Very Large-scale Linear Programming:
A Case Study in Exploiting
Both Parallelism and
Distributed Memory

Anne Kilgore -

CRPC-TR93354-S
December 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

RICE UNIVERSITY
VERY LARGE-SCALE LINEAR
PROGRAMMING: A CASE STUDY IN
EXPLOITING BOTH PARALLELISM AND

DISTRIBUTED MEMORY
by
Anne Kilgore
A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Arts
APPROVED, THESIS COMMITTEE:

Robert E. Bixby, Chairman
Professor of Computational and Applied
Mathematics

Virginia Torczon
Research Scientist in Computational and
Applied Mathematics

John E. Dennis, Jr.
Noah Harding Professor of Computational
and Applied Mathematics

Robert Michael Lewis
Research Scientist in Computational and
Applied Mathematics

Linda Torczon
Faculty Fellow in the Department of
Computer Science

Houston, Texas
December, 1993

Abstract

VERY LARGE-SCALE LINEAR
PROGRAMMING: A CASE STUDY IN
EXPLOITING BOTH PARALLELISM AND
DISTRIBUTED MEMORY

by

Anne Kilgore

There has been limited success with parallél implementations of both the simplex
method and interior point methods for solving real-world linear programs. Experience
with a parallel implementation of CPLEX, a state of the art implementation of the
simplex method, on an Intel distributed-memory multiprocessor machine will be de-
scribed. We will exploit the structure of the class of problems arising from airline
crew scheduling. A particular instance with 12,753,313 variables will be studied. This
instance is too large to fit on current sequential machines in standard linear program-
ming data structures. We will show how our implementation exploits both distributed
memory and parallelism and allows the full problem to be kept in memory. Finally,
we will discuss algorithmic ideas that our implementation affords us and show results

for a variant of the greatest decrease algorithm, an idea suggested many years ago but

never tested on linear programming problems of significant size.

Acknowledgments

First, I would like to thank my parents for their support. I owe a special thank you
to my husband, Scott, for first encouraging me to return to school.

I would like to thank the members of my committee. I owe special thanks to John
Dennis who first suggested that I take on this research and urged me to stay. Robert
Bixby has shared his extensive knowledge of both CPLEX and linear programming
which has proven invaluable. Michael Lewis has shared not only his computer ex-
pertise, but also an occasional remark that would quickly put everything back into
perspective. Linda Torczon has carefully commented on this work, adding both clarity
and conciseness.

I owe a very special thank you to my advisor, Virginia Torczon. She has stayed
with me throughout the project, always keeping me on track, and always with an
optimistic attitude. She has spent hours teaching me about parallel computation,
and in general teaching me the viewpoint of a mathematician. A better advisor
would be hard to find.

[would also like to thank the many people at Rice who have shared their knowledge
with me. I would like to thank Richard Tapia for his help and encouragement in the
beginning. A very special thanks to Michael Pearlman for creating my data sets and
managing 530 megabytes of data, as well as sharing his unlimited knowledge of Unix.
Thanks to Mark Messina for his help with the Intel machines.

I also wish to acknowledge the Caltech support group for their very professional

and friendly attitude during my use of their computers.

iv

I need to thank Irv Lustig for the wonderful routines from his work on the Cray
Y-MP. Also thanks to John Gregory of Cray Research for retrieving the 530 megabyte
data file.

I would also like to thank Michael Trosset for his statistical expertise that allowed
us to generate an appropriate set of test problems, and also for his support and
enthusiasm.

Some important people I wish to thank are my fellow students. To Rudy Elizondo
who beat me to graduation but with whom I shared many long hours. To Wei Zuo
whose support from the beginning continued throughout the years. Also a very big
thank you to Natalia Alexandrov, Shireen Dadmehr, Tony Kearsley, and Eva Lee
whose support, caring, and humor helped improve each day.

And last but not least, there is Morgan, whose smile was always there to greet me

at the end of the day.

Contents
Abstract i
Acknowledgments iil
List of Illustrations viii
List of Tables ix
Introduction 1
1.1 Thelinear program o v v i it it i 2
1.2 Motivation e e 4
1.2.1 Memory requirementso . 5
1.22 Workload oo 5
1.2.3 New parallel implementations 6
1.3 SUMMATY . . .« v v v v e et e e e e e e e e e e e e 7
Algorithm 8
2.1 The revised simplex algorithm 9
2.2 A description of the revised simplex algorithm 9
2.2.1 Step 1. Calculate the shadow prices. 9
2.2.2 Step 2. Calculate the reduced costs. 10
2.2.3 Step 3. Solve for the entering variable in terms of the basis. . 10
2.2.4 Step 4. Perform theratiotest., 10
2.2.5 Step 5. Update thebasis. 11
2.3 Summaryof worko 11
24 The pricing pass. . . . ¢ v v v v v v it it et e e e e 12

L

2.5 A description of a parallel revised simplex algorithm
92.5.1 The distribution of thedata
2.5.2 Our programming paradigmo

2.6 A parallel revised simplex algorithm
2.6.1 The “best” entering column

Implementation Details

3.1 TheLP solver o i i i it i e e e et e
3.1.1 Theinitialbasis o oo
3.1.2 Communication « v v v v v vt e e e e

32 Primalvs.dual e
3.2.1 Degeneracyo e it

3.3 Memory requirements.o oo e
3.3.1 Datastructure e
3.3.2 ComPression v v v v v v v v v e e e
3.3.3 Storage i e el e

3.4 Selection criterion v« o v v it e e e e
3.4.1 Acrosstheprocessors

3.5 Architecture o i i i e e e e e e

3.6 Testproblemsot
3.6.1 Structured test problemso
3.6.2 Unstructured test problems

Performance

4.1 Distributingthedata oo

4.2 Distributing the computation
421 Speed-Up.o e

4.2.2 Unexpected discrepancies

vi

14
14
14
16
16

19
19
20
20
21
22
23
24
24
25
26
26
27
27
27
29

4.2.3 Structured versus unstructured problems

4.3 Greatest decreaseresults, .

5 Conclusions
5.1 Hardware platform

5.2 Perturbation.

A Structured Subproblem Results
B Steepest-edge Results
C Greatest Decrease Results

Bibliography

vil

45
45
45
47

48

49

50

54

2.1
2.2

3.1

4.1

4.2

4.3

4.4

4.5
4.6

Illustrations

The distribution of the nonbasic columns

The data/memory layout for a parallel revised simplex algorithm

Profile of execution time for the communication routines

Average execution time per iteration as the number of processors is
doubled for both a structured and an unstructured subproblem.
Average execution time per iteration as the number of processors is
doubled for a structured subproblem
Average execution time per iteration as the number of processors is
doubled for an unstructured subproblem.
Communication profile for 40,000 columns on 2 processors
Communication profile for 40,000 columns on 32 processors

Communication profile for 40,000 columns on 64 processors

3.1
3.2

A.l

A2

B.1
B.2

C.1
C.2
C3
C4
C.5
C.6
C.7
C.8
C.9

Tables

Profile of CPLEX on one processor of the iPSC/860 28
Percentage of time spent in floating point loops on the Intel and Sun4

MaChineS o v v e 29

“Pure” steepest-edge on the first consecutive 20,000 columns

(structured subproblem). o oo oL 48
Greatest decrease on the first consecutive 20,000 columns (structured

subproblem). o 48
Steepest-edge: unstructured subproblem 001 49
Steepest-edge: unstructured subproblem 010 49
Greatest decrease: unstructured subproblem 001 50
Greatest decrease: unstructured subproblem 002 50
Greatest decrease: unstructured subproblem 003 51
Greatest decrease: unstructured subproblem 004 51
Greatest decrease: unstructured subproblem 005 51
Greatest decrease: unstructured subproblem 006 52
Greatest decrease: unstructured subproblem 007 52
Greatest decrease: unstructured subproblem 008 52
Greatest decrease: unstructured subproblem 009 53

C.10 Greatest decrease: unstructured subproblem 010 53

Chapter 1

Introduction

The evolution of parallel computers has encouraged the development of new algo-
rithms. The implementation of many of these new algorithms on current sequential
computers would be impractical as they would not run efficiently. However, the de-
velopment of parallel computers, along with recent improvements in implementations
of the simplex method, have motivated new interest in solving large-scale linear pro-
grams. We will discuss a new parallel implementation of the simplex algorithm for
solving a particular instance of a restricted class of these large-scale linear programs
on a distributed-memory machine. We will use CPLEX,* an implementation by R.E.
Bixby of the simplex method [3]. We will show how it is possible to exploit both
parallelism and distributed memory to solve linear programs more efficiently when
the ratio of the number of columns to the number of rows is disproportionately large.

The current generation of distributed-memory machines typically have a small
amount of memory per processor. However, when a large number of processors are
used—>512 processors for our work—the collective memory is large enough to allow
problems with millions of columns to be completely loaded into memory. The paral-
lelism allows the work load to be distributed, thereby decreasing the amount of time
spent per iteration. This combination of parallelism and distributed memory has the
additional advantage of allowing all of the columns to be examined at every itera-
tion and then choosing, by some criterion, the “best” column. By using the primal

simplex method we are able to test a variant of the greatest decrease criterion as the

*CPLEX is a trademark of CPLEX Optimization, Inc.

rule for the selection of a new basis at each iteration. Our discuss will focus on the

characteristics of this new parallel implementation of an existing algorithm.

