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Abstract: The goal of languages like Fortran D or HPF is to provide a simple yet efficient machine-
independent parallel programming model. By shifting much of the burden of machine-dependent
optimization to the compiler, the programmer is able to write data-parallel programs that can
be compiled and executed with good performance on many different architectures. However, the
choice of a good data layout is still left to the programmer. Even the most sophisticated compiler
will not be able to compensate for a poorly chosen data layout since many compiler optimizations
are driven by the data layout specified in the program.

The choice of a good data layout depends on many factors, including the target machine ar-
chitecture, the compilation system, the problem size, and the number of processors available. The
option of remapping arrays at specific points in the program makes the choice even harder. Current
programming tools provide little or no support for this difficult selection process.

This paper discusses automatic data layout techniques for regular problems in the context
of a programming environment and an advanced compilation system that allows dynamic data
remapping. Our proposed framework for automatic data layout builds and examines a search space
of candidate data layouts. A candidate layout is an efficient layout for some part of the program.
Choosing a single layout for each program part such that their overall cost is minimal has been
shown to be NP-complete. Instead of resorting to heuristics to determine a possibly suboptimal
selection of data layouts, this paper investigates methods to determine the optimal selection. The
data layout selection problem is formulated as a 0-1 integer programming problem, which is then
fed to a state-of-the-art, general purpose integer programming solver. Our experiments show that
even though we use a general purpose integer programming tool, there is a formulation that can be
solved very efficiently. Similar 0-1 problems have been significantly improved by using a special-
purpose solver, which indicates that such an approach could be used with this problem as well.
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1 Introduction

The advent of languages like High Performance Fortran [Hig93], in which the programmer
specifies parallelism implicitly by specifying the layout of an applications data across the
processor array, has focused renewed attention on the problem of choosing a good data
layout for parallel execution. Many experts believe that the choice of data layout is one
of the two most important steps, in addition to choice of a suitable algorithm, toward a
successful parallel implementation.

However, many novice programmers have no idea how to choose a good data layout, even
in a language like HPF. This is because many complex considerations must be taken into
account if the program is to perform at high efficiency. For example, it is almost essential
to consider the program as a whole rather than a series of independent subroutines. Of
particular importance and complexity is the problem of determining when dynamic data
redistribution will enhance overall performance.

Fortunately, the designers of languages like HPF and Fortran D [FHK*90], by requiring
that data layout specifications be provided by the programmer have opened the door for
powerful new tools which can use intensive computation to determine a first approximation
to a good data layout automatically. Because these tools are not embedded in the com-
piler and will be run only a few times during the implementation phase of a project, they
can use techniques that would be considered too computationally intensive for inclusion in
compilers, even on today’s powerful supercomputers. Furthermore, by providing a high-level
target language for these tools, HPF and similar languages have dramatically simplified the
implementation of data layout tools.

In this paper, we will describe an approach to building a data layout tool using a number
of techniques from linear and integer programming. Integer programming is required because,
as we show, the problem as we formulate it is NP-complete. Evidence will be presented that
this approach will be efficient enough for use in a programming assistance tool.

There has been remarkable improvement in our ability to solve integer programs over the
last 5 to 10 years, particularly pure 0-1 integer programs such as those being generated here.
The basic technique for solving integer programs is to apply intelligent branch-and-bound
using linear programming at the nodes. Important improvements have come in three areas.
First, linear programming codes are on average approximately two orders of magnitude faster
than they were 5 years ago, particularly for larger problems [Bix93]. Combined with the im-
provements in computing speed over that same period these codes represent an approximate
four orders of magnitude improvement in our ability to solve linear programming problems.

The second major development is in so-called cutting-plane technology. Motivated by
work of Dantzig, Johnson and Fulkerson in the 50’s [DF.J54], Padberg, Groetschel and others
have shown how cutting-plane techniques could be used to strengthen the linear programming
relaxations of many pure 0-1 integer programming problems [GH91, PRII, HP92]. The
strengthening is effected by studying the facets of the underlying polytope generated by the
convex hull of 0-1 solutions. Knowledge of these facets leads to subroutines for recognizing
inequalities violated by the current fractional solution. These violated inequalities can then
be added to the linear programming formulation in leau of branching.

