[

PIERS Timings on Various
Parallel Supercomputers

Philip T. Keenan
Jon Flower

CRPC-TR93353
November 1993

Center for Research on Parallel Computation
Rice University

P.0. Box 1892

Houston, TX 77251-1892

PIERS Timings on various Parallel
Supercomputers

Philip T. Keenan* Jon Flower!

November 4, 1993

Abstract

PIERS is a Parallel Implicit Research Reservoir Simulator. It was made
available to us as a test program, designed for experimentation rather than
production, yet incorporating many features of realistic petroleum reservoir
simulators. This note reports on the results of timing PIERS on five parallel
supercomputers including the iNTEL Touchstone DELTA and the Connection
Machine 5 (CM-5). Speedup graphs illustrate performance as a function of the
number of processors for a variety of problem sizes. The results indicate that
parallel computation can provide substantial speedup in reservoir simulator
codes. Moreover the raw timings provide an interesting comparison of machine
performance — though one must remember that they apply directly only to
PIERS, and may vary with different simulators, compilers, operating systems
and hardware configurations.

*Department of Computational and Applied Mathematics, Rice University
tParaSoft Corp.

1 Introduction

PIERS is a Parallel Implicit Research Reservoir Simulator originally developed by
John Wheeler and Richard Smith at Exxon Production Research Company[2]. It
was made available to us as a test program, designed for experimentation rather
than production, yet incorporating many features of realistic petroleum reservoir
simulators. This note reports on the results of timing PIERS on five parallel super-
computers including the iNTEL Touchstone DELTA and the Connection Machine
5 (CM-5). Speedup graphs illustrate performance as a function of the number of
processors for a variety of problem sizes. The results indicate that parallel compu-
tation can provide substantial speedup in reservoir simulator codes. Moreover the
raw timings provide an interesting comparison of machine performance — though
one must remember that they apply directly only to PIERS, and may vary with
different simulators, compilers, operating systems and hardware configurations.

2 PIERS

PIERS was originally developed for the iNTEL iPSC/2 Hypercube, a 16 node ma-
chine with 1 megabyte of data storage per node, and relatively fast communications
relative to its computational speed[2]. One should note that the time and space
constraints of the iPSC/2 forced some design decisions which might not be optimal
on other machines. We converted it to run on a variety of parallel computers and
timed it on each. However, we did not attempt to rewrite the code to optimize it
for any particular target machine.

PIERS solves the two phase (oil and water) equations for slightly compressible
flow in a three dimensional porous medium. These equations form a coupled system
of nonlinear advection-diffusion type partial differential equations. PIERS uses a
fully implicit numerical method rather than the frequently used IMPES (implicit
pressure, explicit saturation) formulation. It accepts very general problem descrip-
tions. Porosity and permeability can be functions of position; relative permeabilities
and capillary pressure curves can be provided from empirical data; and multiple ver-
tical injection and production wells can be used, with specified time varying bottom
hole pressure boundary conditions or total flow rate conditions. The reservoir shape
is specified by a possibly irregular areal cross section, which is duplicated at each
vertical layer. PIERS uses standard rectangular finite differences and a data decom-
position approach to parallelization.

3 Methodology

If a computation on an N processor parallel computer takes T time units, one
might hope that

TN=T1/N.

The ratio Ty/Tn is called the speedup from N processors. Unfortunately, commu-
nication costs and other overheads preclude linear speedups in practice. However,
in partial differential equation solvers these overheads often scale more slowly than
the computational requirements, leading to improved speedups for larger problem
sizes.

PIERS assigns processors to approximately equally sized subsets of a horizontal
cross section of the reservoir. Each processor is then said to own the vertical cylinder-
like subset of grid blocks above and below its portion of the cross section. Thus on
average each processor communicates with four neighbors, though depending on
the geometry a given processor might communicate with fewer. Each processor
computes based on the O(n3) grid blocks it owns, but only needs to exchange O(n?)
pieces of boundary information with its neighboring processors. Thus, for a fixed
number of processors, communication effects should become relatively less important
at a rate of O(1/n) as the problem size (which is O(n3)) increases. Conversely, for
a fixed size problem communication effects become increasingly dominant as the
number of processors increases.

To study these effects we tested each machine by running PIERS on 5 different
size problems as shown in Table 1.

Data set | Layout Grid Blocks
ptkl 4x18x13 756
test7 6 x 24 x 24 3,456

test7m 12 x 36 x 36 15,552
test7] 18 x 48 x 48 41,472
t100 30 x 100 x 100 | 300,000

Table 1: Problem Sizes

For each problem size we varied the number of processors p. Typically p was
a perfect square and processors were assigned in a square layout, in order to keep

the symmetry of the problem constant as the number of processors increased. In
some cases additional values of p were used. The timing graphs illustrate the often
substantial effect of changing aspect ratio. This appears to be due in part to the
nature of the linear solver and in part to cache effects on each microprocessor.

We compared PIERS on the 5 parallel supercomputers listed in Table 2.

Vendor | Machine Processors
iNTEL | iPSC/i860 hypercube 64 i860’s
iINTEL | Touchstone DELTA 512 i860’s

IBM Power Visualization System | 32 i860’s
nCUBE | nCUBE/2 64 custom chips
TMC Connection Machine CM-5 | 64 Sparc’s

Table 2: Machines

All of these machines except the IBM use distributed memory. The IBM uses
shared memory. The CM-5 lacked vector boards. Non-vectorizing optimization
levels (-02) were used in all cases; timings should improve if vectorization was
selected on those machines which support it.

