Programming in Fortran M

Ian Foster
Robert Olson
Steven Tuecke

CRPC-TR93355
October 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Preface

Fortran M is a joint development of Argonne National Laboratory and the Cali-
fornia Institute of Technology (Caltech). Mani Chandy and his collcagucs at Caltech
have contributed in numecrous ways. We arc grateful to the many Fortran M uscrs
who have provided valuable feedback on carlier versions of this software, notably
Donald Dabdub, Rajit Manohar, Berna Massingill, Sharif Rahman, John Thayer,

and Ming Xu, and to Andrew Lavery for his contributions to the development of
the Fortran M compiler.

i1l

Contents

Abstract viii
I Tutorial 1
1 Introduction 1
1.1 AboutFortran M 1
1.2 About the Fortran M Compiler 1
1.3 About the Fortran M Project 2
1.4 Caveat o o e e e e 2

2 A First Example 2
21 ASimpleProgram 0., 3
2.2 Compiling and Linking a Program 4
23 RumningaProgram, 4

3 The Fortran M Language 5
3.1 Processcsand Ports 5
3.2 Crcating Channcls and Processes 7
3.2.1 Thc CHANNEL Statement 7

322 TheProcessBlock o 7

3.23 The Process Do-Loop 8

3.3 Decterminism e 9
3.4 Communication e 9
341 SENDand ENDCHANNEL uuun.. 9

3.42 RECEIVE i i i it i s i et e e 10

3.5 Variable-Sized Messageso e e 11
3.6 Communication Examples 11
3.7 Dynamic Channcl Structures 12
3.8 Argument Passing oo 15
3.9 Nondcterministic Computations 0oL, 16
3.9.1 TheMERGER Statcmento v v v v .. 16

3.9.2 ThePROBEStatement 17

310 Mapping . . - .« o v it e e e e e e e e e e e e 20
3.10.1 Virtual Computers oo 20

3.10.2 Process Placcment oo 21

3.10.3 Submachines e 22

4 Compiling, Running, and Debugging 23
4.1 Compiling and Linking Programs 23
4.1.1 C Preprocessor v v v v v vt e e e e e e e 24

4.1.2 Fortran M Compiler and Linker. 25

4.13 Syntax Errors. e 26

42 RunningPrograms 26

4.3 Dcbugging Programs oo o 27

4.3.1 Attachinga Dcbugger, 27

432 FatalErrors. e 27

433 PauscPoints oL 28

5 Further Reading 28
ITI Advanced Topics 30
6 Makefile 30
7 Tuning Fortran M Programs 31
8 Network Specifics 31
81 Usingrsh i i ittt e e 32
8.2 Spccifying Nodes on the Command Line 32
83 UsingaStartupFile o oo 33
8.4 Ending a Computation 0 o0 34
8.5 Arguments to Network Version 34
8.6 Limitations of Network Version 34
III Appendices 36
A IOSTAT values 36
B Obtaining the Fortran M Compiler 37
C Supported Machines 38
D Reserved Words 39
E Deficiencies 40
F Futures Plans 42
G Fortran M Language Definition 43
G.1l Syntax e e e e e e 43
G.1.1 Process, Process Block, Process Do-loop 43

G.1.2 New Declarations o v v v i i e 43

G.1.3 Ncw Exccutable Statements0 44

G.lld Mapping. . . . v v v v v v e e e e e 46

G.1.5 Restrictions o e 46

G.2 CONCUITCNCY .+« « v v v e e e e e e e et e e e e e e e e e 46
G.3 Channcls o v i i e e e e e e e 46
G.4 Nondeterminism oL 47

vi

G.5 Mapping

Index

..................................

vii

Programming in Fortran M

Ian Foster, Robert Olson, and Steven Tuecke

Abstract

Fortran M is a small sct of cxtensions to Fortran that supports a modular ap-
proach to the construction of scquential and parallel programs. Fortran M programs
usc channels to plug together processes which may be written in Fortran M or For-
tran 77. Processes communicate by sending and recciving messages on channels.
Channels and processcs can be created dynamically, but programs remain determin-
istic unless specialized nondeterministic constructs arc uscd. Fortran M programs
can cxccutc on a range of scquential, parallel, and nctworked computers. This re-
port incorporates both a tutorial introduction to Fortran M and a uscrs guide for
the Fortran M compiler developed at Argonne National Laboratory.

The Fortran M compiler, supporting softwarc, and documentation arc made
available free of charge by Argonnc National Laboratory, but arc protected by a
copyright which places certain restrictions on how they may be redistributed. Sce
the softwarc for details. The latest version of both the compiler and this manual can
be obtained by anonymous ftp from Argonnc National Laboratory in the directory
pub/fortran-m at info.mcs.anl.gov.

viii

Part I
Tutorial

1 Introduction

This report provides a tutorial introduction to Fortran M and describes how to
compile and run programs using Version 1.0 of the Fortran M compiler. We assume
familiarity with Fortran 77.

The report is divided into three parts. The first comprises § 1-5, and provides
a tutorial introduction to both the language and compiler. The sccond compriscs
§ 6-8 and provides reference material on such topics as building makefiles, tuning
programs, and running programs on nctworks. Finally, the Appendices provide a
language definition and list keywords, supported machines, known deficiencics, and
futurc plans.

