The DYPAC System: A Dynamic Processor
Allocation and Communication System
for Distributed Memory Architectures

Erich Schikuta

CRPC-TR93359
November 1993

Center for Research on Parallel Computing
Rice University

P.O. Box 1892

Houston, TX 77251-1892

THE DYPAC SYSTEM: A DYNAMIC PROCESSOR ALLOCATION AND
COMMUNICATION SYSTEM FOR DISTRIBUTED MEMORY ARCHITECTURES

Erich Schikuta!

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston , TX 77251-1892

Abstract

In this report a DYnamic Processor Allocation and Communication system (DYPAC system) is
presented, which establishes a programming model for the development of parallel programs
independently of the underlying parallel system architecture.

The DYPAC system provides functions for the creation, deletion and administration of processes
and the installation of communication lines between them.

Aim of the project was to create a programming tool for the development of parallel software
systems with a high degree of portability. This was reached by a high level functional framework,
which is independent of the underlying operating system and the physical hardware architecture.

1. Introduction

Message passing is the commonly used method for information sharing of parallel processes on
distributed memory machines. In practice it has proven to be effective, easy to understand and to
implement. The problem of portability arises with the development of parallel software systems,
because of the variety of the available parallel hardware architectures and the accompanying
system software. The frameworks of the proprietary message passing packages of the different
parallel hardware architecures differ considerably. A number of packages exist (e.g. Express
[Parasoft90], PVM [Dongarra91][Sunderam90], Zipcode [Skjellum92] or the MPI initiative
[MPIF93]), which try to provide a common platform for different architectures; but generally they
lack in availability, conciseness and simplicity. A quite comprehensive survey of parallel
programming tools can be found in [Cheng93].

In this paper a dynamic processor allocation and communication system is proposed. It
overcomes the mentioned problems and supplies a concise, simple and general process
administration and data communication package for the development of highly portable parallel
software systems.

2. Characteristics of the DYPAC system

The main difference of the DYPAC system to existing packages is that the physical architecture of
the underlying hardware architecture is totally hidden from the program development process.

1 Authors permanent address: Erich Schikuta, Institute of Applied Computer Science, Dept. of Data Engineering, University of Vienna,
Rathausstr. 19/4, A-1010, Vienna, Austria

The developer is supposed to know nothing about the characteristics (capabilities or deficiencies)
of the physical system. This paradigm guarantees a unrestricted portability of the developed
software system. For instance, the actual number of available processors is not known during the
developing process.

The DYPAC-system provides a standardized process handling interface, which is basically
oriented on the widely used interprocess communication package of the UNIX system. It contains
functions for

o process handling,
e process communication,
e process information and
e system administration.
(See the Appendix for a listing of the available functions.)

The process model of the DYPAC system is dynamic, which means that during the execution of
processes new processes and communication lines are established dynamically. This leads to a
hierarchical execution model in the sense that a new process, a "child" process, is always created
by a unique "father" process. In every system a "root" process exists, which is the origin of all
further created parallel processes. Processes can be created and destroyed. Each process has a
unique identification, which is passed to its father process during the creation process. The
DYPAC system allocates available physical processors of the underlying system as needed.

LN
@/@\@
®©

Figure 1: hierarchical execution model

In the above figure A denotes the root process, with its children B, C, D and E. Further D is
father to 2 additional processes F and G.

Information is synchronously or asynchronously passed via messages between processes, which
are distinguished by the unique process identifier. Synchronous means in the context of the
DYPAC system that a process is blocked until the arrival of the message at the addressed process.
By this blocking mechanism the synchronization of processes is achieved. Each call to a message
handling function returns a unique message identifier. These identifiers can be used to get
information about the status of pending communication operations.

Child processes can query the process identifiers of their father process. By this recursively
applied operation processes can get information about the process structure of the software
system. This information can be used to establish arbitrary communication lines.

The DYPAC system guarantees a high degree in portability. A parallel software system
developed with the DYPAC system can be transferred from one physical system architecture to
another without change of the source code and/or (more important) the programming paradigm.
The DYPAC-system has to be adapted and implemented on the specific system once. The
software developer is provided with a general and simple process administration and
communication model and uses always the same programming paradigm. Therefore the
development of parallel programs is simplified dramatically and the arising development time and
costs are reduced. It is possible to port the developed software system not only to parallel but also
~ to sequential system (like a conventional UNIX system) without a change. The implementation of
the DYPAC-system on a one-processor system sequentiates the processes on a single processor
using the multitasking capabilities of the underlying operating system.

