) negligible. Observe that 7y and 7, should be, for greater preci-
sion, defined as the excesses of the times to transmit the internal boundary



values to neighboring memories over the times to store to local memory. Note
that if it happened by chance that 7, = 7,5 > Tu = Tt , then we could have
the amusing situation Tax(1) > Tmax(2) = ... = Tmax(n) , forn > 2; although
possible this case does not seem probable. It appears, from our experiences,
that the more probable case is Tmax(1) < Tmax(2) < Tmax(3) = ... = Tmax(n),
for n > 3 ; our test problems for the parallel vNR codes are in the latter
case.

For such calculations, we submit that a reasonable model for the time,
T'(n,z), to calculate z zones with n > 1 processors is

T(n7 Z) =t + 7'max(n) (2)

Then, a reasonable model for the speedup, S(n,z), with n processors

each working on z zones is T(1,nz)/ T'(n,z), i.e., using T(1,nz) = nt, +
Tmax(1) we have

ntz + 7'max(l)

tz + 7-ma.x(n)

This has a parallelization efficiency, E(n, z), of

1+ mnax(1)/(nt2)
Bln,2) = T /%

S(n,z) = (3)

(4)

To emphasize: The point we wish to make is that for certain calculations,
where the problem topology matches the machine topology, the paralleliza-
tion overhead is not only not necessarily unboundedly increasing with the
number of processors but is negligible when 7,ax(n)/ ¢, is negligible. The
ratio Tyax(n)/ t is, of course, the communication/computation whose im-
portance to efficient parallelization is well known:

CCR(n, Z) = Tma.x(n)/tz

Recall that z is the number of zones per processor. It is straightforward to
show that ¢, = O(z). Further, for one, two, and three dimensional problems
Tmax(n)/ t- = O(z71), O(271/2), and O(2~%/3), respectively, when we assume
square, and cubic geometry for the two, and three dimensional problems.

Observe that the communication/computation ratio Ccr(n, z) = O(z77),
where ¢ = 1, 1/2, and 2/3 for one, two, and three dimensional problems, may
be made as small as we like by increasing z;(i.e., increasing the granularity
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size). This illustrates, one more time, one of the well-known advantages of
large granularity parallelism.

We encounter difficulties if we attempt to force the timing model in (2)
into the Ts,o mold. First, observe that the T, term was neglected in the
derivation of (2) (we discuss the negligibility of T later); i.e., T, = 0. Our
intuitive impulse is to relate Tmax(n) to To(n). However, To(1) = 01is required
by the Tsp0 model and Tiax(1) = 7o +7rs # 0. To fix this we might try defining
To(n) = Tmax() — Tmax(1) but that would force us into the contradiction
T, = Twmax(1) = 7o + 7rs # 0; this is nonsense from several points of view; for
one thing, the left and right boundary conditions need not be done in serial,
they could be done in parallel in most cases of interest. Therefore, we see
that the (2) model, the natural model (in our opinion) for the time of the
parallel algorithms for material dynamics we have designed and described,
does not fit the Tsp0 mold.

Thus, our experiences with parallel algorithms for material dynamics sug-
gest that (1) should be generalized to

T(n,z) = Ts(n, z) + Tp(n, z) /n + Toc(n, 2) (5)

where the Toc(n,z) term is not required to go to zero at n = 1. The
Toc(n,z) term contains times due to parallelization overhead plus other
computation and communication times which do not fit into the Ts(n, z)
term (which contains all of the serial time) nor into the Tp(n,z)/n term
(which contains the n-equal-subparts-parallelizable computation time). We
call this the Ts,0c model.

To relate (5), the Tspoc model, to (2): we have neglected the T term in
(2), i.e., Ts(n, 2) is zero; Tp(n, 2)/n is tz; Toc(n, 2) is Tmax(n)-

Equation (5) may be considered in several different ways:

(i) with n free, i.e., the job size is considered to be growing linearly with n,

(ii) with the nz product held fixed, i.e., job size, Js, is a constant.

In case (ii) it is convenient to use the notation ¢, = rz where rep is the
time to compute one zone for one cycle. Thus, if nz = Js then, z = Js/ n
and t, = zre. This yields a model for divide-the-job speedup (which is
commonly simply called the speedup).