1.1 About Fortran M

Fortran M is a small sct of cxtensions to Fortran that supports a modular approach
to parallel programming, permits the writing of provably deterministic parallel pro-
grams, allows the specification of dynamic process and communication structures.
provides for the integration of task and data parallelism, and cnables compiler op-
timizations aimed at communication as well as computation. Fortran M provides
constructs for creating tasks and channcls, for sending messages on channcls, for
mapping tasks and data to procecssors, and so on.

Because Fortran M extends Fortran 77, any valid Fortran program is also a valid
Fortran M program. (There is onc exception to this rule: the keyword COMMON must
be renamed to PROCESS COMMON. However, this requircment can be overridden by a
compiler argument; sce §4.1.) The extensions themsclves have a Fortran “look and
fcel” and arc intended to be casy to usc: they can be mastered in a few hours.

The basic paradigm underlying Fortran M is task-parallelism: the parallel cxc-
cution of (possibly dissimilar) tasks. Hence, Fortran M complements data-parailel
languages such as Fortran D and High Performance Fortran (HPF). In particular,
Fortran M can be uscd to coordinate multiple data-parallel computations. Our goal
is to integratc HPF with Fortran M, thus combining the data-parallcl and task-
parallel programming paradigms in a singlc systcm.

Current application cfforts include coupled climate models, multidisciplinary de-
sign, air quality modeling, particle-in-ccll codes, and computational biology.

1.2 About the Fortran M Compiler

This report describes Version 1.0 of the Fortran M compiler. This is a preprocessor
that translates Fortran M programs into Fortran 77 plus calls to a run-time commu-
nication and proccss management library. The Fortran 77 gencrated by the prepro-
cessor is compiled with a conventional Fortran 77 compiler. Version 1.0 is a complete

implementation of Fortran M, cxcept where noted otherwise in Appendix E. Sce
Appendix C for information on supported machincs.

The communication code gencrated by the Fortran M compiler has yet to be
optimized. However, performance studics show that it alrcady comparcs favorably
with p4 and PVM, two popular message-passing librarics. A deficiency of Version 1.0
is that process crcation and process switching arc both relatively expensive oper-
ations. This has an impact on the classcs of algorithms that can be implemented
cfficiently in Fortran M. We cxpect both communication and process management
performance to improve significantly in subscquent relcases.

1.3 About the Fortran M Project

The Fortran M project is a joint activity of Argonnc National Laboratory and the
California Institute of Technology; the Fortran M compiler was developed at Ar-
gonnc National Laboratory. We arc continuing to develop and refine the Fortran M
language and compiler. We outline some of our plans in Appendix F. Wec wclcome
comments on both the current softwarc and development prioritics.

The Fortran M mailing list is uscd to announce new compiler relcases. Scnd
clectronic mail to fortran-m@mcs.anl.gov if you wish to be added to this list.
Pleasc send inquirics, comments, and bug reports to the same address.

1.4 Caveat

The Fortran M compiler should be considered unsupported rescarch software. (We
provide support on a best-cfforts basis but make no guarantces.) The prospective
user is urged to study the list of deficiencics provided in Appendix E of this manual
before writing programs.

2 A First Example

We usc a simple example to introduce both Fortran M and the Fortran M compiler.
We assume that Fortran M is alrcady installed on your computer. (If it is not, rcad
the documentation provided with the Fortran M softwarc rclcasc.)

Before you can usc Fortran M, you must tell your environment where to find
the compiler. (Normally, this will be /usr/local/fortran-m, but some systcms
may place the compiler in a different location.) If you arc using the standard Unix
C-shell (csh), you add onc linc to the end of the file .cshrc in your home dircctory.
If the compiler has been installed in /usr/local/fortran-m, this linc is

set path = ($path /usr/local/fortran-m/bin)

The cnvironment variable path tclls the Unix shell where to find various programs
such as the Fortran M compiler. This shell command adds the dircctory containing
the compiler to your shell’s scarch path. You may have to log out and log in again
for this to take cffect.

2.1 A Simple Program

The examplel.fm program crcatcs two tasks, producer and consumer, and connccts
them with a channel. The channel is used to communicate a strcam of integer valucs
1,...,5 from producer to consumer.

Iexamplei .fml

program examplel
inport (integer) pi
outport (integer) po
channel(in=pi, out=po)
processes
processcall producer(5, po)
processcall consumer(pi)
endprocesses
end

process producer (nummsgs, po)
intent (in) nummsgs, po
outport (integer) po
integer nummsgs, i
do i = 1, nummsgs
send(po) i
enddo
endchannel (po)
end

process consumer (pi)
intent (in) pi
inport (integer) pi
integer message, ioval
receive(port=pi, iostat=ioval) message
do while(ioval .eq. 0)
print *, ’consumer received ’, message
receive(port=pi, iostat=ioval) message
enddo
end

The program compriscs a main program and two process definitions. The main
program dcclarcs two port variables pi and po. These can be used to reccive (INPORT)
and scend (QUTPORT) intcger messages, respectively. The CHANNEL statement creates
a communication channel and initializes pi and po to be references to this channcl.
The process block (PROCESSES/ENDPROCESSES) crcates two concurrent processcs,
passing the port variables as arguments.