The third major area of improvement has come in the application of parallel processing



to handle the branching when cutting planes do not succeed in sufficiently strengthening the
linear programming formulation. Parallelism is particularly appropriate for current cutting-
plane methods because cuts are computed not only at the root node but at all nodes in the
branching tree. The extra computation at the nodes has the effect of making the compu-
tations sufficiently coarse grained that communication costs need not be significant. The
most striking example of an integer programming success story exploiting all of the above
advances is the recent work of Applegate, Bixby, Cook and Chvatal in which a 4461 city
traveling salesman problem was solved to exact optimality using a complex branch-and-cut
code running on a network of up to 60 loosely connected workstations [ABCC93].

2 Framework for Automatic Data Layout

This section is an overview of our proposed framework for automatic data layout for regular
problems. Regular problems allow the compilation system to determine the communication
requirements and to perform a variety of program optimizations at compile time. The
framework assumes that different data layouts can be specified for different program sections.

The initial step of the proposed strategy for automatic data layout in the presence of
dynamic remapping is to partition the program into code segments, called program phases.
Phases are intended to represent program segments that perform operations on entire data
objects. Data remapping is allowed only between phases. An operational definition of a
phase is given elsewhere [KMCKC93]. Strategies for identifying program phases are a topic
of current research.

A data layout for a single phase is specified by the alignment and distribution of the
arrays referenced in the phase. The data layout for an entire program consists of a collection
of data layouts, one data layout for each phase in the program. This implies that an array has
a unique data layout at any point in the program. The overall data layout is determined in
three steps. First, alignment analysis builds a search space of reasonable alignment schemes
for each phase based on the unique alignment space of the program. Then, distribution
analysis uses the alignment search spaces to build candidate data layout search spaces of
reasonable alignments and distributions for each phase. A preliminary discussion of possible
pruning heuristics and the sizes of their resulting search spaces can be found in [KK93].
Finally, a single candidate data layout scheme for each phase is selected, resulting in a data
layout for the entire program. The selection process is based on static performance estimates
of the candidate data layouts and of data remappings between layouts. A static performance
estimator suitable for automatic data layout has been discussed elsewhere [BFKK91]. The
selection process must consider the tradeoff between the exploitable parallelism of data
layouts for each phase and the remapping costs of data layouts between phases. This last step
solves the so-called inter-phase data layout problem. The inter-phase data layout problem
is proven to be NP-complete [Kre93]. The proof is based on a reduction from the 3-CNF
satisfiability problem (3-SAT) [CLR90].

In this paper, we focus on methods to compute the optimal solution of the inter-phase
data layout problem. An instance of the inter-phase data layout problem is translated
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Figure 1: Example code fragment with three phases and two candidate data layouts per
phase. In the data layout graph, nodes represent candidate layouts and edges represent
possible remappings. Nodes and edges are associated with costs (not shown here).

into a 0-1 integer programming problem suitable to be solved by CPLEX, a linear integer
programming tool partly developed by Robert Bixby at Rice University [Bix92]. We give
experimental results for different 0-1 integer programming formulations for an 800 line ADI
integration code.

3 Simple Example

The following example illustrates the framework for automatic data layout. The program
on the left-hand side of Figure 1 shows a fragment of an ADI integration kernel, namely the
forward and backward sweeps along rows. ADI integration is a technique frequently used to

LCPLEX is a trademark of CPLEX Optimization, Inc.



solve partial differential equations (PDEs). Each loop nest is represented by a single phase.
The code fragment has a two-dimensional alignment space. To simplify the example, we
assume that alignment and distribution analysis generate only two candidate data layout
schemes for each phase, namely a row layout and a column layout. The data layout graph
(shown on the right-hand side of Figure 1) has one node for each candidate data layout.
Edges represent possible remappings of variables between candidate data layouts. Nodes
and edges have weights representing the cost of each layout and single variable remapping,
respectively, in terms of execution time. A static performance estimator will determine the
node and edge weights.