1.1 The linear program

The particular class of problems we will study were generated by American Airlines.
They are large set partitioning models arising from airline crew scheduling problems.
An airline company must schedule its crews to cover each flight leg, where a flight leg
is a nonstop flight between two cities. Each of these flight legs is part of a round-trip
flight schedule, referred to as a “pairing.” Each pairing must start at the home base
of a crew and return to that home base. Each pairing must conform not only to
company policy and available staff, but also to FAA regulations. Each row of the
constraint matrix represents a ﬂight leg to be flown and each column represents a
legal round-trip pairing.

In general, airlines have different sets of crews qualified to work with specific types
of equipment. The scheduling models can be broken down into subsets that cover a
certain type of equipment, say a Boeing 747 airplane. As an example, consider an
airline that wishes to schedule its Boeing 747s and assume that the company has 100
airplanes of this type. That particular set of planes will perform a certain number of
take-offs and landings (flight legs) per day. It has been shown [1] that the growth in the
number of columns generated is exponential in the number of rows (flight legs) of the
constraint matrix. In addition, the airline needs to schedule on a monthly basis. Thus,
the amount of data involved is a very important consideration. Fortunately, the daily
problems can be solved first and these solutions can be used for the weekly problems.
The solutions for the weekly problems can be used to obtain solutions for the monthly
problems. However, while the number of columns can be reduced somewhat, the size
of the daily problem still remains very large. For this reason the solution to the daily

problem is achieved by solving a succession of smaller subproblems [1].

The task of formulating this class of problems requires the generation of the al-
lowed pairings, called pairing generation, or in more general terms referred to as
column generation. This procedure can involve as much computational work as solv-
ing the actual set partitioning problem [1]. In column generation, duplicate pairings
are generated, though these can be removed easily. Also, many of the generated
pairings, even though they are legal pairings, would never be used. In this case it
would be beneficial not to generate these pairings in the first place. However, it is
very difficult to identify such pairings. While the problem of efficiently generating
the crew pairings is an interesting one, and much work has been done to improve the
process, column generation is not the focus of this work.

A set partitioning problem can be formulated as an Integer Program (IP) as
shown in equation (1.1). The technique most often used for solving an IP is to
solve a sequence of linear programming relaxations in order to solve, or attempt to
solve, the IP. In this process the integrality constraint is first relaxed. The resulting
linear program (LP) is then solved. The solution to the LP is used to generate new
constraints for the IP in an effort to force an integer solution. The process is then
repeated until an optimal integer solution is found or it can be shown that no such

solution exists. The IP of the set partitioning problem is

min c'z (1.1)
st.Az = b
z € {0,1}",

where A € {0,1}™*" b= (1,1,...,1)T € R™, and ¢ € R". Assuming no row of

A is all zero, the corresponding linear programming relaxation takes the form

min clz (1.2)
st. Az = b
z > 0,

where A € {0,1}™*" b = (1,1,...,1)T € R™, and z,c € R". For the crew
scheduling problem, the constraint matrix A consists of 0,1 entries such that

1 if flight leg ¢ is contained in pairing j
ai; =
0 otherwise

and the variables have the interpretation

)1 if pairing j is selected to be flown
T 0 otherwise.

Once a particular column (crew pairing) is chosen, the flight legs covered by that
crew pairing cannot be covered by another crew pairing. This is enforced by the
requirement Az = b, where b = (1,1,...,1)T.

A particular instance of this set partitioning problem, which we refer to as the
American Airlines Challenge Problem, has 837 rows (flight legs) and 12,753,313
columns (legal round-trip pairings). The constraint matrix A, with at most eigh-
teen nonzero entries per column, has just under one hundred million (99,845,826)
nonzero entries. The ascii file containing the row indices for each column of A con-
sumes on the order of one-half gigabyte of disk space. The size of the Challenge

problem is a driving force for this research. In particular, we intend to exploit the

disproportionate ratio of columns to rows.

1.2 Motivation

There are three key considerations that motivate this work.

e The sheer size of the Challenge problem leads to very large memory require-
ments. The data file used to generate the test set used in our work consumes

530 megabytes of disk space.

e The disproportionate number of columns to rows means that, for the primal
simplex method, the computation of the reduced costs accounts for up to 99%

of the total execution time (ignoring the time needed to initialize the problem).

e Our interest in developing new implementations of optimization algorithms that

take advantage of parallel architectures.

For these reasons we think that our investigation is helpful in learning more about

distributed memory, parallelism, and linear programming.

1.2.1 Memory requirements

Even for the computers available today, 530 megabytes of data—the amount of data
required to define the Challenge problem—is difficult to handle. For this reason, tech-
niques that reference only portions of the data at any one time have been developed for
handling these large data sets. John Forrest suggested a particular method, referred
to as Sprint, [7] for handling this situation in airline crew scheduling. Bixby, Gregory,
Lustig, Marsten, and Shanno [2] implemented this method, which they called sifting,
on a CrayY-MP?. |

The desire to avoid the need to read and write columns to disk during the op-
timization phase was the key to our choice of the Intel Touchstone Delta? machine.
With sixteen megabytes of memory per node, and a total of 512 nodes, aggregate
memory is 8192 megabytes. Consequently, even after factoring in overhead for the
operating system and CPLEX, we are able to load all of the data into memory, thus

eliminating any disk I/O after the initial setup.

1.2.2 Work load

In order to exploit the disproportionate ratio of columns to rows while using the
primal form of the simplex method, we break the nonbasic columns into subsets

and distribute these subsets among the processors. Each processor will compute the

tCray and Cray Y-MP are trademarks of Cray Research, Inc.
tTouchstone Delta is a trademark of Intel Corporation.

reduced costs for its subset in parallel, thus distributing the work load and thereby
substantially reducing the amount of time spent in each iteration.

Most of the work for this particular class of problems, up to 99% when executed
on a single-processor machine, is in the computation of the reduced costs and related
calculations. For this computation, we must first solve an m x m linear system to
obtain the shadow prices and then calculate the actual reduced costs by performing
n—m inner products. When n > m and n is very large this is a non-trivial calculation.
Hence it is the reduced costs, and not the forward and backward solves, that create

the large work load.

1.2.3 New parallel implementations

The principal benefit of our parallel implementation is that we are able to partition
the calculation of the reduced costs, thus reducing the time spent per iteration. In
addition, we are able to use our parallel implementation to test a variant of greatest
decrease in the objective function value as the criterion for selecting an entering
column. It has been conjectured that this selection criterion would give the best
progress. However, to obtain the objective function value for each possible entering
column, a large portion of the work for a simplex iteration would have to be completed
once for each of these columns. The extra work makes implementing the greatest
decrease criterion seem impractical in a sequential computing environment.

It is the desire to test greatest decrease that has determined our choice of the
primal simplex method. If we were to use the dual simplex method we could also
distribute the data and the work load in an analogous manner. However, we would
not have been able to test the greatest decrease in the objective function as a selection
criterion for an entering column, at least not in the same natural way. By using the
primal simplex method we can exploit both distributed memory and parallelism and

also test a variant of greatest decrease.

In our parallel implementation of the simplex method, each processor computes
the reduced costs for its subset of nonbasic columns and selects an entering and
leaving pair of columns. As part of this process, the change in the objective function
that would occur if this pair were chosen is calculated. Thus, every processor has, for
its subset of nonbasic columns, candidates for entering and leaving the basis that can
now be represented by the objective function change. At this stage each processor has
a candidate pair and its associated objective function change. We can compare the
objective function change for each pair of columns, across the processors, and choose
from among these objective function changes the associated column that would give
the most decrease. So given p processors we can compute, with little overhead, the
actual change in the objective function value for up to p possible choices of entering
columns. It is important to notice that as the number of processors changes so
does the number of possible choices of objective function changes. There will be a
different choice of iterates depending on the number of processors used and hence the
algorithm changes with the number of processors. In this respect, by changing the

selection criterion for the entering column we can change the algorithm.

1.3 Summary

In this investigation we will show how to use the simplex method to take advantage of
the structure of the Challenge problem. We will show how to exploit both distributed
memory and parallelism by distributing both the 12.75 million columns and the work
load among the processors, thus reducing the time spent per iteration. With this
parallel implementation, using the primal formulation of the simplex method, we will
show results for a variant of greatest decrease used as the selection criterion for an

entering column.

Chapter 2

Algorithm

The linear program we wish to solve is:

min cTz (2.1)
st. Az = b
z > 0

where A € {0,1}™" b= (1,1...,1)T € R™, and z,c € R™
Let us reorder the columns of the constraint matrix A and the objective coefficients
¢ so that the first m correspond to a feasible basis (B), with the remaining columns

being nonbasic (N). Assuming a feasible basis exists, this gives

min chzp + CNIN
s.t. Aptp+ Anzy = b

zp,zny 2> 0.

To make the steps of the simplex algorithm clearer, we denote the objective func-
tion value cTz by z and the change in the objective function value by Az. We can

write the basic variables zg and z in terms of the nonbasic variables zx.

I = Aglb - AglAN.’I:N

z = cBARb+ (& — LA An)zN.

We now present a formal statement of the revised simplex algorithm.

