Parallelization using Spatial Decomposition
for Molecular Dynamics

Terry W. Clark
Reinhard v. Hanxleden
J. Andrew McCammon

L. Ridgway Scott

CRPC-TR93356-S
November 1993

Center for Research on Parallel Computing
Rice University

P.O. Box 1892

Houston, TX 77251-1892







Parallelization using Spatial Decomposition for Molecular

Dynamics
Terry W. Clark Reinhard v. Hanxleden J. Andrew McCammon L. Ridgway Scott
clark@kacha.chem.uh.edu reinhard@rice.edu mccammon@uh. edu scott@uh.edu
Dept. of Computer Science Dept. of Computer Science Dept. of Chemistry Dept. of Mathematics
University of Houston Rice University University of Houston University of Houston
Houston, TX 77204 Houston, TX 77251 Houston, TX 77204 Houston, TX 77204

1 Introduction

Molecular dynamics (MD) simulations are useful computational approaches for studying various
kinetic, thermodynamic, mechanistic, and structural properties 11, 14]. Molecular dynamics
programs tend to be complex, taking many years to write, with frequent modification. There
exist several MD programs, like GRomos [7] or CHARMM [1], that are well established and
are routinely used to solve a broad range of different simulation problems. However, despite
the maturity of these programs and the significant hardware improvements made since their
introduction, there is an interest in simulating larger systems, over longer periods of time, than
is currently feasible. A number of researchers have already shown that MD is amenable for
parallelization [2, 10, 6, 3, 19, 12]. However, certain difficulties arise when trying to achieve high
efficiencies with large numbers of processors, largely due to the computationally irregular nature
of MD codes in general. This paper presents EULERGROMOS, a parallelization of GROMOS that
focuses on overcoming these scalability problems.

An MD simulation applies Newton’s equations of motion to a molecular system to deter-
mine a new set of positions and velocities for the atoms at each timestep. The calculation of
a single timestep involves an iteration over several major phases in the MD program. EULER-
GROMOS parallelized all of those major phases, including numerical integration with constraints
(or SHAKE [20]), pairlist construction, and the computation of non-bonded forces (NBF). Since
most MD runs perform the bulk of the work (around 90%) in the NBF routine, this phase is of
particular interest. A common technique to accelerate the NBF calculation is to ignore all NBF
interactions beyond a certain cutoff radius, Rcye [18]. This in turn provides an access locality
that makes Eulerian, application space oriented data distributions desirable. An Eulerian de-
composition, or geometric decomposition, assigns application space to processors, as compared
to Lagrangian mappings where particles are assigned to processors.

A typical limitation of cutoff-radius based link-cell parallelizations is to restrict communi-
cation to nearest neighbors; consequently, each processor subdomain has to be greater than or
equal to the cutoff radius size (see Section 4). Under this restriction, typical values for the
density p of 0.1 atoms/A3 and Ry of 15A would result in a minimum of about 300 atoms
per processor subdomain. For a fixed problem size, this restriction imposes an upper bound on
the number of processors that can be used. However, as shown in Figure 1, EULERGROMOS
can make effective use of more processors than would be allowed under this restriction. Eu-
LERGROMOS, with the GROMOS molecular dynamics program for its MD kernel, uses a spatial
decomposition, but does not limit communication to nearest neighbors. Each processor’s overlap
region (of thickness R.y:) is allowed to penetrate several processor subdomain layers. Figure 1
shows that substantial performance gains would not be available otherwise.

EULERGROMOS provides a choice between two different communication algorithms, one of
which (based on shifts) becomes faster as the number of processors increases. Efficient communi-
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Figure 1: Processor accessibility limitation for the standard parallel link-cell method due to
subdomain size.

cation, together with low parallelization and distribution overheads, allowed speedup gains with
as few as approximately 20 atoms to a processor, including all phases of the molecular dynam-
ics with constraints and I/O. Another characteristic of EULERGROMOS is the use of dynamic
load balancing, which adjusts individual subdomain sizes to accommodate inhomogeneous atom
densities.

The implementation of EULERGROMOS is described in more detail in Section 2. Section 3
evaluates the characteristics of the resulting program, presenting performance results for two
biomolecular systems. One of these systems, the solvated acetylcholinesterase dimer (AChE)
shown in Figure 2, contains over 100,000 atoms, about an order of magnitude more than typically
simulated. Section 4 discusses related work, Section 5 concludes with a summary.