3. The DYPAC system structure

The DYPAC-system consists of the RES/REI (n.) modules, the request executing server (RES)
and the request expressioning interface (REI). The following figure illustrates the situation of a
software system running on different hardware architectures:

single processor ﬂ hypercube
system nee system

Figure 2: DYPAC structure

The RES builds the interface of the DYPAC system to the underlying physical hardware
architecture and the REI provides the procedural interface to the software system. With the
implementation of the DYPAC system on different hardware architectures, only the RES has to
be adapted. The REI doesn't change and guarantees the unrestricted portability of the software
system to different computing platforms.

The RES is a server process running on a single (dedicated, but not fixed) processor of the
underlying hardware of the parallel system and handles the requests of the REIL It has to fulfill
two different tasks: :

3

o the handling of the processes and the administration of the physical processors of the
underlying hardware system

 the installation of communication lines between processes running on different processors

3.1. Administration of the physical processors

The processor allocation server administrates the physical processors of the underlying hardware.
The server concentrates the requests of the REI and allocates processors as requested. To fulfill
this task it chooses appropriate processors of the hardware regarding to the actual state of the
underlying system. This is done by a scheduling algorithm, in that sense that

o the workload is equally spread (all running processes of a processor are accounted and
profiled)

o the capabilities of a single processor (like type of the processor, available mathematical
coprocessor, connected disk node, etc.) are exploited to increase the performance of the
software system. Further the requests of the REI for special processor characteristics are
accomplished.

e the processes are distributed arbitrarily, if none of the conditions mentioned above is
applicable.

The processes are allocated to processors by using the functionality of the underlying operating
system. If the system software of the hardware architecture supports multitasking (e.g. Intel
IPSC/2), more than one process can be assigned to a processor. If it doesn't has multitasking
capabilities (e.g. Intel IPSC/860), each process is uniquely assigned to a single processor. All
implementation specific inherent properties of the RES are totally hidden from the programmer
and the developed program. The DYPAC-system tries to guarantees an evenly distributed
workload and tries to maximize the throughput of the system.

3.2. Installation of communication lines

The interprocess communication interface of the REI is basically similar to the well know
standardized communication protocol of UNIX systems [Rochkind85]. Each call to a message
communication function returns a unique message identifier. These message identifiers allow to
check the status of pending transfers. It is also possible to emulate signals with this construct.
This provides the possibility to synchronize parallel processes.

One important fact is that the DYPAC system uses the available communication and data
transportation facilities of the underlying operating system. In the existing implementations the
DYPAC system (if possible) doesn't perform any physical data transfer itself. It administrates and
uses the capabilities of the process communication package of the underlying system software
only.

Sometimes, for special communication methods, like synchronous data transfer, a certain
communication overhead is not avoidable. This is based on the fact that the synchronous message
transfer (in the definition of the DYPAC system) has to guarantee the arrival of the message at the
addressed process and not only the successful initiation of the sending process. If this functionality
is not directly supported by the underlying system facilities (like e.g. in the Intel hypercube
systems), it is established via a logical handshake protocol to emulate the requested functionality.

This approach is a warrant that the performance of the software system is only affected minimally
by the usage of the DYPAC system.

The following communication facilities are supported,
e synchronous message passing,
 asynchronous message passing,

« point to point communication and

« any point communication (broadcasting of messages to a group of processes).

4. Practical examples

The following section gives 2 practical examples, which fitted well to the hierarchical process
structure underlying the DYPAC system. The first example describes the implementation of the
communication structure in a multiuser database system and the second the inherently parallel
evaluation process of a database query.

4.1. The GFDBS system

The DYPAC-system was used for an early port of the Grid File Database System, the GFDBS
[Schikuta91], to an Intel IPSC/2 hypercube system. The GFDBS is a specialized data base system
[Date86], which supports Gridfiles [Nievergelt84] as internal data structure. The original GFDBS
was implemented on a one-processor, UNIX based, workstation. The GFDBS consists of
different interacting processes, like a data base server (the GFDBS server), different interface
server (SQL/QBE interface), a query optimizer (ICO, intermediate code optimizer) and a query
plan executor (ICI, intermediate code interpreter). All these processes run inherently independent
and information is transferred via message queues. The following picture shows the system
structure of the GFDBS system:

(<@ (s)
NG Cha

T
A A Server

Figure 3: GFDBS structure
5

The port to the hypercube system was straightforward without difficulties. The original source
code of the GFDBS was only changed in respect to the interprocess communication calls, which
didn't affect the logical structure of the system in any way. The inherent parallelism of the GFDBS
exploited the parallel hardware in a data-driven way and an immediate performance boost was
recognizable.