2.1 The revised simplex algorithm

Given an initial basis Ap,
whiled; 20 V j € Ndo
Step 1: Solve 7T Apg = c&. /* compute the shadow prices
Step 2: Compute d%, = c§, — 7T Ay. /* compute the reduced costs
ifd; >0 V j € N, then we are optimal.
else choose j. € N such that d;, < 0.

Step 3: Solve Agy = A;.. /* compute y in terms of the basis
Step 4: Compute O. /* compute the step length

Step 5: Update the basis.

Go to Step 1.

2.2 A description of the revised simplex algorithm

We will briefly review the five steps of the revised simplex method and emphasize the
areas that are important for our parallel implementation.

2.2.1 Step 1. Calculate the shadow prices.

Let 77 = cLAg'. To find 7 we solve the linear system

mTAp = L.

Before optimality the entries of = are referred to as the shadow prices. At opti-

mality they constitute a feasible dual solution.

10

2.2.2 Step 2. Calculate the reduced costs.

Next we calculate the reduced costs of the nonbasic variables:

d%l‘ = C’II:,' - 7I‘TAN.
If we find
d =2 0

for all j € N, then z is an optimal solution; otherwise, we choose j. € N such that
d;, <0. |

This is the stage in our implementation that gives us the flexibility to modify
the criterion we use to select the entering variable. The choice of a “good” entering

variable is one of the key questions we will address.

2.2.3 Step 3. Solve for the entering variable in terms of the basis.

Now we need a representation of the new entering variable in terms of the current

basis. Let A;, be the column in Ay associated with the entering variable and solve

the linear system

ABy = Aje‘

2.2.4 Step 4. Perform the ratio test.

We then drive a basic variable to zero by computing the maximum © such that
IB — @y > 07

where © € R. Let

400 if 1; <0
@,-—{ y

i >0

fori=1,...,m, and © = min;{©;}. If ® = 400, then stop, as the LP is unbounded.

11

2.2.5 Step 5. Update the basis.
The final step is to update the new basis. Set
zg «— zg — Oy.
Let i; € {1,...,m} be such that ©; = ©, and let A; = Ap, . Then set

AB,

4

— A,
zp, — ©

ANi—-AN+Ajl—Aj

e*

2.3 Summary of work

We can summarize the work involved in a single iteration of the revised simplex

method as follows:

e Solve an m X m linear system

WTAB = Cg . (2.2)

e Compute the reduced costs (n — m inner products)

dN = c% - WTAN . (23)

e Solve an m x m linear system

Apy = A, | . (2.4)

e Perform the ratio test

max{©:z5 — 0y >0} | . (2.5)

When n > m, the calculation of the reduced costs in equation (2.3) is the dominant

cost of the computation.

12

2.4 The pricing pass

The calculation of the reduced costs in Step 2 of the revised simplex algorithm is
referred to as “pricing out” the nonbasic columns. The goal of calculating the reduced
costs d; is to find a nonbasic column that will decrease the value of the objective
function if brought into the basis. Since any column associated with a negative
reduced cost will meet this goal, there are a variety of alternatives for how this choice
can be made. We discuss a few of the possibilities below.

The “traditional,” or steepest-descent, method for choosing the best entering col-
umn is to select the column with the most negative reduced cost, d;, = min; ¢ n{d; |
d; < 0}. While straightforward to implement, this choice usually does not lead to the
best performance in practice.

Another alternative for choosing an entering column is referred to as steepest-edge.
Geometrically, steepest-edge may be viewed as measuring the change in the objective
function per unit that z moves along the edges of the polytope of feasible solutions
joining the current iterate to the next iterate. Steepest-edge is more expensive per
iteration than steepest-descent due to an extra solve and pricing pass required to
update the steepest-edge norms (which in turn requires an additional division for
each nonbasic variable).

Kuhn and Quandt [11] showed steepest-edge to take fewer iterations than steepest-
descent, but it was largely ignored due to the increased work per iteration. Harris
[10] implemented a steepest-edge type algorithm, called Devex, which showed good
performance in both iteration count and time spent per iteration. The first practical
exact steepest-edge algorithm was given by Goldfarb and Reid [9]. They presented
formulas for the update of the square of the normalized edge vectors, greatly reducing
the time spent per iteration. Using the update formulas and the new technology that
allows larger problems to be solved, combined with faster methods for calculating
the reduced costs [4], the computational advantages of steepest-edge became evident.

Results from tests performed by Goldfarb and Forrest [8] comparing steepest-edge

13

to other pricing techniques show the advantages of steepest-edge in terms of both
iteration count and total time required to reach an optimal solution.

For crew scheduling, steepest-edge pricing is better than standard steepest-descent
pricing for both primal and dual formulations of the problem [2]. For this reason, we
chose steepest-edge pricing as the pricing technique to be used by each processor on
its subset of nonbasic columns.

Due to the flexibility of our parallel implementation of the simplex method, we
were able to test a variant of greatest decrease as a selection criterion for the choice
of an entering column. A “true” implementation of greatest decrease in the simplex
algorithm would require that for all of the possible entering columns (all columns with
a negative reduced cost) the change in the objective function value Az be calculated.
All of the objective function changes then would be compared and the column asso-
ciated with the greatest decrease in the objective function would be chosen to enter
the basis. However, for our implementation of greatest decrease we do not look at the
objective function change for all of the columns with a negative reduced cost. Instead
we look only at the objective function change for one column from each processor.
Every processor calculates the steepest-edge norms locally for its own subset of non-
basic columns. Based on its subset of steepest-edge norms, each processor chooses a
local column to enter the basis. Each processor calculates the corresponding objec-
tive function change for its particular choice of an entering column. A single global
choice is made for an entering column by comparing the objective function change
among the candidates from each of the processors. The candidate associated with the
greatest decrease in the objective function is chosen to enter the basis. Since we do
not look at the change in the objective function for every possible entering column,
we refer to this as a variant of the greatest decrease selection criterion for the simplex

algorithm.

AN

14

= Apn Apn2 Apnr

Figure 2.1 The distribution of the nonbasic columns

2.5 A description of a parallel revised simplex algorithm

Since the computation of the reduced costs for crew scheduling problems is the dom-
inant cost of the primal revised simplex method when implemented on a sequential
machine, it is our choice to parallelize this part of the computation. By dividing
the set of nonbasic columns among the available processors, we will show how it is

possible to exploit both parallelism and distributed memory.

2.5.1 The distribution of the data

When n > m, most of the data is contained in the nonbasic columns Ax of the
constraint matrix A=[Ap Ay]. By partitioning the nonbasic columns into subsets as
shown in Figure 2.1, we can distribute the columns of Ay among p processors. We are
then able to “price out” the subsets of columns independently, allowing the pricing
step to be carried out simultaneously. By allowing each processor to have access to the
current basis and its own subset of nonbasic columns, as shown in Figure 2.2, most of
the work for a single iteration of the simplex method can be performed independently
on each processor. We will see that this simple strategy for distributing both the
data and the computation can lead to significant reductions in the total time spent

per iteration.

2.5.2 Our programming paradigm

Our implementation employs the Single Program Multiple Data (SPMD) program-

ming paradigm. On distributed-memory machines each processor has its own local

processor 1 processor 2 . processor p
T I L Anve |
d}, A21 d?, AZ2 d;, AZ4

Figure 2.2 The data/memory layout for a
parallel revised simplex algorithm

memory. We load the same program on each processor, hence the name single pro-
gram. However, we divide the nonbasic columns into subsets so that each processor
gets a subset of the nonbasic columns, hence multiple data.

During each iteration of the simplex method it is necessary to exchange informa-
tion concerning the global choice of an entering column. The message is comprised of
three pieces: a header (of fixed length) containing information needed for the update,
the entering column, and the representation of the entering column in terms of the
current basis. Thus, the message is of O(m), and this length is independent of the
number of processors being used. (In fact, since it is known that the columns of A
have no more than eighteen nonzeros, the length of the message is considerably less
than m.)

Since the nonbasic columns comprise the majority of the columns, and pricing
these columns accounts for up to 99% of the work, this decomposition most efficiently
distributes both the data and the work load across the processors in a way that

minimizes data transfer.

16

2.6 A parallel revised simplex algorithm

Given the linear program in (2.1), p processors, an initial basis Ap on each processor,
and the memory layout given in Figure 2.2, we will use N* to represent the indices of
the subset Ay: of the columns of Ay on processor i. Thus, N = J/_; N* and |N‘| =
O((n —m)/p). We can then restate the revised simplex algorithm.

On each processor ¢,
while d; 20 V 5 € N do:
Step 1: Solve 7T Ag = c§. /* compute the shadow prices
Step 2: Compute d%; = ¢k, — 7T Ani. /* compute the reduced costs
ifd; >0 V j € N', then goto step 5.
else choose ji € N* such that d, < 0.
Step 3: Solve Apy = Aji. /* compute y in terms of the basis
Step 4: Compute ©". /* compute the step length
Step 5: Communicate among all processors to find the “best” column.
ifd; >0 V je{ji,i=1,...,p: di, 20} C N then we are optimal
else winning processor passes “best” column to losing processors.
Step 6: Update the basis.
Go to Step 1.

The actual implementation of this algorithm will be discussed in the next chapter.