2 EulerGromos

2.1 Imposing a granularity on the problem domain

Using an Eulerian decomposition for distributing atoms and the computations associated with
them improves inter-processor locality, which in turn increases scalability and reduces communi-
cation costs. However, to make good use of the intra-processor memory hierarchy as well (i.e., to
reduce cache misses), increasing access locality is also desirable within a processor. We therefore
conceptually divide our overall problem domain, which here is the physical space occupied by the
set of atoms we want to simulate, into small rectilinear regions of fixed size, henceforth called
subbozes. There are nq subboxes along dimension d, resulting in a total on n; * ns * n3 subboxes.
Each subbox contains a list representation of the atoms resident within its spatial extent [4]. To



Figure 2: The 10,406 atom acetylcholinesterase dimer enclosed in a 91 x 97 x 106A° simulation
box (box size reduced in picture). The 121,257 solvent atoms are removed for clarity.

amortize some of the data access overhead, the linked lists are packed densely and in subbox
order for linear traversal and better cache locality.

For each physical dimension d, the number of subboxes, n4, and their size, bozy, depend on
several parameters including the number of processors P(= p1p2p3), the mapping strategy, the
number of atoms N, the cutoff radius R4, and a user supplied granularity parameter. There
are several tradeoffs and constraints to be observed:

o We distribute our problem domain across processors with subboz granularity, i.e., a certain
subbox is treated as indivisible as far as ownership goes, and we assume only one owner
per subbox.

Therefore, if ng becomes smaller, load balancing may become less accurate, since the
number of different decompositions becomes smaller.

o However, if ng becomes larger, the overhead associated with a traversal of the subboxes to
locate the atoms increases.

e We also use our subbox structure to limit our search for nonbonded interaction partners
of a given atom, which allows us to avoid the naive O(N?) pairlist generation algorithm.
For that purpose it is advantageous if bozq4 is an integral fraction of Rcu: (16].

e The hierarchical decomposition should also be able to balance the workload for the trivial
case of a system with constant density. Therefore it must be possible to create subdomains
of equal size; for all d, nq should be a multiple of pq.

Subdomains, each consisting of a connected set of subboxes, are assigned to processors ac-
cording to some space-to-processor mapping strategy. Each subdomain s is associated with a
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Figure 3: Subbox division of the problem domain; we use P = p;psps = 4 * 4 * 4 processors
and ngor = n1ngnz = 16 * 16 * 8 subboxes. Dotted lines indicate subboxes, heavy lines delineate
processor subdomains. Hashed-lined regions show the overlap area of the processor with logical
coordinate (4,3, 1), which has a subdomain consisting of 4 * 3 x 2 subboxes located at the center
of the edge closest to the reader; note the wrap-around of the overlap due to periodic boundary
conditions.

certain overlap area, which is the set of subboxes that are not in s but reach into the cutoff
radius of some subbox in s. Figure 3 shows an example configuration of subboxes and subcubes
for P = 64 processors.

2.2 Load balancing

To allow for both inhomogeneous systems and systems that change shape over the course of
a simulation, dynamic load balancing is applied to the distribution of data and computation.
At the beginning of a simulation, the problem domain is first divided into p3 slices along the
z-axis, then each slice is divided along the y-axis into p; columns, and finally each column is
divided into p; subdomains. This initial distribution is equivalent to a blockwise decomposition
into p;psp3 subdomains of equal size. Every fyq timesteps, each processor locally computes its
own workload. (The current heuristic measures workload as the sum of the local number of
atoms and the size of the local pairlist.) Given each processor’s workload, a global balancing
step adjusts the subdomain boundaries, assuming a homogeneous workload density within each
subdomain. This is done hierarchically: first, subdomain boundaries are shifted between slices,
followed by column shifts within slices and finally shifts within columns. Figure 3 shows a possible
hierarchical decomposition. A smoothing factor & is applied to avoid boundary oscillations [8].

2.3 Communication

EULERGROMOS communicates off-processor data accesses in one of two possible ways: Point-to-
Point or Shift. In Point-to-Point communication, messages are sent directly between processor
pairs that share data; in Shift communication, each processor communicates exclusively with its
six immediate neighbors, relying on those to forward data to other processors it has to exchange
data with. This results in a coordinated use of the interconnection network.