Case (i) yields a model for multiply-the-job speedup.
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Now assume we are given a specific, fixed machine. When Js (measured
in the number of zones in the job) is the size of the largest job that can fit on
a single processor, then we call the resulting speedup with all n processors
(each working on z = Jg/ n zones) the practical divide-the-job speedup.
When Js * n is the size of the largest job that can fit on all n processors
(each processor working on z = Js zones) of that machine, then we call the
resulting speedup the practical multiply-the-job speedup. To abbreviate
the prose, we suppress the adjective “practical” when it is, readily understood
from context.

Note that the multiply-the-job speedup has an advantage over the divide-
the-job speedup for a particular parallel processor with a fixed number, n,
of processors due to the lower communication/computation ratio. That is,
Ccr(n, z) = Tmax(n)/t; for n > 3is reduced by a factor of 1/n in the multiply-
the-job speedup because multiply-the-job speedup allows us to increase the
granularity size by a factor of n over the granularity size in the divide-the-job
speedup.

Measuring multiply-the-job speedups: In practice, it may appear to be
difficult, if not impossible, to measure the multiply-the-job speedups (see
section 4 for further explanation of the apparent difficulty). However, we
can approximate the multiply-the-job speedups by ratios of computation
rates which are readily measurable. We now justify this approximation. Let
Cr(n, z) be the computation rate (measured in zones computed per second)
for n > 1 processors each computing z zones; then

nz

Cr(n,2) = Ppr—— (6)

Therefore, the computation rate ratio is

Note that

Cr(n,z)/ Cr(1,z) > S(n,z) (8)
Further note that if Tyax(1) is negligible, then

Cr(n,z)/ Cr(1,z) = S(n,2) (9)

where S(n, z) is given by (3). Thus the computational rate ratio and running
time ratio have approximately the same recipes when 7, + 7,4 is negligible.
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Hence the computational rate ratio may be used to estimate the running
time ratio when Tax(1) is negligibly small as it is in our test problems for
the vNR algorithms.

Remark: Observe that we could compute S(n,z) indirectly from quan-
tities we can measure as follows. Given n and z, measure t;, Tmax(1), and
Cr(n, z) with timing routines, then use (6) to compute Tmax(n), and then
put the values of ¢;, Tmax(1), and Tmax(n) into (3) to compute S(n,z). Fur-
ther note that if we are given the computation and communication rates
of a particular parallel processor then we can a priori approximate all the
terms in S(n,z) in (3). That is, the values of ¢, and Tmax(n) for n =1,2,3
are not difficult to figure out by doing some operation counting; and then
Tmax(3) = Tmax(n) for n > 3. The last equality suggests that computational
experiments for n > 3 are not necessary on appropriate architectures for
predicting the possible speedups of parallel algorithms obeying (3).

3 The T, Term

Recall that in deriving (3) we neglected the T, term and remarked that we
would discuss this at a later time. “The time has come, the Walrus said ...”

What is wrong with the speedup analysis we presented in section 27 Well,
for one thing we completely neglected input and output. We submit, with
tongue only slightly in cheek, that this oversight is all too common. The
initial data involves O(nz) numbers that need to be read into the machines
to start the computation. Likewise, complete output of all information at
any timestep also involves O(nz) numbers.

Assume the input/output device is a single serial machine. The best
time we know for moving O(nz) arbitrary, distinct numbers into (or out of)
a single, serial machines from (or to) n > 1 machine(s) is O(nz). This is
because just getting O(nz) numbers into (or out of) a single serial machine
takes O(nz) time; in other words, we have hypothesized a “serial bottleneck”
for input and output.

Of course, we could consider parallel input and output but, for now, let
us see what a serial bottleneck for input and output does to our previous
results.