2.6.1 The “best” entering column

There exists a multitude of techniques for pricing out the nonbasic columns. Not
only can different selection criteria be used for the choice of an entering column, but
techniques have also been developed that vary the subset of nonbasic columns used
during the pricing pass.

In the sifting [2] implementation of Sprint [7] discussed in Section 1.2.1, a subset

of nonbasic columns is selected. This subset of columns, along with the basis, is used

17

to formulate a problem that is solved to optimality. Then this subset is modified
by adding or deleting columns and again the problem defined by this new subset
of columns is solved to optimality. This process is repeated until no new columns
can be added to the subset of nonbasic columns that would further improve the
objective function value. This technique of using the same subset of columns over
many iterations of the simplex algorithm is referred to as multiple pricing.

A similar pricing technique is called partial pricing. In this technique a differ-
ent subset of nonbasic columns is priced out each iteration. The nonbasic columns
comprising this subset are redefined at each iteration.

Both partial pricing and multiple pricing are in contrast to full pricing, where all
of the nonbasic columns are priced out during the pricing pass. When n > m the
pricing pass can be the most expensive part of the simplex algorithm. Partial pricing
is an attempt to speed-up this part of the algorithm. Tests comparing partial pricing®
to full pricing, using steepest-descent, show partial pricing to be the more desirable
of the two methods in iteration count as well as total time spent [5].

Examining all nonbasic columns makes sense when using steepest-edge. The in-
troduction of an update formula for the steepest-edge norms [9] made steepest-edge
a practical selection criterion. However, this update formula is effective only when
using either multiple or full pricing. Since the nonbasic columns comprising a working
subset are redefined at each iteration when partial pricing is used, the steepest-edge
norms would have to be recomputed, rather than updated, at each iteration. It is
believed [5] that for most problems full pricing would be better than multiple pricing
when using steepest-edge. Since full pricing is readily accomplished in our distributed-
memory implementation, this is the strategy we have employed.

By using the Intel Delta Touchstone and the distribution of the nonbasic columns
illustrated in Figure 2.1, we are able to perform full pricing on problems with millions

of columns. Thus, we can perform full pricing not only on problems that previously

$The partial pricing used in the tests is actually a combination of partial pricing and multiple pricing.

18

could not even have been loaded into memory, but also on problems that might
have been solved using only multiple pricing due to the time required to perform full
pricing. We hope that by looking at all of the nonbasic columns we can reduce the
number of iterations by selecting an entering column with the best overall steepest-
edge norm.

There are many criteria for selecting the column to enter the basis. However, there
are no theorems that give any useful information about the number of iterations
that can be expected from any of the practical pricing strategies. It is therefore
important to test different pricing methods on a smaller version of a problem to get
an understanding of the behavior of the simplex method. We have chosen to look
at the actual change in the objective function value because intuition has long held
this to be the choice that should lead to the fewest number of iterations. Given
p processors and our programming paradigm, with no appreciable overhead we can
compute the actual change in the objective function value for up to p possible choices

of incoming variables.

19

Chapter 3

Implementation Details

The implementation details are many and varied and have proven to be more involved

than originally expected. We will discuss only the salient features.

3.1 The LP solver

We chose CPLEX as our linear program solver. This choice was motivated by our
need for both a state of the art LP solver and a stable software package. It was
first necessary to modify CPLEX to run on a single processor of either the iPSC/860
Hypercube* or the Intel Touchstone Delta. Since CPLEX already runs on various
platforms this was accomplished with a few straightforward modifications.

CPLEX is a complex and robust LP software package that is widely used in
industry. In our efforts to modify CPLEX to run in parallel we did not want to
introduce modifications that would interfere with the features that make CPLEX
robust. In order to maintain these features, and to introduce as few errors as possible,
our intent was to keep all modifications to CPLEX simple and introduce as few
changes to CPLEX as possible. For the initial setup of the linear program we are
able to use CPLEX via its callable library. However, the optimization phase required

modifications to portions of the CPLEX code.

*the iPSC/860 Hypercube is a trademark of Intel.

20

3.1.1 The initial basis

The SPMD algorithm we employ requires that all of the processors start with and
maintain the same basis. For this reason we load the identity matrix in the first
837 columns of each processor. In this way we establish the same initial basis on
each processor before we start the optimization phase of the simplex algorithm. As
a consequence, we cannot allow CPLEX to choose its own initial basis even though
this has been shown to reduce the number of iterations required to complete Phase I
(finding an initial feasible solution) of the simplex algorithm [3].

We force the identity to be the initial basis on all of the processors to minimize
the inter-processor communication. This approach is necessary as we implemented no
exchange of information among the processors during the building of the initial basis
in CPLEX; otherwise, each processor would build its own initial basis from its unique
set of nonbasic columns. We could possibly improve this part of our implementation
by determining how to find an initial basis while preserving the need for an identical
basis on all of the processors. The danger is that while the number of iterations may
decrease, the total time spent finding an initial basis could increase as a result of

increased communication.

3.1.2 Communication

To synchronize the processors, and thus preserve the same basis and iterates across all
processors, we added a communication point to the linear program solver. This com-
munication point is needed at the juncture in our algorithm where an entering/leaving
pair of columns is known on each processor, but no basis update has been performed.
This corresponds to Step 5 in our parallel simplex algorithm as outlined in Section
2.6. At this point we must decide which processor has the “best” choice for an en-
tering column. We use an Intel communication library procedure gopf () to handle
global communication. The procedure gopf () requires a user-defined subroutine to

define the rules for the exchange of information. The reason for using gopf () is that

1

21

it sets up the communication channels and handles most of the details involved in
routing global messages. To change the criterion for what determines the best column
to enter the basis we only need to change the routine passed to gopf (). This is where
the tremendous flexibility of our implementation lies.

We were also forced to introduce a second communication point because early
refactorization may be triggered on one or more processors but not necessarily on all
of the processors. This is due to the way in which CPLEX handles the allocation of
space. If a processor finds it necessary to reallocate memory, CPLEX forces a new
factorization. This can occur on just one processor since the problem size, due to
different sparsity patterns for the nonbasic columns, varies from processor to proces-
sor. If one processor refactors and the others do not, the difference between a newly
refactored basis and an updated basis is sufficient to cause a different leaving variable
to be chosen. As noted earlier, we require all of the processors to have the same basis.

We used the Performance Analysis Tools! to profile the communication overhead
of our implementation. The profiles show the overhead of the second communication
procedure call (gopf2) to be small compared to the communication call to synchro-

nize the optimization (gopf1). See Figure 3.1.

3.2 Primal vs. dual

For this particular problem it is known that a feasible basis can be found from among
the first one thousand columns of the problem. However, this problem is highly
degenerate in the primal form. By primal degeneracy we mean that there will be
iterations of the primal simplex method that do not change the objective function
value. During these iterations the same solution vector z is represented by a different
set of basic variables and so there is no movement from the current vertex to another

vertex. The best approach for solving the LP relaxation of airline crew scheduling

tPAT is a trademark of Parasoft and Parallel PAT is a trademark of Intel.

22

Proc 3

Proc 2

Legend: - Proc O - Proc 1

Time in Communication Routines

gopt1i

gopf2

(o] 100 200 300 400

Time (milliseconds)

Figure 3.1 Profile of execution time for the communication routines

problems is to use the dual steepest-edge [2] simplex algorithm. However, as we
mentioned in Section 1.2.3, we are interested in testing a variant of greatest decrease,
and that can be tested naturally in the context of the primal. Thus, we chose to deal

with this degeneracy in other ways, which we discuss below.

3.2.1 Degeneracy

In order to handle the primal degeneracy of the Challenge problem we slightly perturb
the right-hand side. We want to apply as small a perturbation as possible in order to

change the character of the problem as little as possible, while at the same time we

23

want to lessen the degeneracy. We chose a perturbation that modifies the right-hand

side b as follows:

t = exdrand()
if (t<0.001) ¢t=0.001
b = b4+t

where drand () is a random number generator and € = 0.001.

By applying this perturbation* we change the character of this problem by break-
ing up each degenerate vertex into a cluster of non-degenerate vertices. The result is
that improvement in the actual objective function cannot occur at each iteration as
long as we remain in the cluster of vertices. However, the hope is that we will leave a
degenerate vertex in fewer iterations. We are able to show empirically that this is in-
deed the case. For a test problem of 20,000 columns executed on a Sun? workstation,
we are able to solve the perturbed problem in 10,482 iterations and 3,165 seconds
while the unperturbed problem takes 63,285 iterations and 17,849 seconds.

One disadvantage of introducing the perturbation is that we are no longer working
with the original set partitioning problem. However, for testing purposes it proves
to be the more rational approach, considering the time involved for solving a single
instance of the problem. A second disadvantage of the perturbation became evident

while testing the greatest decrease algorithm, as we will discuss further in Section 5.2.

3.3 Memory requirements

Since one of the goals of this research is to show how the entire problem can be kept
in memory throughout the optimization, memory allocation is an important aspect

of our work.

YThis is not the perturbation used in CPLEX.
$Sun is a trademark of SUN Microsystems.