The process definitions arc distinguished by the PROCESS keyword. The producer
process uscs the SEND statement to add a scquence of messages to the message
queuc associated with the channcl referenced by po. The ENDCHANNEL statement
terminates this scquence. The consumer process uscs the RECEIVE statcment to
remove messages from this message queuc until termination is detected.

2.2 Compiling and Linking a Program

The Fortran M compiler, £m, is used to compile a Fortran M source file. The For-
tran M compiler is used in a similar manner to other Unix-based Fortran compilers.
Becausc our program is contained in a file examplel.fm, we type

fm -c examplel.fm

This produccs examplel .o, which contains the object code for this Fortran M source
file.

Next we must link the examplel.o object file with the Fortran M run-time
systcm and the system librarics. This is accomplished by running

fm -o examplel examplel.o

As with most Fortran compilers, the -o flag specifics that the name of the exccutable
produced by the linker is to be named examplel.
For morc information on compiling and linking Fortran M programs, scc §4.1.

2.3 Running a Program

A Fortran M program is cxccuted in the same way as other programs. For example,
to run examplel, you would typc the following, where % is the Unix shell prompt:

% ezamplel

consumer received 1
consumer received 2
consumer received 3
consumer received 4
consumer received 5

h

In this and subscquent examples of running programs, text typed by the user is
written in italic, program output in roman, and the shell prompt is .

The Fortran M run-time systcm has a number of run-time configurable param-
cters that can be controlled by command linc arguments. In order to keep these
run-time systcm argumcnts from interfering with the program’s arguments, all ar-
guments up to but not including the first -fm argument arc passcd to the program.
All arguments after the -fm argument arc passcd to the run-time system. For cx-
ample, supposc you run a Fortran M program as follows:

4

my_program my.argl my_arg2 -fm -nodes dalek

This causcs my-argl and my.arg2 to be passed to the Fortran M program, and
-nodes and dalek to the run-time system.

Run-time system paramcters arc discussed in more detail in §4.2. In addition, a
complete list of these run-time system paramecters, and a brief description of their
mcaning, can be obtained by using the ~h argument, for cxample:

my_program -fm -h

3 The Fortran M Language

We now proceed to a more complete description of the Fortran M cxtensions to
Fortran 77, summarized in Figure 1.

3.1 Processes and Ports

As illustrated in the program examplel.fm (§2), a task is implemented in Fortran M
as a process. A process, like a Fortran program. can define common data (labeled
PROCESS COMMON to cmphasize that it is local to the process) and subroutines that
opcratc on that data. It also defines the interface by which it communicates with
its cnvironment. A process has the same syntax as a subroutine, except that the
keyword PROCESS is usced in placc of SUBROUTINE.

A process’s dummy arguments (formal paramcters) arc a sct of typed port vari-
ables. Thesce define the process’s interface to its cnvironment. (For convenicnce,
conventional argument passing is also permitted between a process and its parcnt.
This featurc is discussed in Section 3.8.) A port variable declaration has the general
form

port_type (data_type-list) name_list

The port_type is OUTPORT or INPORT and spccifics whether the port is to be used
to send or reccive data, respectively. The data_type_list is a comma-scparated list of
type declarations and specifics the format of the messages that will be sent on the
port, much as a subroutinc’s dummy argument declarations defines the arguments
that will be passed to the subroutine.

In the program examplel.fm (§2), both pi and po arc to be used to communicate
messages comprising single integers. More complex message formats can be defined.
For cxample, the following declarations define inports able to (1) reccive messages
comprising single intcgers, (2) arrays of msgsize rcals (p2), and (3) a single integer
and a rcal array with sizc specified by the integer, respectively. In the sccond and
third decclaration, the names m and x have scope local to the port declaration.

inport (integer) pi1
inport (real x(msgsize)) p2
inport (integer m, real x(m)) p3

Proccess:

Interfacce:
Control:

Communication:

Argument Copying:

Virtual Computer:

Process Placcment:

PROCESS
PROCESS COMMON
PROCESSCALL

INPORT
QUTPORT

PROCESSES/ENDPROCESSES
PROCESSDO/ENDPROCESSDO

CHANNEL
MERGER
SEND
RECEIVE
ENDCHANNEL
MOVEPORT
PROBE

INTENT

PROCESSORS
SUBMACHINE

LOCATION

Figurc 1: Fortran M Extcnsions

The value of a port variable is initially a distinguished value NULL. It can be
defined to be a reference to a channcl by means of the CHANNEL, MERGER, MOVEPORT,
or RECEIVE statcments, to be defined below.

A port cannot appcar in an assignment statcment. The MOVEPORT statcment is
uscd to assign the valuc of onc port to another. For cxample:

inport (integer) p1, p2
moveport (from=pl, to=p2)

This moves the port reference from p1 to p2, and then invalidates the FROM= port
(p1) by sctting it to NULL so that it can no longer be used by SEND, RECEIVE, ctc.