Let T;,(n, z) be the time taken for input and output of a total of nz zones
on n processors (each processor having z zones). For simplicity, suppose that



input occurs only at the beginning and output occurs only at the end of the
calculation. This does not seem to be an unreasonable assumption when one
considers that in a well designed machine the intermediate input and output
can be buffered in and buffered out. Let the input plus output time per zone
be 7;, and assume the following simple model for input /output time

Tio(n, 2) = nzr, (10)

Let T, (n, z) be the total time for a run with v computational cycles on n
processors with z zones each, i.e.,

T,(n,z) = Tis(n,z) + vT(n, 2) (11)

where T'(n, z) is the computational time for one cycle given by (2). Thus we

have for n > 1
T,(n,z) =nzri, + v[t; + Tmax(n)] (12)

Remark: To relate (12) to the Typoc model: Ty(n, z) is nzriy; Tp(n,2)/n
is vtz; Toc(n, z) is VTmax(n).
From (12), the multiply-the-job speedup is

_ TL{II[tZ + Tmax(]-)/ n] + ZT’io} )
S'U(ny Z) - l/[tz + Tmax(n)] + nzr;, (13)

and the parallelization efficiency is

1 + Tmax(l)/(ntz) + ZT',‘O/(Vtz)
TF ()] £ 4 e (0L) )

In a typical explicit code (such as those based on the original vNR),
we have a CFL-type (Courant-Friedrichs-Lewy) timestep restriction which
restricts stress-wave propagation distances to at most one zone per cycle[6].
It is typical in stress-wave propagation calculations to allow waves to make
at least one transit of the material (or spatial) interval and more often the
waves make multiple (say m) transits. In this case we have v = mnz and
thus (14) becomes

E,(n,z)=

_ 1+ Tmax(l)/(ntz) + 7‘io/(mntz)
E,(n,z) = 1 4 Tmax(n)/ t: + 740/ (mt,) (15)



As m gets large (e.g., if an approach to thermodynamic-equilibrium in a
material dynamics calculation is desired), (15) goes to

1 Tan(1)/ ()
AR w— Y S (18)

This is the same result as we got before (compare (16) with (4)) when we
neglected the T, term.

In the usual implementation of the original vNR algorithm, which involves
an explicit discretization of the conservation laws of momentum and volume,
there is a calculation for a stable timestep based on a constraint similar to
the CFL inequality[6]. This leads to a global dependence, i.e., the timestep
depends on quantities in every zone of the calculation and consequently re-
quires information which must be gathered from every processor involved in
the calculation. This is another potential contribution to T;. However, we
can do an a priori analysis and find a priori bounds on the quantities in-
volved in the timestep constraint. Therefore, we can find a priori a timestep
which is stable for the entire calculation. This modification of the usual
implementation of the vNR scheme we call the APT (A Priori Timestep)
modification[12]. Thus the APT modification obviates the explicit timestep
computation’s contribution to T5.

Implicit versions of vNR also avoid a timestep calculation at the expense
of introducing other surmountable parallelization difficulties[12].

4 Summary and Conclusions

The multiply-the-job speedup may be estimated by the computational rate
ratio as shown in (9) or computed by one of the procedures described in the
remark following (9). In general, it is impossible to measure directly because
of storage limitations. That is, T'(1,nz) is impossible to measure directly
when z is the maximum number of zones that can be loaded onto a single
processor and n > 2. Perhaps this at least partially explains the prevalent
preoccupation with the divide-the-job speedups.

In some computational experiments with a parallel, implicit vNR algo-
rithm on the Intel iPSC[12] the 99% parallelization efficiency achieved in the
multiply-the-job mode yields the result that the communication /computation



ratio was approximately given by
Tmax(32)/ t. =0.01

In other symbols, Tyax(32) was about 1% of ¢, in the iPSC calculations of the
implicit vNR code with z = 1999 and n = 32. If the iPSC had allowed more
zones per node, then we could have done even better than 99% parallelization
efficiency in the multiply-the-job mode for arbitrarily large values of n.

Therefore, we see no insurmountable sublinear limits to the speedup of
these parallel algorithms for material dynamics. That is, the speedup seems
to grow as 6(z) n where 0 < 6(z) < 1 and 6(z) approaches unity as z (the
size of the granularity) grows.

Underlying these results is the fact that our parallel algorithms’ design
is based on the principle of reducing all dependences to nearest neighbor
dependences. This is not an insurmountable problem when developing
parallel algorithms for simulating the dynamics of physical systems if the
simulation is based on mathematical models with finite propagation speeds.
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