To solve the resulting inter-phase data layout problem, a single candidate data layout
must be chosen for each phase such that the overall cost of the selected layouts is minimal.
The overall cost of a set of selected layouts is the sum of the weights of their representing
nodes and the weights of all edges between these nodes.

For this simple example, choosing row layouts for all three phases results in the best
performance since no communication is necessary inside phases or between phases. However,
in the complete ADI integration kernel, the forward and backward sweeps along the rows is
followed by corresponding downward and upward sweeps along the columns. For the sweeps
along the columns, a column layout has the best performance. Choosing the same data
layout for both, row and column sweeps will avoid communication between phases but will
make communication necessary inside some of the phases. In contrast, transposing the arrays
between the row and column sweeps eliminates communication inside all phases. The right
choice will depend on the speed of the communication hardware and software of the target
distributed-memory machine, and the ability of the compiler to exploit pipelined parallelism
efficiently.

4 Related Work

The problem of finding an efficient data layout for a distributed-memory multiprocessor
has been addressed by many researchers [LC91, KLS90, KLD92, Gup92, Who91, CGST93,
AL93, KeB93, PM93, DHR93, KD93, CHZ91, RS89, HA90, SS90, Sus91]. The presented
solutions differ significantly in the assumptions that are made about the input language,
the possible set of data layouts, the compilation system, and the target distributed-memory
machine. Our work is one of the first to provide a framework for automatic data layout
that considers dynamic remapping. However, many researchers have recognized the need for
dynamic remapping and are planning to develop solutions.

Knobe, Lukas, and Dally [KLD92], and Chatterjee, Gilbert, Schreiber, and Teng [CGST93]
address the problem of dynamic alignment in a framework particularly suitable for SIMD
machines. More recently, Anderson and Lam [AL93] have proposed techniques for automatic
data layout for distributed and shared address space machines. Their approach considers
dynamic remapping.

In contrast to most of the published work, our framework for automatic data layout is
designed to work in the context of a programming assistance tool, not inside a compiler. As
a consequence, our framework can use techniques considered too expensive to be included
in a compiler. Our framework is unique in the sense that it selects the data layout of a
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program in two steps. First, it uses pruning algorithms to generate explicit alignment and
distribution search spaces of reasonable sizes. In the second step, the final selection between
the remaining data layouts is performed by solving an NP-complete problem, namely the
inter-phase data layout problem. Preliminary experimental results indicate that computing
the optimal solution of the inter-phase data layout problem is practical in the context of a
programming tool.

5 Inter-phase Data Layout Problem

‘This section discusses the details of the mathematical formulation of the inter-phase data
layout problem and its translation into distinct 0-1 integer programming problems. To
simplify the discussion, all programs are assumed to have no control flow between phases,
i.e. the program can be represented as a linear sequence of phases, Pi,... P,. Control flow
issues will be discussed in Section 7. ‘

5.1 Optimization Problem

Let V denote the set of variables in the program, V = {v1,...v-}. Let p; denote the variables
referenced in the i-th phase P;, i.e. p; C 9¥,1 < it < n. For each P; there is a set of
candidate data layouts D; = {d}, ... &/ }. Note that two phases may have a different number
of candidate data layouts. A single candidate data layout d* = {dfjl, ...dfqu‘},l <k<m,is
a set of layouts, one layout for each variable v € p; = {v;;, Vi, }-

The cost of executing phase P; under the data layout d* € D; is denoted by c(P;, d¥).
The remapping cost from one data layout scheme to another can be defined based on the
remapping costs of each individual variable common to both schemes. Let d?, and dj be two
candidate data layouts for phase P, and phase FPg, respectively. The remapping cost is given
below:

ods, dp) = 3. cldedg);

vi€paNpp

where ¢(d%;, dY;) is the cost for remapping the single variable v;.

Let f; : pi — {1,...n} be a mapping that determines for each variable v; € p; the phase
P; such that v, € p;, j < i, and forallg € {j +1,j +2,... i — 1}, v; € p, holds. If such
a j does not exist, f; returns the value :. The phase Pj,(w) is the phase that most recently
referenced v; € p; with respect to phase P;. If fi(ve) =1, then P; contains the first reference
to v; in the program.