3.2 Creating Channels and Processes

A Fortran M program is constructed by using process blocks and process do-loops to
create concurrently exccuting processes, which arc then plugged together by using
channels to conncct inport/outport pairs. A channcl is a first-in/first-out message
qucuc with a single sender and a single receiver. In this way, processes with morc
complex behaviors arc defined. These can themselves be composed with other pro-
cesses, in a hicrarchical fashion.

3.2.1 The CHANNEL Statement

A program creates a channcl by exccuting the CHANNEL statcment. This has the
following gencral form.

channel (in=inport, out=outport)

This both crecates a new channel and defines inport and outport to be references to
this channcl, with inport able to reccive messages and outport able to send messages.
The two ports must be of the same type. Optional I0STAT= and ERR= spccificrs can
be used as in Fortran file input/output statcments to detect crror conditions. Sce
Appendix A for a list of valid IOSTAT valucs.

3.2.2 The Process Block

A process call has the same form as a subroutine call, cxcept that the special syntax
PROCESSCALL is used in place of CALL. Process calls arc placed in process blocks
and process do-loops (defined below) to create concurrently exccuting processes. A
process block has the gencral form

processes
statement_1

statement_n
endprocesses

where n > 0, and the statements arc process calls, process do-loops, and/or at most
onc subroutine call. Statcments in a process block cxccute concurrently. A proccss
block terminates, allowing cxccution to procced to the next exccutable statcment,
when all of its constituent statcments terminate.

Onc of the statcments in a process block may be a subroutine call. This is
denoted by the usc of CALL instcad of PROCESSCALL in the process block. The call is
cxecuted concurrently with the other processes in the block, but is executed in the
current process.

If a proccss block includes only a single process call, then the PROCESSES and
ENDPROCESSES statcments can be omitted. Note, however, that since the parent pro-
cess suspends until the new process completes cxecution, no additional concurrency
is introducecd.

3.2.3 The Process Do-Loop

A process do-loop crcates multiple instances of the same process. It is identical
in form to the do-loop, cxcept that the keyword PROCESSDO is uscd in place of DO
the body can include only a proccss do-loop or a process call, and the keyword
ENDPROCESSDO is uscd in place of ENDDO. For cxample:

processdo i = 1, n
processcall myprocess
endprocessdo

Process do-loops can be nested inside both process do-loops and process blocks.
Howcver, process blocks cannot be nested inside process do-loops.

We illustratc the usc of the process do-loop in the ringl.fm program bclow. A
total of nodes channcls and processes arc created, with the channcls connecting the
processes in a unidirectional ring.

|ring1 .fm

program ringl
parameter (nodes=4)
inport (integer) pi(nodes)
outport (integer) po(nodes)
do i = 1, nodes
channel (in=pi(i), out=po(mod(i,nodes)+1))
enddo
processdo i = 1, nodes
processcall ringnode(i, pi(i), po(i))
endprocessdo
end

3.3 Determinism

Proccss calls in a process block or process do-loop can be passed both ports and
ordinary variables as arguments. It is illegal to pass the same port to two or morc
processcs, as this would compromisc determinism by allowing multiple processes to
send or receive on the same channel.

Variables named as process arguments in a process block or do-loop arc passed
by value: that is, they arc copied. In the casc of arrays, the number of valucs copicd
is determined by the declaration in the called process. Values arc also copied back
upon tcrmination of the process block or do-loop, in textual order. These copy
opcrations cnsurce deterministic cxecution, even when concurrent processes update
overlapping scctions of arrays. Intent declarations (described in Scction 3.8) can be
used to prevent some of these copy operations from occurring.

The MOVEPORT statcment invalidates (i.c., scts to NULL) the FROM= port when
copying it to the TO= port. This prevents multiple ports from send or recciving on
the same channel, again preserving determinism.

3.4 Communication

Each Fortran M process has its own address space. The only mechanism by which
it can intcract with its cnvironment is via the ports passed to it as arguments. A
proccss uscs the SEND, ENDCHANNEL, and RECEIVE statcments to send and reccive
messages on these ports. These statements arc similar in syntax and secmantics to
Fortran’'s WRITE, ENDFILE, and READ statcments, respectively, and can include END=,
ERR=, and IOSTAT= spccificrs to indicatec how to rccover from various cxceptional
conditions.

3.4.1 SEND and ENDCHANNEL

A process sends a message by applying the SEND statcment to an outport; the out-
port declaration specifics the message format. A process can also call ENDCHANNEL
to send an cnd-of-channcl (EOC) message. ENDCHANNEL also scts the valuc of the
port variable to NULL, preventing further messages from being sent on that port.
The SEND and ENDCHANNEL statements arc nonblocking (asynchronous): they com-
pletc immediately. When a SEND statcment completes, you arc guaranteed that the
variables that were sent arc no longer needed by the send, so they may be modified.

For cxample, in the program examplel.fm (§2), thc outport po is defined to
allow the communication of single integers. The producer process makes repeated
calls to SEND statcment to scnd a sequence of integer messages, and then signals
cnd-of-channcl by a call to ENDCHANNEL.