24

3.3.1 Data structure

We required only one modification to the data structures of CPLEX. This is the
addition of one column, of at most eighteen nonzeros, to the set of nonbasic columns
on each processor. This “dummy” column, as implied by the name, acts as a place
holder. At every iteration of the simplex method there is a choice as to which processor
has the best entering column. Since this entering column, being nonbasic, is unique
to a particular processor, it is necessary for the processor with the best entering
column, which we refer to as the “winning” processor, to pass the selected column
to the other processors, which we refer to as the “losing” processors. The dummy
column provides the additional space needed for the losing processors to receive this
column. The associated leaving column becomes irrelevant to the losing processors,
once it leaves the basis, as it only needs to become a nonbasic column on the processor
which originally owns the entering column. At this point the leaving column becomes
the new dummy column on the losing processors, since the task of preserving the
information contained in this column falls to the winning processor. Thus, the number

of columns stored on each processor does not increase.

3.3.2 Compression

In the sequential version of CPLEX, the size of the problem is static once the problem
is loaded. For our parallel implementation, each processor has a different set of
nonbasic columns at the start of the optimization phase, and so each processor has a
problem of a different size due to the differences in sparsity patterns. CPLEX employs
a sparse data structure design. Hence, as the columns are loaded into memory, each
column is allowed only enough space for exactly the number of nonzeros it contains.
This implies that, for our parallel implementation, the start and end locations of
each column in the data structure are likely to be different among the processors.
Recall that the key to our parallel implementation is the exchange of columns—at

every iteration the losing processors always receive a new column from the winning

25

processor. Since the dummy column was the leaving column in the previous iteration,
there is no guarantee that the dummy column has the same number of nonzero entries
allocated as the new number of nonzero entries required by the entering column. The
dummy column only acts as a place holder in order to minimize the modifications to
CPLEX.

CPLEX stores the constraint matrix by column. In addition, the nonbasic columns
An are stored again by row. The latter storage is to increase the speed of the cal-
culation of the reduced costs [5]. In order to handle the discrepancies in the size
of columns among the processors we must add two types of data management to
CPLEX. Even though we allocate enough total memory to handle the differences in
the number of nonzeros per column, we must also be efficient with the memory we
allocate. Consequently, we have added to CPLEX compression routines for both the
column arrays and the row arrays. Both compression routines collect the available
space that has been broken into small fragments during the change in the number
of nonzero entries in the dummy column during iterations of CPLEX. This space is

reallocated in subsequent iterations. Compression is done only as needed.

3.3.3 Storage

By only using as much space as required, even though the sparsity of the columns
residing on a processor changes from iteration to iteration, we are able to load about
21,000 columns, along with the operating system and CPLEX, on each processor. As
a consequence of work done on the Challenge problem using a Cray Y-MP [2], software
exists for the removal of duplicate columns. After the duplicate columns are removed,
the 12.75 million column Challenge problem reduces to 8,549,879 columns [2]. Thus,
the entire Challenge problem could be stored in memory on the 512 processor Intel

Touchstone Delta machine.

26

3.4 Selection criterion

We will use steepest-edge as our selection criterion to test our efforts at computing
the reduced costs in parallel. However, we will also test an algorithmic idea that uses

a different selection criterion as outlined below.

3.4.1 Across the processors

During each iteration of our parallel implementation of the simplex method, before
the processors communicate with each other, each processor must calculate the re-
duced costs for its subset of nonbasic columns. Then each processor must select an
entering column, local only to its set of nonbasic columns, as shown in Step 2 in
Section 2.6. Each processor always makes this selection based on the steepest-edge
selection criterion. After each processor has made its own local selection for an en-
tering column, the processors must communicate among themselves in order to reach
a global consensus as to the best overall column to enter the basis. This corresponds
to Step 5 in Section 2.6. |

By varying the global selection criterion in Step 5 of our parallel revised simplex
algorithm, we can test two algorithmic ideas. First, we will test “pure” steepest-
edge, where we apply steepest-edge in both Step 2 and Step 5. This allows us to test
the effect of distributing the work load across the processors without introducing any
significant algorithmic changes. Second, we will test a variant of the greatest decrease
criterion by modifying Step 5 to select the column associated with the largest decrease
in the objective function value as the best entering column. Notice that when we use
greatest decrease on only one processor, we are reduced to using the pure steepest-
edge criterion since there is no communication and hence no global decision to be
made.

We refer to the latter implementation as a variant of greatest decrease for two
reasons. First, we do not use greatest decrease as the local selection criterion on

each processor. This would probably be too expensive. Second, for our tests we use

27

a combination of both steepest-edge and greatest decrease for the global decision in

Step 5 which we discuss in Section 3.2.1.

3.5 Architecture

The initial development of the parallel implementation for this work was on an Intel
iPSC/860 with 32 processors and eight megabytes of memory per processor. The use
of this machine was provided by the Center for Research on Parallel Computation¥
(CRPC) with support from the Keck Foundation. Further development was done on
an Intel iPSC/860 with 64 processors and 16 megabytes of memory per processor. The
final testing was performed on an Intel Touchstone Delta machine with 512 processors
and 16 megabytes of memory per processor. The latter two machines are operated
by California Institute of Technology on behalf of the Concurrent Supercomputing
Consortium with access provided by the CRPC. |

3.6 Test problems
3.6.1 Structured test problems

During our modifications to CPLEX on the Intel machines we performed some pre-
liminary tests on subsets of columns from the 12.75 million column Challenge problem
to gain some indication of the performance of our implementation. These structured
subproblems were formed from the first 20,000 columns in the Challenge problem.
Our preliminary tests made us aware of some facts about floating point division on
the Intel iPSC/860. We observed that even though the number of iterations to solve
these subproblems is low, the amount of wall-clock time spent is relatively large com-
pared to the sequential version of CPLEX run on a Sun4 workstation. Profiling on

the Intel iPSC/860 shows that anywhere from 20% to 35% of the total execution time

TUnder NSF Cooperative Agreement Nos. CCR-9120008 and CDA-8619893.

28

% time | seconds | cumsecs | msec/call function
34.4 | 430.56 | 430.56 — | .ieeefp.div
23.3 | 291.73 | 722.29 82.972 | _rpriceall
19.6 | 246.19 968.48 91.725 _test_s

11.3 | 141.47 | 1109.95 76.346 -supd2
2.1 26.61 | 1136.56 32.020 _supd0
1.6 19.77 | 1156.33 7.363 findmin
1.4 17.60 | 1173.93 21.150 | _djnormset
1.0 13.10 | 1187.03 — fabs
0.9 11.37 | 1198.40 — | _ftrsolve5

0.7 8.50 | 1206.90 180.90 _refactor

Table 3.1 Profile of CPLEX on one processor of the iPSC/860

is spent performing floating point division. In Table 3.1 we have listed the routines
that are the top ten contenders in percentage of execution time used. The floating
poiﬁt division is clearly the largest consumer of time. The next largest consumer of
time is the ratio test rpriceall, followed by test_s, which computes inner products,
followed by routines to update the column norms and the steepest-edge norms, supd0
and supd2, respectively. Next is the routine findmin, which finds an eligible column
to enter the basis, followed by the routine djnormset, which calculates the steepest-
edge norms. As we noted in Section 2.4, the computation of the steepest-edge norms
requires an additional division for every nonbasic variable. We assume the time re-
quired for the division in the routine djnormset () has been broken out into the first
entry of the table. After that we find the Intel C library routine fabs. The last two
routines, ftrsolve5 and refactor, are a forward solve routine and the routine to
refactor the basis, respectively. Notice that the last two routines each account for
less than 1% of the total execution time. (As we mentioned earlier, the forward and
backward solves do not account for much of the work when n > m.)

On the Intel iPSC/860, IEEE compliant floating point division is done in software.

We profiled loops performing addition, subtraction, multiplication, and either division

29

Floating % Time Spent Performing Operation
Point Intel iPSC/860 Sun4
Library w/IEEE w/o IEEE | w/IEEE
Operation divide | reciprocate divide | divide
—deeefp_div 71.1 72.4 0.0 0.0
.add 6.8 6.6 15.2 16.3
.sub 6.8 6.6 15.2 16.3
.mlt 6.7 6.4 15.2 17.6
div 6.5 6.0 49.6 42.7

Table 3.2 Percentage of time spent in floating
point loops on the Intel and Sun4 machines

or reciprocation, on both a single processor of the iPSC/860 and the Sun4 workstation.
The results of the profiles show that both floating point division and reciprocation
require more time on the iPSC/860 than on the Sun4. Other floating point operations
are comparable on the two machines. If we disable IEEE compliance on the iPSC/860,
floating point operations on the two machines are comparable. See Table 3.2.
However, we cannot afford to disable IEEE compliance when solving subsets of
the Challenge problem because they are too sensitive to numerical changes. We found
that when we disabled the IEEE compliance, the numerical changes were sufficient
to produce a different set of iterates. The number of iterations required to reach
an optimal solution increased significantly. Although the time spent per iterétion
decreased, due to the decrease in the amount of time spent in floating point division,

the total execution time increased due to the increase in the number of iterations.

3.6.2 Unstructured test problems

In light of the slow floating point division on the Intel multiprocessor machines, we
concluded that it would be impractical to attempt tests involving the entire Challenge

problem.