Let g; : pi = {1,...n} be a mapping that determines for each variable v; € p; the phase
Pj» such that v, € pjr, j' > ¢, and for all ¢ € {i+1,i+2,... ' — 1}, v: € pg holds. If such
a j' does not exist, g; returns the value i. The phase Py, is the phase that will reference
v, € p; next with respect to phase P;. If g;(v:) =1, then P; contains the last reference to v,

in the program.

Definition 1 An instance of the inter-phase data layout problem consists of a program with
a linear sequence of n phases, a set of program variables V = {v,...v,}, sets p; and D; for
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each phase P;, and cost functions c(P;,d;), d; € D;, and c(d;;, dy,(v,);) for each v; € p; and
d; € D;, with 1<i:<nandl1 <j<r.

Definition 2 A solution sqq of an instance of the inter-phase data layout problem is a set
Sqat = {d1,d,...dn} of data layout schemes d; € D;,1 < i < n, such that

n

Soe(Pydi) + Xn:zc(dﬁ’dﬂ(vg‘)j)

i=1 1=1 v;Epi

is minimized, where c(d;;,d;;) is 0. Note that this implies not associating any cost with an
initial data layout.

Definition 2 results in an optimization problem. As mentioned above, the problem of
determining a solution s4q of an inter-phase data layout problem is NP-complete [Kre93].

5.2 0-1 Integer Programming Problem

This section describes the translation of an instance of the inter-phase data layout problem
as defined in Definition 2 into an instance of a 0-1 integer programming problem with linear
constraints, or 0-1 problem for short.

Definition 3 An instance of the 0-1 problem consists of a set of variables X, a set of
linear constraints over the variables in X, and a linear objective function with domain X.
A solution to an instance of the 0-1 problem is a function sg; : X — {0,1} that minimizes
the objective function while respecting the constraints.

Let A be an instance of the inter-phase data layout problem. The translation function
m maps A into its corresponding instance of the 0-1 problem, m(A). The specification of m
consists of the rules for constructing the variable set, the set of constraints, and the objective
function.

To simplify the notation for constraints and objective functions, each variable z € X
represents its value under a solution so;. The set X is the union of two sets of variables,
X = Xiayout U Xremap- Xiayout contains a single switch for each candidate data layout in a
phase, and X,emqp has one switch for each possible remapping between phases. For all 0-1
problems discussed in this paper, Xiayout is defined as follows:

Xiagout = {z¥ | d¥ € D;;1 <3< n,1 <k <my}

Similar to the variable set X, the set of constraints is partitioned into two classes. Con-
straints that ensure the selection of only a single data layout for each phase are called layout
constraints. For all 0-1 problems discussed in this paper, the layout constraints are defined
identically. For each phase ¢, 1 < ¢ < n, there is a constraint of the form:

Sab =1 (1)



Remapping constraints guarantee that all remapping costs between selected data layouts
are considered. A solution of an instance of the 0-1 problem must satisfy the constraints and
therefore can be directly translated back into a solution of the corresponding dynamic data
layout problem by choosing all candidate data layouts whose variables have been switched
on:

saat = { d¥ | sm(zF) =1, 1 <i<mnand 1 <k <mi}.

In the remainder of this section, several possible translation functions m are discussed.

5.2.1 Initial Node-based Formulation

This formulation is the direct translation of the inter-phase data layout problem as given in
Definitions 1 and 2. The proof of the correctness of the formulation is given in Appendix A.
Remapping constraints are constructed for each candidate data layout, i.e. each node in the
data layout graph.