Channcls can also be used to communicate more complex messages. For cxample,
in the following codc fragment the SEND statcment sends a message consisting of the
integer i followed by the first 10 clements of the real array a.

outport (integer, real x(10)) po
integer i

integer a(10)
send(po) i, a

An array clement name can be given as an argument to a SEND statcment. If the
corresponding message componcnt is an array, then this is interpreted as a starting
address, from which the required number of clements, as specified in the outport
declaration, arc taken in array clement order. Hence, the following statement sends
the ith row of the array b.

outport (integer, real x(10)) po
integer i
integer b(10,10)

send(po) i, b(1,1)

As in Fortran I/O statcments, ERR= and IOSTAT= spccificrs can be included to
indicatc how to recover from cxceptional conditions. Thesc have the same meaning as
the cquivalent Fortran I/O specifiers, with end-of-channel treated as cnd-of-file, and
an opcration on an undcfined port treated as crroncous. Hence, an ERR=label specificr
in a SEND or ENDCHANNEL statcment causcs cxccution to continuc at the statcment
with the specified label if the statcment is an undefined port. An IOSTAT=intval
specifier causcs the integer variable intval to be sct to 0 upon successful exccution
and to an crror valuc otherwisc. Sce Appendix A for a complete list of valid IOSTAT
valucs.

3.4.2 RECEIVE

A proccss reccives a value by applying the RECEIVE statement to an inport. For
_ cxample, the consumer proccss in examplel.fm (§2) makes repeated calls to the
RECEIVE statcment so as to receive a sequence of integer messages, detecting end-of-
channcl by using the IOSTAT specificr, described in the preceding scction. A RECEIVE
statement is blocking (synchronous): it docs not complete until data is available.
Hence, the consumer process cannot “run ahcad” of the producer.

Reccive statements for more complex channel types must specify onc variable
for cach valuc listed in the channel type. For cxample, the following is a receive
statcment corresponding to the send statement given as an example in the preceding
scction.

inport (integer, real x(10)) pi
integer i
real a(10)

receive(pi) i, a

An array clement name can be given as an argument to a RECEIVE statcment.
If the corrcsponding message component is an array, then this is interpreted as

10

a starting address and the required number of clements arc stored in contiguous
clements in array clement order. Hence the following statement reccives the ith row
of the array b.

inport (integer, real x(10)) pi
integer i, j
real b(10,10)

receive(pi) j, b(1,i)

As in Fortran I/O statcments, END=, ERR=, and IOSTAT= spccificrs can be included
to indicatc how to recover from crroncous conditions. These have the same mcaning
as the cquivalent Fortran I/O specifiers, with cnd-of-channcl trcated as end-of-file
and an opcration on an undcfined port treated as crroncous. Hence, an END=label
specifier causes exccution to continuc at the statement with the specified label upon
receipt of a EOC message. Sce Appendix A for a list of the valid IOSTAT valucs.

3.5 Variable-Sized Messages

Array dimcensions in a port declaration can include variables declared in the port
declaration (as long as they appear to the left of the array declaration), parameters,
and arguments to the process or subroutine in which the declaration occurs. (How-
cver, the symbol “*” cannot be used to specify an assumed size.) Variables declared
within a port declaration have scope local to that declaration.

If an array dimension in a port declaration includes variables declared in the port
declaration, then that port can be used to communicate arrays of different sizes. For
cxample, the following code fragment sends a message comprising the integer num
followed by num recal valucs.

outport (integer n, real x(n)) po
integer num
real a(maxsize)

send(po) num, a
The following codc fragment reccives both the valuc num and num real valucs.
inport (integer n, real x(n)) pi
integer num
real b(maxsize)
receive(pi) num, b
3.6 Communication Examples

We further illustrate the usc of Fortran M communication statcments with the pro-
gram ring2.fm. This program implements a “ring pipcline”, in which NP processcs

11

arc connccted via a unidirectional ring. After NP-1 scend-reccive-compute cycles,
cach process has accumulated the valuc Z:\:If in the variable sum.

ring2.fm |

program ring?2
parameter (np=4)
inport (integer) ins(np)
outport (integer) outs(np)
do i =1, np
channel(in=ins (i), out=outs(mod(i,np)+1))
enddo
processdo i = 1, np
processcall ringnode(i, np, ins(i), outs(i))
endprocessdo
end

process ringnode(me, np, in, out)
intent (in) me, np, in, out
integer me, np
inport (integer) in
outport (integer) out
buff = me
sum = buff
do i =1, np-1
send(out) buff
receive(in) buff
sum = sum + buff
enddo
endchannel (out)
receive(in) buff
print *, ’node ’, me, ’ has sum = ’, sum
end

3.7 Dynamic Channel Structures

The valucs of ports can be incorporated in messages, hence transferring the ability
to send or reccive on a channcl from onc process to another. A port that is to be
uscd to communicate port values must have an appropriate type. For cxample, the
following declaration specifies that inport pi will be used to receive integer outports.

inport (outport (integer)) pi

A reccive statement applicd to this port must take an integer outport as an
argument. For cxample:

12

inport (outport (integer)) pi
outport (integer) to

receive(pi) to

We illustratc this language fcaturc by sketching an implementation of worker
and manager processes. (The techniques used to connect the manager and multiple
workers used in this cxample are described in §3.9.1.) The worker process takes
two outports as argumcnts. It uscs the first to request tasks from a manager and
the sccond to report the best result. When requesting a task from the manager, it
crcates a new channcl, sends the outport, and waits for the new task to arrive on
the inport. It closes the channcl to the manager and terminates upon receipt of the
task descriptor 0. The manager process is assumed to be responsible for handing
out numtasks intcger task descriptors. It repcatedly reccives an outport from a
worker and uscs this to send a task descriptor. Once numtasks descriptors have
been handed out, it responds to subscquent requests by sending “0”. It terminates
when the requests channel is closed, indicating that all workers have terminated.