The Shift algorithm shifts data in three phases: first along the z axis, then along the
y axis, and finally along the z axis. For dimension d, phase d consists of k4 subphases,
kq = [ReutUa/ procU4), where procU and rcutU are the subdomain extent and the cutoff-radius,
respectively, in subbox units. A subphase consists of an exchange with the two neighbor pro-
cessors along the axis of the current phase. Within each phase, the first subphase will shift
all data received in all previous phases; within phase one, this will be the set of local atoms,
the base case. For all subphases after the first subphase, a processor will communicate to each
of its two neighbors the data that were received in the immediately preceding subphase from
the other neighbor. Let ki = k2 = k3 = k; i.e., let the cutoff radius penetration be uniform
along the three Cartesian axes. Assuming that N atoms are uniformly distributed across P
processors, then the amount of data received by each processor to exchange overlap atoms is
(8k3 + 12k* + 6k)N/P. For k = 1, the preceding expression evaluates to 26V, / P, the case where
each processor subdomain is greater than or equal to Rcy:-

The scalability of a communication algorithm generally depends on communication volume,
bandwidth, latency, and buffering costs. However, for the problems and processor configurations
considered here, the communication volume and the number of messages drive the performance
(see Section 3.4). Again assuming a uniform k4 in each dimension, each processor sends 6k
messages using Shift, compared to approximately (2k + 1)3 with Point-to-Point.

Shift communication can be expected to be most efficient at large P, where the data volume
communicated per processor decreases (Figure 8). However, the current implementation of the
Shift communication requires subdomains of equal size, therefore it cannot be used in conjunction
with the load balanced, hierarchical decomposition. Point-to-Point communication can reduce
the overall communication volume to a processor, since subbox granularity is used to buffer
overlap data.

2.4 Molecular dynamics

A library of routines that perform and support the Eulerian decomposition and load-balancing
interface with GROMOS. The modifications to GROMOS itself were minimal, permitting reuse
of at least 90% of the approximately 10,000 lines of original code. From the user’s perspective,
the GROMOS touch and feel are retained; I/O formats are close to identical.

With EULERGROMOS, a processor calculates all interactions involving its local atoms. The
nonbonded interactions are determined geometrically, while the bonded interactions are obtained
from the molecular topology. The scalability depends on the cost to determine the interactions a
processor should calculate and the calculation of those interactions. To determine the nonbonded
interactions, the subbox data structure is traversed to create a standard GROMOS pairlist
containing the interactions. As a result, the pairlist routine required extensive modification and
was rewritten. The nonbonded force routine, which uses the pairlist, was slightly modified.

Based on Newton’s Third Law, GROMOS and other MD programs calculate each NBF in-
teraction only once per pair, instead of twice [22, 9, 5]. However, for those interactions where
atoms are local to different processors, the additional complexity for managing those boundary
atoms could adversely effect node-level optimizations. (See [17] for further discussion.) There-
fore, we chose for EULERGROMOS to use Newton’s Third Law within subdomains, but not across
subdomains.

Each processor extracts its local set of bonded interactions by scanning the O(N) global
topology information. While this could limit scalability, such asymptotic limitations are outside
of our practical range for N and P (see Section 3.2).

Scalability of the calculation of the potential energy (i.e., the interactions) requires a reason-
able load balancing, as provided by our hierarchical load-balancing scheme (Section 3.3).
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Figure 4: Performance of EULERGROMOS for two systems. Left: a 10,914 atom myoglobin
system. Right: the solvated acetylcholinesterase dimer (AChE), N = 131,663. Note the log-log
scale and the different ranges of processors. MD phases include: integration, pairlist construction,
shake, bonded and nonbonded force calculations. Subdomain redistribution uses Point-to-Point
communication; overlap refresh uses Shift communication. The total time includes I/O. A line
with slope = —1 has been included for reference to ideal performance.

3 Evaluation and Experiments

3.1 The applications

We base our evaluation on two molecular simulations that are of current interest in the molecular
dynamics community: solvated myoglobin, containing about 10,000 atoms, and the solvated
acetylcholinesterase dimer (AChE), containing about 131,000 atoms. Performance data for P > 8
were acquired on the 512-node Touchstone Delta with i860 processors at Caltech; for P < 8 an
iPSC/860 was used. Both machines were configured with 16 megabytes per node, however, the
memory available to the application varies: the Delta provides about 12 Megabytes per node;
the iPSC/860 provides about 15 Megabytes.