Remapping Variables: X,emqp, has one variable for each possible remapping of a single
variable between candidate data layouts:

Xremap = {wff"‘ | v € pi O pjJ = fi(ve),j #4,1 < <n, 1 <k<myl < [ <m;}

Remapping Constraints:

e Define j = fi(v;) and pi* = {v;|j # i}. For each phase i, 1 <1 < n, and choice k,
1 < k < m;, there is a constraint of the form:

> e ==lpl (2)

ve GP::" =1

e Define j' = g;(v:) and p?** = {v|j’ # i}. For each phase i, 1 <i < n, and choice k,

i

1 < k < m;, there is a constraint of the form:

mJ‘I
!
> 3w = a1 (3)

veEpght I'=1

Objective Function: A solution se; of an instance of the 0-1 problem minimizes the
following sum under the above constraints:

ek k - U iz N k
Z"Ei o(Pi,di) + E E ZZ 2 C(dindgt),
=1 k=1 1=1 ve€pi k=1 =1

where j = fi(v¢) and j # 1.



5.2.2 Improved Initial Node-based Formulation

The improved formulation reduces the number of 0-1 variables needed, i.e. reduces the size
of X. The correctness proof is analogue to the proof for the initial phase-based formulation.

Remapping Variables: Instead of including in X,emap one switch for each possible remap-
ping of a single program variable between candidate layouts, a single switch represents
all variable remappings between a possible pair of candidate data layouts (d¥,d), where

1)
J = fi(v:) for some v; € p;, 7 # i

Xeemap = {25 |1 <i<n, v epiNp; (= five),j #4,1 <k <my, 1 ST<my) }

Remapping Constraints: The constraints have to reflect the changes to X:emap. The
remapping constraints of type (2) and (3) are modified as follows:

e Define Pi" = {j | 3v; € p;i N p; (j = fi(ve),J # 1) }. For each phase i, 1 < ¢ < n, and
choice k, 1 < k < m;, there is a constraint of the form:

T S = [P (2)

jEPm =1

o Define P = {j' | Jv, € pi N pj (§' = gi(v:),J" # 1) }. For each phase s, 1 < <n,
and choice k, 1 < k < m;, there is a constraint of the form:

) Z ok = f [P (3)

j epout '=1

Objective Function: Define V¥ . as the set of all program variables that may be
remapped between phases P; and P; as follows:

Ve = {vt | ve € piNpj, 1 Si<n,j = fi(we),j # i}

Let c(d¥,d' L) denote the cost of remapping all variables in V3 .ap from candidate layout
d of phase P; to candidate layout d* of phase P

ddtd)= X cldh,d).
‘Utevrfgmap

A solution so; of an instance of the 0-1 problem minimizes the following sum under the
above constraints:

zn:zxf c(P,-,dfc + Z E Z'ZJ a: c(df,dg
i=1 k=1 =1 Jer k=1 I=1



5.2.3 Disaggregated Improved Node-based Formulation

In this formulation, the remapping constraints are disaggregated. This is the only difference
between this version and the improved initial node-based formulation.

Remapping Constraints:

e Define P/ = {j | Jv, € pi Np; (5 = fi(ve),J # i) }. For each phase 7, 1 <1 < n, for
each choice k, 1 < k < my, and for each j € P/™ there is a constraint of the form:

my

Sh ok = b (2)
=1

e Define Po*t = {5’ | Jv, € pi N pj (' = gi(vs), 5" # ) }. For each phase i, 1 <1 <n,
for each choice k, 1 < k < m;, and for each j' € P?*t there is a constraint of the form:

mjl
’ .
Z xj,'f = a:f (3)

I'=1

5.2.4 [Edge-Based Formulation

This formulation uses a different approach to remapping constraints. The correctness proof
of the formulation is given in Appendix B. Remapping constraints are constructed for
each possible remapping in the improved node-based formulation, i.e. for each edge in the
corresponding data layout graph,

Remapping Constraints: For each phase i, 1 < ¢ < n, for each phase j € Pi™, for each
choice k, 1 < k < mj, and for each choice I, 1 <1 < mjy, there is a constraint of the form:

zf+x§22xfj and zf+x§-§1 +a:fJ‘

6 Experiments

All of our experiments are based on ERLEBACHER, a 800 line benchmark program written
by Thomas Eidson at the Institute for Computer Applications in Science and Engineering
(ICASE). The program performs 3-dimensional tridiagonal solves using Alternating Direc-
tion Implicit (ADI) integration, The code contains computational wavefronts across all three
dimensions. Array kill analysis was performed by hand and arrays were renamed and repli-
cated appropriately. The resulting program contains 40 phases and 25 arrays. There are
arrays with one, two, or three dimensions.