13

lworkJman.fmI

process worker(tasks, score)

outport (outport (integer)) tasks

outport (real) score

inport (integer) ti

outport (integer) to

real val, best

integer task

best = 0.0

channel(in=ti, out=to)

send(tasks) to

receive(ti) task

do while (task .gt. 0)
val = compute(task)
if(val .gt. best) best = val
channel(in=ti, out=to)
send(tasks) to
receive(ti) task

enddo

endchannel (tasks)

send(score) best

endchannel(score)

end

process manager(pi)
integer numtasks
parameter (numtasks = 5)
inport (outport (integer)) pi
outport (integer) request
do i = 1, numtasks
receive(pi) request
send(request) i
endchannel (request)
enddo
end

A SEND opcration that communicates the valuc of a port variable also invalidates
that port by sctting that variable to NULL. This action is nccessary for determinism:
it cnsurcs that the ability to scnd or reccive on the associated channcl is transferred
from onc process to another, rather than replicated. Hence, in the following code
fragment the sccond send statement is crroncous and would be flagged as such cither

at compile time or run time.

outport (outport (integer)) po

14

outport (integer) to

send(po) to
send(to) msg

3.8 Argument Passing

As noted in §3.3, variables passed as arguments in a process block or do-loop are,
by dcfault, copiecd when the process is called and again upon process termination.
Copy opcrations can be avoided by declaring process arguments INTENT (IN) (copy
in at call, but do not copy out) or INTENT(QUT) (copy out at termination, but do
not copy in). The dcfault behavior can be specified explicitly as INTENT (INOUT).

(Scec §E for the INTENT bchavior of ports in this relcasc.)
The program intent1.fm bclow demonstrates the usc of INTENT.

Iintenti .fm|

program intentl

integer n

n =10

print *, ’main before: n = ’, n
processcall p(n)

print *, ’main after: n =’, n
end

process p(n)

integer n

print *, ’p before: n ="’, n
n =20

print *, ’p after: n="’, n
end

Running this program will yicld:

% intentl

main before: n = 10
p before: n = 10

p after: n = 20
main after: n = 20

h

Adding the statcment intent (in) n to proccss p gives:

% intentl

main before: n = 10
p before: n = 10

p after: n = 20
main after: n = 10

h

Changing this statcment to intent (out) n yiclds:

% intentl

main before: n = 10
p before: n =20

p after: n = 20
main after: n = 20

%

3.9 Nondeterministic Computations

Fortran M provides two statcments that can be used to implement nondcterministic
computations: MERGER and PROBE. A program that docs not usc these statements is
guarantced to be deterministic.

3.9.1 The MERGER Statement

A MERGER statcment defines a first-in/first-out message qucuc, just like CHANNEL.
However, it allows multiple outports to reference this queuc and hence defines a
many-to-onc communication structurc. Messages sent on any outport arc appended
to the queue, with the order of messages sent on cach outport being preserved and
any mecssage scnt on an outport cventually appearing in the queue.

The MERGER statcment has the following gencral form.

merger (in=inport, out=outport_specifier)

This creates a new merger, defines inport to be able to reccive messages from this
merger, and defines the outports specified by the outport_specifier to be able to send
messages on this merger. An outport_specifier can be a single outport, a comma-
scparated list of outports, or an implicd do-loop. The inport and the outports in the
outport_specifier must be of the same type. Optional IOSTAT= and ERR= spccificrs
can bc used as in Fortran file input/output statcments to detect crror conditions.
Sce Appendix A for a list of valid IOSTAT valucs.

The following mergeri.fm cxamplc uscs MERGER to crcatc a manager/worker
structurc with a single manager and multiple workers. The manager and worker

16

componcnts have been previously defined in the work.man. fm program in §3.7. In
this cxample, two mergers arc used: onc to connect numwork workers with the man-
ager, and onc to conncct the workers with an outmonitor process.

|merger1 . fml

program mergeri

integer numwork, i

parameter (numwork = 10)

inport (real) scores_in

outport (real) scores_out(numwork)

inport (outport (integer)) reqs_in

outport (outport (integer)) reqs_out(numwork)

merger (in=reqs_in, out=(reqs_out(i),i=1,numwork))
merger (in=scores_in, out=(scores_out(i),i=1,numwork))

processes
processcall manager(reqs_in)
processdo i = 1, numwork
processcall worker(reqs_out(i), scores_out(i))
endprocessdo
processcall outmonitor(scores_in)
endprocesses
end

3.9.2 The PROBE Statement

A process can apply the PROBE statcment to an inport to determine whether messages
arc pending on the associated channel. A PROBE statcment has the genceral form

probe (inport, empty=logical)

A logical variable specified in the EMPTY=variable specificr is sct to falsc if there
is a message rcady for receipt on the channcl or if the channcl has been closed (i.c.,
rcached cnd-of-channel), and to truc otherwisc. In other words, the EMPTY=variable
spccificr is sct to truc if a RECEIVE on this inport would block, and to falsc if it would
not.