Until now two implementation of the DYPAC exist, one on a conventional UNIX system, where
the parallel process structure is sequentiated on a single processor and the standardized UNIX
interprocess communication facilities are used, and another one on an Intel IPSC/2 hypercube
system with 8 processors, where the available parallel processors and the proprietary
communication facilities are exploited. It is planed to do further ports to other parallel system
architectures in the near future.

4.2. Query Evaluation

Parallelism can not only be utilized at the high system level but also on a lower
database operation level. One example is the evaluation of a database query, where
the inherent operator parallelism can be easily exploited to increase the system
performance. The following figure shows a database query and its respective
evaluation tree:

Ag*BgNCq

Figure 4: Evaluation tree

The intermediate code interpreter performs a transaction by building up an
evaluation graph, where the nodes are the basic operators and the edges are the
communication lines, normally pipes. The evaluation of this graph starts at the
leaves representing relation identifier. The calculated result tuples of an operation
are transferred sequentially along the connection lines to the next operator nodes.
The whole evaluation process is done pipelined starting from the leaf nodes in data-
driven way (similar to the DB++-system [Agnew86]). The final result is therefore
the output of the root node.

5. Results and limitations

The usage of the DYPAC system for the development of parallel software systems guarantees a
high degree of portability between different physical hardware platforms.

It can also be used to port existing software with inherent parallel process structure without large
effort to parallel hardware architectures. An immediate performance boost is easily reachable with
server-client program architectures, as it was described in the GFDBS example. In many cases the
existing programs have not to be changed at all. It is sufficient to link them with the DYPAC
libraries. Because of the inherent parallelism of the process structure the programs can exploit
automatically the underlying parallel hardware.

The author emphasizes that the DYPAC-system is not an automatic parallelizer. It is only a
standardized paradigm for parallel program development. If the program developer intends to
gain finer parallelism in his program, he has to adapt the program to exploit the possible
parallelisms of the used algorithms in his program. The DYPAC-system delivers him a portable
and efficient tool to succeed in his efforts.

6. Acknowledgment

I want to thank Eric Wagner for the implementation of the DYPAC-system on the Intel hypercube
system and Wolfgang Ristl for the UNIX implementation and the adaptation of the GFDBS. My
special thanks goes to the CRPC for providing a stimulating and supportive atmosphere that
contributed to this work.

This research was in part supported by the grant J0742-PHY of the Austrian FWF.

7. References

[Agnew86] Agnew M., Ward R., The DB+* relational database management
system, Proc. of the EUUG Spring Conf., Italy, 1986

[Cheng93] Cheng D.Y., A survey of parallel programming languages and tools, Report RND-
93-005, NASA, Ames Research Center, Moffet Field CA, March 1993

[Date86] Date C., An introduction to database systems, Vol. 1, Addison Wesley, 1986

[Dongarra91] Dongarra J.J., Geist G.A., Manchek R., Sunderam V.S., A user's guide to PVM,
Techn. Rep. No. ORNL/TM-11826, Oak Ridge National Laboratory, July 1991

[MPIF93] Message Passing Interface Forum, Document for a standard Message-Passing
Interface (Draft), to be presented at SCP 93, 1993

[Nievergelt84] Nievergelt J., Hinterberger H., Sevcik K.C., The Grid File: an adaptable,
symmetric multikey file structure, ACM Transactions on Database Systems 9, 38-
71, 1984

[Parasoft90] Parasoft Corp., Express C user's guide, Version 3.0, 1990
[Rochkind85] Rochkind M., Advanced UNIX Programming, Prentice-Hall 1985

[Schikuta91] Schikuta E., A Grid File Based Highly Parallel Relational Data Base System,
Proc. 4th ISMM Int. Conf. Parallel and Distributed Computing and System,
Washington, D.C., 1991

[Skjellum92] Skejellum A., Smith S.G., Still C.H., The Zipcode systen user's guide - version
1.00, Techn. Rep., Lawrence Livermore National Laboratory, Oct. 1992

[Sunderam90] Sunderam V.S., PVM: a framework for parallel distributed computing,
Concurrency: Practice and Experience, 2, 4, 315-339, Dec. 1990

8. Appendix

Reference Guide, Version 1.0,

A host program (see the example init.c) allocates a group of processors (e.g. a cube at the Intel
Hypercube) and runs the communication server and a root process (stated via commandline
parameter).The root process can start one or many child process(es), which can also start further
child processes recursively.After termination of the root process, the host program releases the
cube and the communication server is shutdown.