30

Instead of using the entire 12.75 million columns of the Challenge problem, we
believe that by properly choosing subproblems from the large problem, we can still
represent the behavior of the perturbed Challenge problem with subsets of columns.
Also, as mentioned in Section 1.1, it is often the case that smaller subproblems are
solved in the process of solving the large problem due to the large size of the airline
crew scheduling problems.

We randomly selected 20,000 column subsets from the Challenge problem. We
have chosen to use 20,000 columns for several reasons. First, we can fit 20,000 columns
on one processor, which allows us to compare our parallel implementation results using
one or moré processors of the Intel distributed-memory machines (as long as we have
16 megabytes of memory per processor). Second, a subproblem of 20,000 columns
can be solved in a reasonable amount of time so that testing is practical. Third, we
believe we can still test the advantages of carrying out the calculation of the reduced
costs in parallel and test a variant of the greatest decrease selection criterion.

We chose to select the columns randomly for the test subproblems in an effort to
better characterize the full Challenge problem. As mentioned in Section 1.1, programs
are used to generate the columns. By looking at the data file for the Challenge
problem, patterns can be seen in the columns that are generated. Thus, we decided to
create subproblems that sample from the entire spectrum of columns of the Challenge
problem. To ensure a feasible basis for each problem, the first 1000 columns of
each test problem were drawn from the first 1000 columns of the Challenge problem.
The remaining 19,000 columns of each subproblem were sampled randomly without
replacement from the remaining columns of the Challenge problem. We used a random
number generator supplied by the IMSL! statistics library. We used the routine
rnsri(), which generates a pseudorandom sample without replacement. We allowed
a random seed to be obtained from the system clock and we used the default multiplier

of 16807 for the generator.

IIMSL is a trademark of IMSL, Inc.

31

Using these criteria we created 100 subproblems of 20,000 columns each. It is
on 10 of these unstructured subproblems that we performed tests of our parallel

implementation of the simplex method.

32

Chapter 4

Performance

Throughout our research we have been interested in accomplishing the following three

goals:

1. Exploit distributed memory by loading the entire Challenge problem.
2. Exploit parallelism by distributing the work load.

3. Test a variant of the greatest decrease algorithm.

We will discuss what we have accomplished with respect to each of these three goals.

4.1 Distributing the data

Our first task was to load the entire Challenge problem into memory. With the use
of our compression routines and careful handling of the data structures of CPLEX
we are able to load about 21,000 columns per processor, along with the operating
system and CPLEX. If we do not count the initial basis we force CPLEX to use, we
can load about 20,000 columns of the Challenge problem per processor. On the Intel
Touchstone Delta we have 512 processors which gives us sufficient memory for a total
of 10,240,000 nonbasic columns across the processors. Preprocessing the data to re-
move duplicate columns reduces the number of columns from 12,753,313 to 8,549,879
[2]. Thus we have demonstrated that the Challenge problem can be stored across the
local memory of the Intel Touchstone Delta, eliminating the need for disk I/O during

the optimization phase.

33
4.2 Distributing the computation

Our results for exploiting the distributed memory and parallelism are conclusive. We
can show a savings in average time spent per iteration by carrying out the computation
of the reduced costs in parallel and hence a savings in the total time required to
solve the problems. The speed-up is evident in all of our tests carried out for the
“pure” steepest-edge implementation. We demonstrate these results with both a
structured subproblem, shown in Table A.1 of Appendix A, and with two unstructured

subproblems, shown in Appendix B.

4.2.1 Speed-up

As can be seen in Figure 4.1, which contains a graph of the average execution time
per iteration taken from results given in Table A.1 of Appendix A and Table B.1
of Appendix B, the average execution time per iteration decreases as the the number
of processors is doubled, up through 32 processors. As we move to more processors,
the average execution time per iteration begins to slowly increase. This is true for
both the structured and unstructured subproblems. It appears that by distributing
the work load so that each processor computes the reduced costs for 625 nonbasic
columns, the average execution time per iteration reaches a minimum.

We had hoped to see linear improvement as we increased the number of processors.
Our results do not show this. As can be seen from both Figures 4.2 and 4.3, as we go
from one processor to two processors we do halve the execution time. However, the
linear rate of improvement does not continue when we use more than two processors.
This is because the overhead of the communication outweighs the speed-up in actual
computation. Ideally, if no communication were needed, fewer columns on a processor
would require fewer reduced costs to be computed, and so the time spent per iteration
would continue to decrease monotonically. However, it takes a minimum amount of
overhead, independent of the message length, to communicate among the processors.

This overhead is due to the start-up cost of sending a message and the cost of receiving

34

a message. So once the cost of the communication exceeds the cost of computing the
reduced costs on a processor, the gain from further distributing the work load is lost
to the time spent in communication. Thus, it would be faster to compute the reduced
costs on fewer processors. This would increase the work load on each processor but
the communication overhead would remain the same, regardless of the distributed
computing environment, since the length of the messages also would remain the same.
However, in order to put more columns (more work) on a processor, more memory is
required per processor.

We profiled a subproblem with 40,000 contiguous columns for 2, 32, and 64 pro-
cessors in order to get a better understanding of the ratio of the computational work
to inter-processor communication. By choosing 40,000 columns we can load the max-
imum number of columns on 2 processors, which still necessitates communication,
but the minimum possible. For 32 and 64 processors, we decrease the amount of
work but increase the amount of inter-processor communication. The difference can
be seen in Figures 4.4, 4.5, and 4.6, where we can see the fraction of time spent in
either computation, communication, or idle time. The idle time usually indicates that
the processor is sitting idle at a synchronization point while waiting for the arrival
of a message containing information needed to continue the computation. For the 2
processor case, shown in Figure 4.4, over 90% of the time is spent performing calcu-
lations and very little in communication. However, for the 32 processor case shown
in Figure 4.5, about 40% of the time is spent in computation and for the 64 processor
case shown in Figure 4.6, about 30% of the time is spent in computation. Both the 32
and 64 processor cases show that a larger percentage of total execution time, relative
to the 2 processor case, is spent in communication rather than in computation.

Also notice that the percentage of idle time is much greater for the 32 and 64 pro-
cessor cases. In our implementation, the idle time is directly related to the percentage
of time spent communicating with respect to the percentage of time spent performing

computation. Every time there is a global communication call, one of the processors

0.7 1

X

S\
0.6 Y,

\
\
\

0.5+

@

Average (4%
Execution ‘\‘ X
Time ‘\‘ \
(Seconds) 0.3 4 A
\ \
\‘\ X\
024 s
K - -~ - -— *
e B TX=—— e x—m = m T X

0.1 Bee Y S S S
0.0 T T T T T T T |

1 2 4 8 16 32 64 128 256

Number of processors

ettt @ structured subproblem results from Table A.1
————————— x unstructured subproblem results from Table B.1

Figure 4.1 Average execution time per iteration as the number of
processors is doubled for both a structured and an unstructured subproblem.

Average
Execution
Time
(Seconds)
(logs)

-10 T I T T I I T]
1 2 4 8 16 32 64 128 256

Number of processors

“perfect” linear improvement
----------------------- @ structured subproblem results from Table A.1

Figure 4.2 Average execution time per iteration as the number
of processors is doubled for a structured subproblem

36

0 —_
-1 4
-9
“x—--x---x—--*"'x
-3 -
Average
Execution 4]
Time
(Seconds) 5 -
(1082)
-6 -
-7
-8 -
-9 T l T T T T T]
1 2 4 8 16 32 64 128 256

Number of processors

“perfect” linear improvement

————————— x unstructured subproblem results from Table B.2

Figure 4.3 Average execution time per iteration as the number of
processors is doubled for an unstructured subproblem.

37

38

Legend: -Calculatlon -Processor Communication

Processor Utilization

Fraction
Used

Processor Number

Figure 4.4 Communication profile for 40,000 columns on 2 processors

39

Legend: .Calculatlon - Processor Communication

Processor Utilization

Fraction
Used

o 10 20 30

Processor Number

Figure 4.5 Communication profile for 40,000 columns on 32 processors

40

Legend: -Calculatlon -Processor Communication

Processor Utilization

Fraction
Used

(o] 20 40

Processor Number

Figure 4.6 Communication profile for 40,000 columns on

60

64 processors

41

will have to wait on the other processors. This is when “losing” processors receive
the entering column. These processors must do additional work to integrate the new
column into the CPLEX data structures. However, the “winning” processor does not
have to do any of this work and as a result gets ahead of the others and spends time
waiting at the next synchronization point for the other processors to catch up. When
there is only a little computation being done each iteration, the percentage of time a
processor will spend idle is larger than if the amount of computation is large. Thus,
we think that for our implementation a significant amount of idle time indicates that
there is not enough computation to take full advantage of the processor.

Another factor that may account for the idle time observed in the profiles of
the execution time on the iPSC/860 is the sparsity structure of the matrix A. The
different partitions of Ay, depending on the number of processors being used, can have
a different number of nonzeros. This could vary the time required for each processor to
perform the linear algebra necessary to execute an iteration of the simplex method. As
the number of columns per processor decreases, differences in the number of nonzero
entries across the partition of the matrix can become more and more apparent. We
did not perform any experiments to determine whether or not this played a role
in the percentage of idle time observed as we varied the number of processors, but
such behavior would be consistent with observations made by researchers working on

parallel linear algebra algorithms for sparse matrices.