In addition, IOSTAT= and ERR= spccificrs can be included in its control list; thesc
arc as in the Fortran INQUIRE statcment. Hence, applying a PROBE statcment to an
undcfined port causcs an integer valuc specified in an IOSTAT spccifier to be sct to
a nonzcro valuc and causcs the cxecution to branch to a label provided in an ERR=
specifier. Sce Appendix A for a list of valid IOSTAT valucs.

Knowledge about sends is presumed to take a nonzcero but finite time to become
known to a proccss probing an inport. Hence, a probe of an inport that references

17

a noncmpty channcl may signal truc if the channcl valucs were only recently com-
municated. However, if applied repeatedly without intervening receives, PROBE will
cventually signal false, and will then continuc to do so until valucs arc received.

The PROBE statcment is uscful when a process wishes to interrupt local computa-
tion to handlc communications that arrive at some unpredictable ratc. The process
alternates between performing computation and probing for pending messages, and
switchs to handling mecssages when PROBE rcturns false. For cxample, this is the
bchavior that is required when implementing a onc-process-per-processor version of
a branch-and-bound scarch algorithm. Each process altcrnates between advancing
the local scarch and responding to requests for work from other processes:

do while (.true.)
call advance_local_search
probe (requests,EMPTY=empty)
if(.not. empty) call hand_out_work
enddo

The PROBE statcment can also be used to receive data that arrives in a nondcter-
ministic fashion from scveral sources. For cxample, the following program handles
messages of types T'1 and T2, received on two ports, pl and p2, respectively.

process handle_msgs(pl,p2)
inport (T1) p1
inport (T2) p2

do while(.true.)
probe(p1l,EMPTY=el)
if(.not. el) then
receive(pl) valil
call handle_msgi(vall)
endif
probe (p2,EMPTY=e2)
if(.not. e2) then
receive(p2) val2
call handle_msg2(val2)
endif
enddo

A disadvantagc of this program is that if 1o messages arc pending, it consumecs
resources by repeatedly probing the two channcls. This “busy waiting” strategy is
acceptable if no other computation can be performed on the processor on which this
process is exccuting. In gencral, however, it is preferable to usc a non-busy-waiting

18

technique. If T1 = T2, we can introduce a merger to combine the two message
strcams. Thc handle msgs2 process then performs reccive operations on its single
inport, blocking until data is available.

merger (in=pi, (out=po(i),i=1,2))
processes
processcall sourcel(po(1))
processcall source2(po(2))
processcall handle_msgs2(pi)
endprocesses

If T'1 # T2, we can usc the following technique. Each source process is augmented
with an additional outport of typec integer, on which it sends a distinctive message
cach time it sends a message. The integer outports arc connccted by a merger with
an inport which is passcd to the handle msgs process. This process performs receive
opcrations on the inport to determine which source process has pending messages.

merger (in=ni, (out=no(i),i=1,2))
channel(in=p1i,out=plo)
channel (in=p2i,out=p2o0)
processes
processcall sourcel(l,plo,no(1))
processcall source2(2,p20,n0(2))
processcall handle_msgs(pli,p2i,ni)
endprocesses

process handle_msgs(pl,p2,pp)
inport (T1) pi

inport (T2) p2

inport (integer) pp

do while(.true.)
receive(pp) id
if(id .eq. 1) then
receive(pl) val
else
receive(p2) val
endif
call handle_mesg(val)
enddo

19

3.10 Mapping

Process blocks and process do-loops define concurrent processes; channcls and merg-
crs define how these processes communicate and synchronize. A parallel program
defined in terms of these constructs can be executed on both uniprocessor and mul-
tiprocessor computers. In the latter case, a complete program must also specify how
processes arc mapped to processors.

Fortran M incorporates specialized constructs designed specifically to support
mapping. The PROCESSORS dcclaration specifics the shape and dimension of a virtual
processor array in which a program is assumed to cxccute, the LOCATION annotation
maps processcs to specified clements of this array, and the SUBMACHINE annotation
specifics that a process should exccute in a subsct of the array. An important aspect
of these constructs is that they influence performance but not correctness. Hence, we
can develop a program on a uniprocessor and then tunc performance on a parallel
computer by changing mapping constructs.

3.10.1 Virtual Computers

Fortran M’s proccss placcment constructs arc based on the concept of a wirtual
computer: a collection of virtual proccssors, which may or may not have the samc
topology as the physical computer on which a program cxccutes. For consistency
with Fortran concepts, a Fortran M virtual computer is an N-dimensional array, and
the constructs that control the placement of processes within this array arc modcled
on Fortran’s array manipulation constructs.