ERLEBACHER has a three-dimensional alignment space. For our experiments, we assume
that alignment and distribution analysis generate 7 candidate layouts for each phase, one
layout for each possible combination of distributed dimensions. However, if a phase contains
only one-dimensional arrays, its candidate search space has only 4 layouts since some lay-
outs are the projection of two distribution schemes. The corresponding data layout graphs
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with different weights were generated by hand. Weights were chosen to model different com-
munication costs and the presence or absence of compiler optimizations. For instance, a
compiler may be able to generate a coarse-grain pipelined loop if the data layout induces
cross-processor dependences [Tse93]. Whether the compiler performs such an optimization
or not is represented by different node weights.

We wrote a tool that generates the four distinct 0-1 problem formulations (see Section 5.2)
for each input, weighted data layout graph. The remapping costs for individual arrays are
given to the tool in the form of a cost table. The tool automatically generates the edge
weights of the corresponding data layout graph based on this cost table.

The following table gives an insight into the sizes of the automatically generated 0-1
problems:

initial improved
node-based | node-based | disaggregated | edge-based
#layout variables 253 253 253 253
#remapping variables 3012 2133 2133 2133
#constraints 485 485 715 4306

For the experiment, 6 improved node-based, 12 disaggregated, and 6 edge-based 0-1
problem formulations were automatically generated. Each of the 0-1 problems was solved
by CPLEX, a linear integer programming tool. CPLEX includes an implementation of
a general-purpose branch-and-bound code for mixed integer programming. Being general
purpose, this code does not exploit the structural properties of our particular 0-1 problems.
The following table gives the solution times in seconds of the 24 0-1 problems using CPLEX
on a SPARC-10. A “x” indicates that CPLEX took more than 30 minutes. The reported
averages exclude these experiments. Initial node-based formulations are omitted since they
are inferior to the improved node-based formulations.

improved

node-based disaggregated edge-based
best worst avg. | best worst avg. | best worst avg.
8.2 * 292 | 26 48 3.8 * * *

The experiments show that the disaggregated formulation can be solved by the general-
purpose CPLEX in less than 4 seconds on average. The improvement between the node-
based and the disaggregated formulations is subtle, but fundamental. The disaggregated
formulation is perhaps less elegant, and certainly larger. It is also equivalent to the node-
based formulation when integrality is imposed. However, when integrality is relaxed, it
provides a much better approximation of the polytope of 0-1 solutions. The extra cost in the
size of the linear programming relaxations is more than compensated for by the improved
integrality properties of these relaxations. The edge-based formulation can be viewed as
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initial attempts to find cutting planes. It has yet to be proven that these inequalities are
indeed independent of the inequalities in the disaggregated formulation. In addition, no
studies have yet been made of the quality of these inequalities, that is, of the dimension of
their intersection with the underlying polytope.

0-1 integer programming is NP-complete. Therefore, it is unrealistic to expect a solution
for all instances in minimal computation time. However, recent experience with other NP-
hard problems formulated as 0-1 integer programs — principally the TSP — indicate that
a careful study of structure of the particular integer program can lead to very effective
practical procedures. Recent work on the TSP again provides a good example of what one
can hope for. Using the well-known TSPLIB test set of problems, we have been able to solve
to exact optimality all instances with fewer than 2000 cities, with the notable exception of
one 225 city instance for which our cutting plane methods simply do not seem to be effective.
However, it is interesting to note that for this one instance, it is symmetry that makes that
problem difficult for our algorithms. That very symmetry implies that various heuristic
procedures easily find the optimal solution (provably optimal by an independent analysis of
problem structure). For the problem at hand, namely the inter-phase data layout problem,
a similar approach is proposed in which inexact heuristic procedures would be applied if
integer programming fails to find a solution within acceptable time limits. We remark in
this context that we would expect our branch-and-cut algorithm to be computing both upper
and lower bounds as it proceeds. If the computation is terminated prior to optimality, these
bounds would provide estimates of the solution quality.