The programmer can use the following functions to control the message passing and the
creation/termination of processes.

chkmsg
checks for asynchronous incoming or outgoing message completion

Synopsis
int chkmsg(mid)
MID mid;

Description

This function checks for the completion of a preceeding asynchronous call to putmsg or
getmsg. The parameter mid contains the message identifier of the preceeding operations.

Return values

Returns DOK on completion of the message operation, DERR on a failure (the DCPS
variable derr is set appropriate).

startcp
Starts a child process

2 History:
Version 0.? Eric Wagner (9008301), Feb. 1992, Vienna
Version 1.0, ... Erich Schikuta, April 1993, Houston

Synopsis
PID startcp(name, ptype)
char *name;
PTYPE ptype;

Description

This function starts an executable program name on a processor of type ptype. The
processortype describes the necessary capabilities of the processor. The type ANY defines
that no special capabilities is necessary

Return values

The function returns the process identifier of the created child process. On failure DERR
is returned and the variable derr is set appropriate.

stopcp

stops (terminates) a process

Synopsis
PID stopcp(pid)
PID pid;

Description

Terminates the Process stated by its process identifier pid. The process is removed from
its processor.

Return values

Returns the process identifier of the terminated prbcess. On failure DERR is returned and
the variable derr is set appropriate.

initdypac

initiates and startes the DPCS server
Synopsis

void initdpcs()

Description

Initiates and startes the DPCS server. Has to be the first function call of a DPCS session.
Only one server is allowed per session. Which DPCS server is actually started is

determined by the SERVER value in the file config.h in the source directory of the DPCS
directory. Normally it depicts an executable file server in the DPCS installation directory.
Return values

None

killdypac
terminates the DPCS server

Synopsis
void killdpcs()

Description
Terminates the running DPCS server. Has to be the last function call of a DPCS session.
The status of the running processes is indeteremined.

Return values

None

putmsg
put a message

Synopsis
MID putmsg(pid, mtype, buffer, buflen, mode)
PID pid;
long type, buflen;
char * buffer;

int mode;

Description

This function sends the value of the variable buffer of length buflen as a message of type
mtype to process pid. The mode of operation is determinable by the mode parameter,
SYNC specifies a synchronous put (the function blocks until the message arrives at
process pid), ASYNC a asynchronous get (the function does not block).

If the process identifier pid is set to ALL (CHILD) the message is sent to all (child)
processes (broadcast).

10

Return value

In synchronous mode the function returns DOK on completion. In asynchronous mode the
message identifier of the pending request is returned, which can be used with chkmsg for
completion. On a failure the return value is DERR and the DPCS variable derr is set
appropriate.

getmsg
get a message

Synopsis
MID getmsg(pid, mtype, buffer, buflen, mode)
PID pid;
long type, buflen;
char * buffer;

int mode;

Description

This function gets a message of type mtype from process pid of length buflen into the
variable buffer. The mode of operation is determinable by the mode parameter, SYNC
specifies a synchronous get (the function blocks until the message arrives in the buffer),
ASYNC a asynchronous get (the function does not block).

If the message type mtype is set to ALL the function receives all messages of any type
without restriction. If the process identifier set to ALL (CHILD) the process receives the
messages of all (child) processes.

Return value

In synchronous mode the function returns DOK on completion. In asynchronous mode the
message identifier of the pending request is returned, which can be used with chkmsg for
completion. On a failure the return value is DERR and the DPCS variable derr is set
appropriate.

getmyid
returns the process identifier of the calling process

Synopsis
PID getpid()

Description
This function returns the process identifier of the calling process.
11

Return values
Returns the process identifier of the calling process.

getparid
returns the process identifier of the parent process of a process

Synopsis
PID getpid(pid)
PID pid;
Description
This function returns the process identifier of the parent process of the (child) process pid.

Return values

Returns the process identifier of the parent process of the process pid. If no parent exist
for process pid the function returns NOPROC. On failure DERR is returned and the

variable derr is set appropriate.

12