4.2.2 Unexpected discrepancies

There was one unexpected development. When using only steepest-edge as a selection
criterion with full pricing, we would expect to take the same number of iterations to
solve a problem regardless of the number of processors being used. However, looking
at Table A.1 and Appendix B we see that this is not what happened. The iteration

count can vary as the number of processors is varied.

42

This discrepancy can be explained by considering the way CPLEX handles the
choice of an entering and leaving pair of columns. Once an entering column is se-
lected, an appropriate leaving column must also be selected. If the corresponding
leaving column is considered to be numerically unstable, CPLEX chooses another en-
tering column to try to avoid the introduction of numerical instabilities or excessive
infeasibilities. Our parallel implementation preserves this feature but has the effect of
permitting the number of candidates to grow as the number of processors increases.
This allows a different leaving column to be chosen if the number of processors is
changed. Once a different leaving column is chosen, a different sequence of iterates is
produced. Notice that in our test this led to only small variations in the total number

of iterations required to reach the optimal solution.

4.2.3 Structured versus unstructured problems

We performed preliminary tests on some subsets of consecutive columns from the
Challenge problem. Observing the inconclusive results for the greatest decrease crite-
rion when applied to a structured subproblem (see Table A.2), motivated us to gener-
ate the unstructured subproblems from randomly selected columns of the Challenge
problem. Once generated, we performed some introductory tests and found quite a
change in the behavior of these subproblems. The unstructured subproblems were
harder, as indicated by the increased iteration count required to reach optimality. (See
Appendices A and B.) This could be further evidence that the structured subprob-
lems do not accurately reflect the Challenge problem. Since the Challenge problem
is considered a hard problem, we believe that the unstructured subproblems more
satisfactorily represent its character. We conjecture that by sampling from the entire
12.75 million columns, we are able to break out of the structure created by the column
generation that we encounter when we sample only consecutive columns. |

Looking at Figure 4.1, a difference in the average execution time per iteration

between the structured and unstructured subproblems can be observed. We can

43

explain this difference. For all of the results we present in Appendices A, B, and C,
we tracked (on a single processor) the number of times the selected entering column
had a corresponding leaving column that was considered numerically unstable by
CPLEX. This is referred to as a “rejected pivot” because both the entering and
leaving columns are rejected due to the numerical instability that would be introduced
for a given choice of the leaving column. There is a large difference in the number
of rejected pivots seen when we solve the two types of subproblems. In all of the
runs in Table A.1, for the processor we tracked, there were no rejected pivots. In
Table A.2, the number of rejected pivots ranges from zero to thirty. In contrast, for
the unstructured subproblems in appendices B and C, the number of rejected pivots
ranges from 35 to 815, considerably more than for the structured subproblems.

In CPLEX, when a pivot is rejected due to numerical difficulties, another attempt
is made to find an acceptable pivot. During this effort the iteration count is not
incremented, but more time is needed to complete an iteration. In our parallel im-
plementation, a local rejected pivot on all but one of the processors requires no extra
work. This is because when the global communication occurs, the processor with an
acceptable pivot will win and no extra work will be required to find an acceptable
pivot. Only the time required for the normal communication is needed. However,
when all of the processors produce a rejected pivot, the time required for an iteration
is even greater than in the sequential case. Since in the parallel case, along with the
additional work of finding another pivot, there is an additional communication call
among the processors every time all processors reject their pivot. The search for a
stable pivot continues until at least one of the processors finds an acceptable pivot.
So when there are many pivot rejections, as in the unstructured subproblems, the av-
erage time spent per iteration can be expected to increase due to both the additional

computation and the extra communication overhead that rejected pivots introduce.

44

4.3 Greatest decrease results

Our results for using greatest decrease as the selection criterion for the choice of an
entering column can be seen in Appendix C. These results show conclusively that on
our test problems, the performance of the greatest decrease criterion is inferior to the
performance we see using only the steepest-edge criterion. These results demonstrate
that the greatest decrease rule is not appropriate for this class of problems for reasons
we will discuss in the next chapter. However, our results do not rule out the possibility

that the greatest decrease rule may be very effective for other linear programming

problems.

Chapter 5

Conclusions

5.1 Hardware platform

We think that we have demonstrated the value of a parallel implementation for the
primal simplex algorithm for problems, like the Challenge problem, with a dispropor-
tionate ratio of columns to rows.

Our experiments lead us to conclude, however, that neither the iPSC/860 nor
the Touchstone Delta is the appropriate platform for our parallel implementation of
CPLEX. The relatively slow speed of the IEEE floating point division is certainly one
serious hindrance. The relatively small amount of local memory on each processor is
also a drawback. If we were able to put more columns on each processor, we would
eliminate the need for as many processors. We would thereby increase the work
load on each processor. The processors would then spend a significant percentage
of total execution time computing and relatively little or no time communicating or
sitting idle, which would improve the performance of our implementation. We think
a more suitable hardware platform would be a multiprocessor machine with much
more memory per processor and fewer processors, and in particular, processors with

faster IEEE floating point division.

5.2 Perturbation

As discussed in Section 3.2.1, one disadvantage of applying a small perturbation

to the right-hand side vector is that we are no longer working with the original

46

set partitioning problem. However, there is a second drawback, which only became
apparent during the testing of the greatest decrease criterion.

Recall that the point of the perturbation is to break a degenerate vertex into a
cluster of non-degenerate vertices. With the introduction of these clusters of vertices,
there will be some iterations of the simplex method where we simply move from
one vertex in a cluster to another vertex in the same cluster. While we may see
decrease in the value of the objective function, this is an artifact introduced by the
perturbation and does not indicate real progress toward a solution to the underlying
problem. Thus the use of the greatest decrease criterion to choose the step at these
iterations seems inappropriate because there is no substantive change in the objective
function value; it may simply lead to a random choice of which vertex in the cluster
to take. At these iterations the change in the objective function value is very small,
on the order of 0.02. We decided that a more intelligent course of action would be
to use the steepest-edge criterion to choose the step at these iterations and then use
greatest decrease once we move on to a “real” vertex. In order to accomplish this we
looked at the objective function values from iteration to iteration and declared that
any change less than 0.1 in the objective function was not a “real” decrease. At these
iterations we used steepest-edge as the criterion for choosing an incoming column.
Unfortunately, this did not substantially decrease the number of iterations required
to reach a solution.

For all of the results shown in Table A.2 and Appendix C, we tracked the number
of iterations where we used the objective function change, as opposed to steepest-edge,
as the selection criterion in Step 5 of the parallel algorithm outlined in Section 2.6.
The objective function change selection criterion is used anywhere from 75% to 85%
of the time. As we varied the tolerance used for making the decision between the two
selection criteria, we could see that the more often we used steepest-edge, the fewer
the iterations. In fact, for the tolerances we tried, the pure steepest-edge algorithm

always performed better than our variant of the greatest decrease algorithm.

47

5.3 Poor performance of the greatest decrease algorithm

From our results we conclude that the Challenge problem is an inappropriate problem
for testing the use of the greatest decrease selection criterion for the primal simplex
algorithm. Due to the perturbation that we introduced, we made it very difficult to
take advantage of information we have about the change in the objective function. We
hypothesize that this is because we have been unable to distinguish a “real” vertex
from a vertex introduced by the perturbation. The greatest decrease criterion, with
a different set of test problems, may still prove to be an effective selection criterion

for the primal simplex algorithm.

Appendix A

Structured Subproblem Results

48

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 65945.63805555557 0 2684 1234.569 460

2 | 65945.63805555557 0 2684 427.511 .159

4| 65945.63805555557 0 2684 419.269 .156

8 | 65945.63805555557 0 2684 295.342 110

16 | 65945.63805555557 0 2684 242.925 .091

32 | 65945.63805555560 0 2716 241.204 .089

64 | 65945.63805555560 0 2716 247.474 .091

128 | 65945.63805555560 0 2716 264.359 .097

256 | 65945.63805555560 0 2716 291.747 107

Table A.1 “Pure” steepest-edge on the first

consecutive 20,000 columns (structured subproblem).

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 65945.63805555557 0 2684 1234.569 460

2 | 65945.63805555555 1849 2409 623.363 .259

4| 65945.63805555565 2022 2681 437.949 .163

8 | 65945.63805555561 1885 2533 278.318 .110

16 | 65945.63805555568 2151 2614 235.673 .090

32 | 65945.63805555551 2111 2637 230.773 .088

64 | 65945.63805555557 2587 3336 300.002 .090

128 | 65945.63805555548 2754 3440 331.790 .097

256 | 65945.63805555542 2795 3486 369.258 .106

Table A.2 Greatest decrease on the first consecutive
20,000 columns (structured subproblem).