CPLEX is also designed to be applied as a callable library of linear-programming routines
that can be conveniently built into a branch-and-cut code, such as a special purpose solver
for the inter-phase data layout problem.

7 Other Issues

So far, the discussion of the inter-phase data layout problem has ignored procedure calls
or control flow between phases. In the absence of recursion, the data layout graphs of
subroutines can be propagated bottom-up along the edges of the call graph, resulting in
a single data layout graph for the entire program. If the compilation systems performs
procedure cloning, a distinct copy of a procedure’s data layout graph is propagated along
each edge in the call graph. This strategy has been used to hand generate the data layout
graph of the ERLEBACHER code used for the experiments in Section 6. In the absence of
cloning, each procedure is represented by a single copy of its data layout graph in the data
layout graph of the entire program.

Structured control flow between phases such as single entry/exit loops or branches can
be easily represented in the data layout graph. Edges in the data layout graph represent
possible communication between phases. To deal with control flow, edge weights are chosen
to reflect the probability and frequency of the program’s execution paths. The treatment of
general control flow is a topic of current research.
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8 Conclusions

We have presented an approach to automatic data layout in the context of a programming
tool that produces High Performance Fortran or a similar language as output. This has
permitted us to explore exact solutions to the problem of automatic data layout, even though
our formulation of the problem is NP-complete. Through the use of the latest and most
powerful general purpose techniques for linear and integer programming, we have shown the
technique to be practical for a full-sized application.

Recent experiences with similar NP-complete problems indicate that special purpose
linear and integer programming techniques can be used to compute the exact solution even
faster. These special purpose techniques take advantage of the particular structure of our
formulation of the data layout problem.
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Appendix

A Correctness of Initial Node-based Formulation

The translation introduces a distinct variable for each candidate data layout and each possible
remapping of a single variable between different candidate data layouts. These variables are
switches that can be turned on or off. The constraints ensure that

1. exactly one variable is switched on for each phase, i.e. only a single candidate layout
is selected for each phase, and

9. all remapping variables are switched on for candidate data layouts that have been
switched on, i.e. the remapping costs between selected candidate data layouts are
considered, and

3. no other variables are switched on, i.e. no other costs are considered.

Constraints of type (1) ensure that any solution selects exactly one data layout for each
phase. Constraints of type (2) and (3) guarantee the remaining two properties of the remap-
ping switches as shown in Theorem 1.

The objective function of the 0-1 problem is a parameterized version of the cost function
in Definition 2, where the parameters are the introduced switches.

Theorem 1 Let A be an instance of a dynamic data layout problem and m(A) the translation
of A into a corresponding instance of the 0-1 problem. If so1 is a solution of m(A) with
variables x'f‘,x?,... gk switched on, 1 < ki < m; forl <@ < n, then all remapping
switches have to be on between the selected data layouts and no other remapping switches are

on.

Proof: If the switch z* is off, the right hand sides of its associated constraints of type (2)
and (3) evaluate to 0. Therefore, all switches that model the remapping for data layout d¥,
namely wf}"' and xi-',':”‘, have to be off. In other words, only remapping switches between
selected data layouts can be activated. If the switch z¥ is on, the right hand sides of its
associated constraints evaluate to the number of incoming remapping edges and the number
of outgoing remapping edges for constraints of type (2) and (3), respectively. Therefore, a
single incoming remapping switch and a single outgoing remapping switch for each variable
v, € p; must be on, since only remapping switches between selected data layouts can be
activated. In other words, all remapping switches between selected data layouts have to be
activated.

a

B Correctness of Edge-based Formulation

Theorem 2 Let 1 <i<n,1<k<m; j€P" and1 <1< m;. z¥ is switched on iff zk
and .Eg are both switched on.
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Proof:

“==": Assume z¥/ is switched on. Due to constraint zf + 2% > 2 z¥, ¥+ 2} > 2 has to
hold. This is only possible if both, z¥ and zg, are switched on.

“e=": Assume z¥ and Ig are switched on. Due to constraint z¥ + J:g <1 + J:f]‘, 1 < J:f;
has to hold. Therefore :z:ff must be switched on.

O
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