PIERS uses blocking sends and receives rather than the sometimes more effi-
cient non-blocking versions. To port PIERS to a variety of parallel machines we
converted it to use Express[1], a commercially available portable communications
library from ParaSoft. Timings on the iNTEL hypercube with and without Express
were identical.

4 Timings and Speedups

The following graphs present the timings and speedups obtained for each machine
and data set, as a function of the number of processors.

For instance, Figure 1 gives the step time on the CM-5 in wall clock seconds. On
the CM-5 nodes are time-shared among applications. However, the timing functions
on the CM-5 automatically compensate for this, yielding the same timings as would
be obtained on an otherwise empty machine. The error bars indicate the range of
times observed during multiple runs.

Figure 2 gives the speedups obtained on the CM-5. Since PIERS was not de-
signed to run on fewer than 4 processors, speedups are based on an estimate of the

best sequential time obtained by extrapolation from internal timings of the commu-
nication and computation portions of the code.

Figure 3 and Figure 4 present the analogous results on the Delta machine.
Graphs for the other machines are similar except for the scale. Scale comparisons
will be explored below.

Disclaimer: While the timings were run from shell scripts to ensure uniformity
across machines, it is possible that there are incorrect timings in the data, due
to human and/or machine error. Moreover, timings were observed to vary in re-
sponse to many factors beyond our control, particularly hardware and software
upgrades. Factors such as operating system changes, compiler optimization
level and capability changes, and changes in the message passing hardware and
clock rate can all impact timings substantially. Thus the timings, speedups and
machine comparisons presented here should be taken as a rough approximation
only. Moreover, the results are specific to PIERS and may be different for other
programs. In particular, cache effects depend strongly on problem size and the
locality of the data access patterns in the program.

4.1 Machine Comparisons

Subject to the warnings given in the disclaimer above, we think it is interesting
to compare the performance of the various machines. We selected the largest test
case, qt100, for this comparison. On smaller problems, the smaller and slower
machines are likely to do better, since there is not enough computational work for
large numbers of fast processors.

Figure 5 presents a log-log view of the timings on each machine. An ideal
machine with no communication overhead running a perfectly parallel algorithm
would produce a line with slope -1. All of the machines are reasonably close to this.

Among the three 1860 based machines, the Delta and the iPSC/i860 hypercube
were very close in speed. The Delta is seen to have slightly faster communications
and so can efficiently apply more processors to the fixed size problem. The shared
memory IBM is seen to be slower than the two other distributed memory machines,
despite using the same micro-processors. This may be due to bus contention, since
all the processors compute and communicate more or less in sync with each other.

The CM-5 was slower than the Delta machine, but its timings should improve
when vector boards are available.

It appears that the 1860 processors ran about 3 times faster than the nCube cus-
tom processors, but since the nCube is significantly less expensive than the iNTEL
machines, this is not surprising.

We are in the progress of porting PIERS to the iNTEL Paragon, which is the
commercial successor to the DELTA machine; timings for it should be available
shortly.

PIERS step times on the CM-5 (scalar)

seconds
60 -
Y - - - ptk
% — — — qtest7
; %‘a& ~~~~~ gtest7m
P § ----- qtest7I
Lk e Gt100
: S,
E N
30 - E m;%%
i : N
5 ; o B
\ []
\ []
\‘ '
1
\“ :
< :
\ "
*. '
. 1
T\ \\ Izh‘
N \..--.-b“"ﬂ'v?::*.::::?p-‘-
WA wa ot s s o o S e
0 } ;]
4 96 64

number of processors

Figure 1: CM-5 Timings

PIERS speedups on the CM-5 (scalar)

speedup
64 -
e Ptki
— — - Qtest7
,,,,,, gtest7m
...... qtest7l
e Jt100

Ideal

36

~~~~~ “.-___----.-
/ ’ oo e PN, 00 at. ren. sy epn
-~ 4* /ﬂ-‘ [ - - oo
:"['“"“1""" ki N R -
0 | 1 1
4 36 64

number of processors

Figure 2: CM-5 Speedups



seconds

PIERS step times on the DELTA
40 -

T

{ e ptki

s\ - — — Qtest7
% “““““ gtest7m
% ..... qtest7I
; R 1 & [0]0]

¢
Z
:
S0t
[

20

T 1
4 64 121
number of processors

Figure 3: Delta Timings



PIERS speedups on the DELTA
speedup
121 -

- w - ptki
- — — qtest7
“““““ - gtest7m
...... gtest7l
e 1100
Ideal

4 64 121
number of processors

Figure 4: Delta Speedups



PIERS step times (log-log plot)

seconds 600,000 unknowns
e - . NCUDE
160_- - = = CmS
T e ibm-pvs
T meew. ipsC
R delta
T Ideal Slope

I i 1

16 32 64 121
number of processors

Figure 5: Machine Comparison: Log-Log Plot of Step Times

10



5 Conclusions

The timing results generally exhibit the surface to volume ratio effect, which is
typical of PDE codes on MIMD machines. The specific timings depend as much on
problem size and number of processors as on the machine, with cache effects and
other oddities complicating the smooth shape of the curves. Thus buying decisions
should be based on test cases of the same size as production runs, since timings often
do not scale linearly. Moreover the results may be very sensitive to the particular
simulator used. Despite these complications, it is clear that parallel computation
can produce significant speedups.

References

(1] Flower, Jon and Kolawa, Adam, A Packet History of Message Passing Systems,
Physics Reports 207, 291, 1991.

(2] Wheeler, John. A. and Smith, Richard A., Reservoir Simulation on a Hyper-
cube, SPE Reservoir Engineering, Nov. 1990, pp. 554-548.

11