Appendix B

Steepest-edge Results

49

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.
1| 65717.19239809163 0| 10290 6519.987 634
2| 65717.19239809162 0 9632 3609.874 375
4| 65717.19239809162 0| 10305 2552.488 248
8| 65717.19239809152 0| 10172 1914.676 .188
16 | 65717.19239809168 0| 10309 1678.065 .163
32 | 65717.19239809168 0 9841 1563.562 .160
64 | 65717.19239809162 0 9969 1594.455 .160
128 | 65717.19239809153 0| 10299 1747.440 170
256 | 65717.19239809171 0| 10262 1884.913 134
Table B.1 Steepest-edge: unstructured subproblem 001
no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.
1| 66094.91566015418 0| 10427 6591.083 .632
2| 66094.91566015419 0| 10484 3926.223 374
4 | 66094.91566015415 0| 10626 2615.001 246
8 | 66094.91566015419 0| 10266 1924.380 187
16 | 66094.91566015416 0| 10339 1724.924 167
32 | 66094.91566015416 0| 10484 1662.591 .159
64 | 66094.91566015412 0| 10379 1643.302 .138
128 | 66094.91566015413 0| 10560 1811.040 172
256 | 66094.91566015421 0| 10512 1920.054 .183

Table B.2 Steepest-edge: unstructured subproblem 010

Appendix C

Greatest Decrease Results

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 65717.19239809163 0| 10290 6519.987 .634

2 | 65717.19239809149 8434 | 11157 4187.060 375

4| 65717.19239809152 10209 | 12715 3178.437 .250

8 | 65717.19239809160 11289 | 13840 2588.218 187

16 | 65717.19239809155 11470 | 14367 2369.465 .165

32 | 65717.19239809150 12969 | 15902 2543.461 .160

64 | 65717.19239809156 14021 | 17047 3067.408 .180

128 | 65717.19239809152 14741 | 18068 3067.415 170

256 | 65717.19239809156 16950 | 20693 3817.308 184
Table C.1 Greatest decrease: unstructured subproblem 001

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) secs. /it.

1| 66077.71548219235 0] 10525 6617.980 .629

2 | 66077.71548219242 8724 11227 4189.122 373

4 | 66077.71548219242 9749 12351 3067.330 .248

8 | 66077.71548219243 11037 | 13818 2575.164 .186

16 | 66077.71548219242 11164 13908 2386.451 172

32 | 66077.71548219239 11955 14925 2379.531 159

64 | 66077.71548219238 14415 17682 3274.842 185

128 | 66077.71548219239 16531 | 19637 3223.585 164

256 | 66077.71548219238 17511 | 21521 3843.697 179

Table C.2 Greatest decrease: unstructured subproblem 002

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 66101.61413186065 0 9878 6189.371 627

2| 66101.61413186068 8690 | 11285 4220.139 374

4| 66101.61413186071 9592 | 12348 3046.552 247

8| 66101.61413186062 10990 | 13695 2586.761 189

16 | 66101.61413186067 10877 | 13789 2247.069 163

32 | 66101.61413186061 12535 | 15737 2518.323 .160

64 | 66101.61413186076 13798 | 16903 2949.535 174

128 | 66101.61413186067 14662 | 18059 2954.884 .164

256 | 66101.61413186062 15934 | 19193 3391.625 178
Table C.3 Greatest decrease: unstructured subproblem 003

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 66112.85548290343 0| 10468 6610.214 .631

2| 66112.85548290337 8509 | 10977 4124.044 376

4| 66112.85548290338 9354 | 12118 3036.102 .251

8 | 66112.85548290335 10429 | 13457 2592.094 .193

16 | 66112.85548290340 11241 | 14066 2398.138 170

32 | 66112.85548290329 12784 | 15802 2435.731 154

64 | 66112.85548290335 13947 | 17206 2731.309 .159

128 | 66112.85548290334 14197 | 17368 2826.900 .163

256 | 66112.85548290331 15389 | 18752 3399.980 .181
Table C.4 Greatest decrease: unstructured subproblem 004

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 66376.85627889386 0| 10591 6746.184 .637

2| 66376.85627889370 9293 | 12023 4447.371 370

4 | 66376.85627889373 9390 12022 2963.093 .246

8 | 66376.85627889380 10819 | 13557 2580.055 .190

16 | 66376.85627889371 11036 | 13898 2221.268 .160

32 | 66376.85627889374 12664 | 15712 2436.612 155

64 | 66376.85627889374 13100 16152 2553.328 .158

128 | 66376.85627889379 16022 | 19377 3151.887 .163

256 | 66376.85627889370 16200 | 19483 3392.364 174

Table C.5 Greatest decrease: unstructured subproblem 005

no. processors | objective fcn. value | no. g.d. its. | no. its. time (secs.) | secs./it.

1 | 66005.84856133825 0| 10367 6550.703 .632

2 | 66005.84856133827 8272 | 10770 4039.500 375

4 | 66005.84856133837 9861 | 12575 3062.024 244

8 | 66005.84856133827 10585 | 13491 2561.471 .190

16 | 66005.84856133832 11767 | 14562 2456.353 .169

32 | 66005.84856133828 13220 | 16604 2631.601 .158

64 | 66005.84856133829 14431 | 17874 2827.507 .158

128 | 66005.84856133819 15987 | 19469 3208.854 .165

256 | 66005.84856133824 15539 | 19138 3345.102 175
Table C.6 Greatest decrease: unstructured subproblem 006

no. processors | objective fcn. value | no. g.d. its. | no. its. time (secs.) | secs./it.

1| 66136.12833348897 0| 10287 6484.084 .630

2 | 66136.12833348889 8685 | 10961 4098.645 374

4| 66136.12833348893 9639 | 12256 3075.952 251

8 | 66136.12833348893 10498 | 13814 2615.174 .189

16 | 66136.12833348894 12334 | 15427 2533.612 .164

32 | 66136.12833348894 12369 | 15404 2436.466 .158

64 | 66136.12833348893 14135 | 17234 2761.006 .160

128 | 66136.12833348894 16047 | 19210 3160.061 .165

256 | 66136.12833348893 16200 | 20087 3564.081 177
Table C.7 Greatest decrease: unstructured subproblem 007

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 65563.59864988379 0| 10453 6631.488 .634

2 | 65563.59864988376 8337 | 10779 3985.153 .370

4 | 65563.59864988389 9818 | 12498 3124.463 .250

8 | 65563.59864988377 9987 | 12760 2422.021 .189

16 | 65563.59864988383 11995 | 15206 2546.963 167

32 | 65563.59864988382 12915 | 16259 2560.018 157

64 | 65563.59864988389 13087 | 16491 2592.382 157

128 | 65563.59864988379 15358 | 18891 3087.990 .163

256 | 65563.59864988383 16401 | 19836 3515.729 177

Table C.8 Greatest decrease: unstructured subproblem 003

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 66085.06057166310 0| 10574 6698.875 .634

2| 66085.06057166311 8682 | 10967 4085.566 373

4 | 66085.06057166313 9764 | 12373 3074.874 249

8 | 66085.06057166305 10692 | 13397 2497.217 .186

16 | 66085.06057166315 12693 | 15812 2623.420 .166

32 | 66085.06057166310 12234 | 15112 2295.331 152

64 | 66085.06057166308 14096 | 17753 2905.369 .164

128 | 66085.06057166313 14461 | 17692 2928.163 .166

256 | 66085.06057166305 16124 | 19715 3432.533 174
Table C.9 Greatest decrease: unstructured subproblem 009

no. processors | objective fcn. value | no. g.d. its. | no. its. | time (secs.) | secs./it.

1| 66094.91566015418 0| 10427 6591.083 .632

2 | 66094.91566015410 8661 | 11604 4372.319 377

4 | 66094.91566015419 9238 | 11964 3011.774 .252

8 | 66094.91566015416 10746 | 13633 2576.826 .189

16 | 66094.91566015415 11663 | 14799 2467.613 .167

32 | 66094.91566015413 13194 | 16417 2517.444 153

64 | 66094.91566015416 14202 17585 2809.573 .160

128 | 66094.91566015410 15387 | 18717 3112.354 .166

256 | 66094.91566015410 16832 | 20462 3707.164 181

Table C.10 Greatest decrease: unstructured subproblem 010

Bibliography

[1] J. Barutt and T. Hull. Airline crew scheduling: Supercomputers and algorithms.

SIAM News, 23, 1990.

[2] R.E. Bixby, J.W.Gregory, 1.J.Lustig, R.E.Marsten, and D.F.Shanno. Very large-
scale linear programming: A case study in combining interior point and simplex

methods. Technical Report 91-11, Rice University, Department of Mathematical

Sciences, Houston, Texas, 1991.

[3] Robert E. Bixby. Implementing the simplex method: The initial basis. Technical
Report 90-32, Rice University, Department of Mathematical Sciences, Houston,

Texas, 1990.
[4] Robert E. Bixby, 1993. From private communications.

[5] Robert E. Bixby. Progress in linear programming. Technical Report 93-40, Rice

University, Department of Computational and Applied Mathematics, Houston,

Texas, 1993.
[6] V. Chvétal. Linear Programming. W. H. Freeman and Company, 1983.

[7] J.J. Forrest. Mathematical programming with a library of optimization routines.

Presentation. ORSA/TIMS Joint National Meeting New York, October 1989.

[8] John J. Forrest and Donald Goldfarb. Steepest-edge simplex algorithms for linear
programming. Mathematical Programming, 57:341-374, 1992.

[9] D. Goldfarb and J.K. Reid. A practicable steepest-edge simplex algorithm. Math-
ematical Programming, 12:361-371, 1977.

39

[10] P.M.J. Harris. Pivot selection methods of the Devex LP code. Mathematical

Programming, 5:1-28, 1973.

[11] H.W. Kuhn and R.E. Quandt. An experimental study in the simplex method.
Mathematical Programming, XV, 1963.