The PROCESSORS declaration is used to specify the shape and size of the (implicit)
processor array on which a process cxecutes. This is similar in form and function to
the array DIMENSION statement. It has the gencral form PROCESSORS (Iy,...,Ix)
where #n > 1 and the I; have the samc form as the arguments to a DIMENSION
statcment. For cxample, the following declarations all describe a virtual computer
with 256 proccssors.

processors(256)
processors(16,16)
processors(16,4,4)

The PROCESSORS declaration in the main program specifics the shape and size
of the virtual processor array on which that program is to cxccute. The mapping
of thesc virtual processors is specified at load time. This mapping may be achicved
in different ways on different computers. Usually, there is a onc-to-onc mapping of
virtual proccssors to physical processors. Somctimes, however, it can be uscful to
have more virtual processors than physical processors, for cxample, if developing a
multicomputer program on onc proccessor.

A PROCESSORS dcclaration in a process spcecifics the shape and size of the virtual
processor array on which that particular process is to cxccute. As with a regular
array passcd as an argument, this processor array cannot be larger than that declared
in its parent, but can be smaller or of a different shape.

20

3.10.2 Process Placement

The LOCATION annotation spcecifics the processor on which the annotated process
is to cxccute. It is similar in form and function to an array rcference. It has the
gencral form LOCATION(Iy, ...,I,), where n > 1 and the I; have the same form
as the indices in an array rcference. The indices must not reference a processor
array clement that is outside the bounds spccificd by the PROCESSORS dcclaration
provided in the process or subroutine in which the annotation occurs.

The following codc fragment shows how the program ringl.fm (§3.2.3) might
be extended to specify process placement. The PROCESSORS declaration indicates
that this program is to cxccute in a virtual computer with 4 proccssors, while the
LOCATION annotation placed on the process call specifics that cach ringnode process
is to cxccute on a scparatc virtual processor.

program ringl_with_mapping
parameter (nodes=4)
processors(nodes)

processdo i = 1, nodes

processcall ringnode(i, pi(i), po(i)) location(i)
endprocessdo
end

The program tree.fm shows the a more complex usc of mapping constructs.
The process tree creates a sct of 2n — 1 (n a power of 2) processes connected in a
binary trcc. The mapping construct cnsurcs that processes at the same depth in the
tree cxccute on different processors, if n < P, where P is the number of processors.

21

tree.fm

process tree(locn, n, toparent)
intent (in) locn, n, toparent
inport (integer) 1i, ri
outport (integer) lo, ro, toparent
processors(16)
if(n .gt. 1) then
channel(in=1i, out=lo)
channel(in=ri, out=ro)
processes
processcall tree(locn,n/2,l0)
processcall tree(locn+n/2,n/2,ro) location(locn+n/2)
processcall reduce(li,ri,toparent)
endprocesses
else
call leaf(toparent)
endif
end

3.10.3 Submachines

A SUBMACHINE annotation is similar in form and function to an array reference passed
as an argument to a subroutine. It has the gencral form SUBMACHINE(Iy,...,I.).
where 7 > 0 and the I; have the same form as the indices in an array reference. It
spccifics that the annotated process is to cxccute in a virtual computer comprising
thc processors taken from the current virtual computer, starting with the speci-
ficd proccssor and procceding in array clement order. The size and shape of the
new virtual computer arc as specificd by the PROCESSORS dceclaration in the process
dcfinition.

The SUBMACHINE annotation can be used to create several disjoint virtual com-
puters, cach comprising a subsct of available processors. For cxample, in a coupled
systcm comprising an occan model and an atmosphere model, it may be desirable
to cxccutc the two modecls in parallel, on different parts of the same computer.
This organization is illustrated in Figurc 2(A) and can bec specificd as follows.
We assumec that thc occan and atmosphere modcls both incorporate a declaration
PROCESSORS (np,np); hence, the atmosphere model is exccuted in onc half of a vir-
tual computer of sizc np X 2 X np, and the occan model in the other half.

22

OO]O|O

Ol0I0

~—— e’

(A)

Figurc 2: Alternative Mapping Stratcgics

parameter (np=4)
processors (np,2*np)

processes
processcall atmosphere(sst_in, uv_out) submachine(1,1)
processcall ocean(sst_out, uv_in) submachine(1,np+1)
endprocesses

Alternatively, it may be more cfficicnt to map both models to the same sct
of processors, as illustrated in Figurc 2(B). This can be achicved by changing the
PROCESSORS dcclaration to PROCESSORS (np,np) and omitting thc SUBMACHINE an-
notations. No change to the component programs is required.

4 Compiling, Running, and Debugging

The following scctions provide a detailed description of the Fortran M compiler and
how to usc it when writing and dcbugging Fortran M programs.

4.1 Compiling and Linking Programs

The Fortran M compiler, £m, is a preprocessor rather than a truc compiler. However,
it is capable of compiling and linking Fortran M files (.fm suffix), Fortran M files
with C preprocessor (CPP) dircctives (.FM suffix), Fortran files (. £ suffix), Fortran
files with CPP dircctives (.F suffix), and C files (. c suffix).

Every cffort was made to make the Fortran M compiler conform to conventions
uscd by most other compilers. Exceptions and additions arc described in the follow-
ing scctions.

23