3.2 Overall performance

Figure 4 shows the raw performance of EULERGROMOS on myoglobin and AChE, with 1/O
required for production simulations included in the total time. (I/O includes coordinates and
velocities output every 10 steps along with output of the final configuration.) Due to memory
limitations, AChE required a minimum of 128 processors and myoglobin required four. These
plots demonstrate a continuous performance improvement up to P = 512 for both systems, the
largest machine configurations available for the experiments. The curve labeled MD Phases for
myoglobin in Figure 4 is broken into components in Figure 5. The nonbonded and bonded force
calculations approach linearity, but deviate slightly due to redundant interaction calculations
and load imbalances (note that those data are from a simulation without load-balancing). How-
ever, that deviation is greater for the myoglobin system where the smaller subdomains lead to
greater load imbalances and more redundant interaction calculations; the MD phases for AChE
demonstrate close to ideal speedup.
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Figure 5: The wall clock times for the molecular dynamics phases within EULERGROMOS for a
10,914 atom myoglobin system. A line with slope = —1 has been included for reference to ideal
performance.

3.3 Load balancing

Subboxes are viewed as indivisible with respect to subdomain boundaries. In other words, each
subbox is owned by just one processor, and boundaries can be shifted only in increments of
the subbox sizes. This simplifies and accelerates the mapping between atom coordinates and
subdomains, but it also limits the accuracy of our load balancing: the larger the subboxes, the
coarser the border shifts will be. To study this effect, we simulated myoglobin (N = 10,914) on
64 processors for 100 time steps with varying nq.

The accumulated absolute border movements along each dimension increase monotonically
with ng. Borders start moving for ng > 16. As to be expected, most activity takes place
within columns, followed by movements within slices and finally across slices. Figure 6 shows
the standard deviation of the workload across processors for the different ny values. It turns out
that the standard deviation decreases for higher n4, so load balancing does achieve the desired
effect.

While load balancing can be profitable for typical biomolecular systems, such as myoglobin,
the advantages tend to be less pronounced there due to the density homogeneity and characteris-
tically long time scales for large-scale motion. Consequently, the real strengths of load balancing
are to be expected for systems that are inhomogeneous and change their shape within short time
scales, and for varying problem domain sizes (for example, constant-pressure systems).

To study the effectiveness of load balancing for a highly inhomogeneous system, we simulated
argon enlarged problem domain. As shown in Figure 7, load balancing does adapt very quickly to
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the inhomogeneity, and after three rebalancing steps we have an even workload on each ProcCessor.

3.4 Communication

Figure 8 compares Point-to-Point and Shift communication. A characteristic of the Shift al-
gorithm is that it becomes faster as P increases, since the data communicated per processor
decreases (even though the overall communication volume increases; see Section 2.3). For small
P, the Point-to-Point algorithm is competitive with the Shift algorithm. However, with large P,
we see that the Point-to-Point algorithm performance deteriorates exponentially.

4 Related work

There have been numerous papers on the parallelization of the link-cell method and spatial
decompositions. A common feature of spatial-mapping approaches is to restrict communication
to nearest neighbors; consequently, each processor subdomain has to be greater than or equal to
the cutoff radius size [10, 16, 22, 9], which in turn limits scalability [21].

Esselink, et al., report a geometric decomposition where the subdomain size restriction has
been lifted [5]. However, they assume a homogeneous distribution of particles with equally sized
processor subdomains. Morales and Nuevo decrease the processor subdomain size such that it is
less than R, but they continue to restrict interactions to neighboring subdomains only, thereby
effectively reducing R y:; they evaluate the effect on thermodynamic properties [15]. (See [13]
for a detailed study on cutoff radius effects.) Plimpton also allows for subdomains smaller than
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Figure 7: Effect of load balancing for Argon in an oversized box. The N = 10,169 argon

molecules inhabit one 84° corner of a 164° periodic box. Load balancing reduces the total time
per 10-step interval from 92 seconds to less than 30 seconds.

R¢u: in an implementation reported for Lennard-Jones particles that is similar to our blockwise
decomposition with the Shift algorithm [17].

5 Summary and Conclusions

This abstract gave a brief description of EULERGROMOS, a parallel molecular dynamics program,
and evaluated its performance characteristics. The measurements reported here indicate that
the main design goal, scalability, has been achieved: Increasing the number of processors results
in additional speedups both for fixed and growing problem sizes. In particular, we have achieved
performance increases with as few as 20 atoms per processor, much less than could be achieved
with subdomains at least as large as the cutoff radius.

Scalably extending the calculation over processors reduces the cost per timestep so that
within some fixed simulation period

o phase space sampling is more extensive, and
e larger systems with better boundary conditions can be simulated.

EUuLERGROMOS has also simulated systems with over 100,000 atoms, about an order of
magnitude larger than usual solvated biomolecule simulations.
To summarize, the major features of EULERGROMOS are:
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100 steps of molecular dynamics with myoglobin.

o A flexible data structure with load balancing.
o Efficient communication algorithms.

o Low overheads, also relative to small workloads.
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