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Abstract. In this paper, we propose a trust-region algorithm to minimize a nonlinear
function f : IR® — IR subject to nonlinear equality constraints hi(z) = 0,i = 1,---, m where
h; : R™ — IR. We are concerned with the fact that n and m may be large. We adopt the
approach taken in Vardi (1985). We also replace the £2-norm in the trust-region constraint
by either a polyhedral norm £; or £, an arbitrary {,-norm with p > 2, or an arbitrary
convex combination of these norms. In particular, when polyhedral norms are used, the
algorithm can be viewed as a sequential quadratic programming method or a sequential
linear programming method regarding on whether or not we use second order information
in the local model subproblem. At each iteration, the local model subproblem is only solved
within some tolerance. Instead of the regularity assumption of linear independent gradients,
we assume that the systems of linearized constraints are consistent. Also, we assume that the
functions f and hi,i = 1---m, are only continuously differentiable. We demonstrate that
any accumulation point of the iteration sequence, obtained from a remote starting point,
is a Karush-Kuhn-Tucker point of the constrained minimization problem. This convergence
theory follows from very powerful and natural properties of the trust-region strategy, for
example a property we call local uniform decrease.

Key Words: SLP, SQP, Global Convergence, Constrained Optimization, Consistency
, Non Regularity, Equality Constrained , Trust-Region , Local Uniform Decrease.
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1. Introduction. In this paper we present an algorithm for approximating a
solution of the equality constrained optimization problem

_ minimize  f(z)
(EQCP) = {subject to hi(z)=0,i=1.-.--m,

where f :IR® — R and h; : R® = R, i=1:--m < n, are continuously differen-
tiable.

The Lagrangian function [ : R® x R™ — IR associated with problem (EQCP)
is defined by

(1.1) I(z,)) = f(z) + AT h(z),
where ) is the vector of Lagrange multipliers.
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To solve (EQCP), SQP algorithms generate sequences {zr} by setting x4, =
Tk + sg, where s; is obtained as the solution of the local model subproblem

nimi Toy4 LT
= minimize c; s+ 55" Bis
@QPp) = {subject to h(zx) + Vh(zi)Ts = 0.

In (QP), B is an approximation of the Hessian of the Lagrangian, and ci repre-
sents either the gradient of the objective function: of (EQCP) or the gradient of the
Lagrangian. Local convergence of SQP algorithms is generally well understood (see
Fletcher (1987)[19], Tapia (1974)[32] and [33], (1977)[34], (1978)[35]).

The problem of global convergence has been given much consideration recently.
Global convergence results are given in Vardi(1985)(36], Byrd, Schnabel, and Shultz
(1987)[4], El-Alem (1988)[12], (1991)(13], and (1992)[14], Powell and Yuan (1991)(30],
Maciel (1992)[23], Dennis, El-Alem, and Maciel (1992)[10], and Alexandrov (1993)(1].
Except for Vardi (1985)[36], all the proposed algorithms are either of the framework of
Celis, Dennis, and Tapia (1985)(5], or of the framework of Byrd , Omojokun, Schnabel,
and Shultz (1987)(3].

Because the trust-region strategy had proven to be a very successful tool for
designing globally convergent algorithms for unconstrained optimization (e.g. Powell
(1975)[27] and (1983)[29]) and for nonlinear systems of equations (e.g. El Hallabi and
Tapia (1993)[16], El Hallabi (1993)[17], and Powell (1983)[28]), it was quite natural
to extend this strategy to constrained optimization. The obvious extension is to add
a trust-region constraint to the subproblem (QP) to obtain

.( minimize,emr~ cf s+ 35T Bs
(TRQP) = subject to h(zx) + Vh(ze)Ts = 0,
lIsll3 < 62,

where 0 < 6, is the trust-region radius. But, unless h(z:) = 0, problem (TRQP) may
have inconsistent constraints. To overcome this difficulty, Vardi (1985)[36] proposed
shifting the linearized equality constraints, which led to the following Relaxed Trust-
Region Quadratic Programming subproblem

(RTRQP) = subject to aiph(zi) + Vh(zi)Ts =0,

{ minimize ¢f's + 157 Bis
lIsll3 < &%,

where 0 < ap < 1, the relaxation parameter, is chosen such that the feasible region

of (RTRQP) is not empty. Because there was not a straightforward way of choosing

the relaxation parameter ay, Celis, Dennis, and Tapia (1985)[5] considered obtaining

a trial step s; as a solution of the subproblem

(coT) = subject to [h(zk) + Vh(z)Ts||2 < 6k,

{ minimize,e¢r» c{s + %sTBks
lIsll3 < &,

where 0 < 6 is chosen to realize some predicted decrease in the ¢;-norm of the
linearized constraint h(zi) + Vh(zi)T s inside the ball of radius & . In practice it is
hard to solve the (CDT) subproblem.

Byrd, Omojokun, Schnabel, and Shultz (1987)[3] proposed a two-level algorithm
where the trial step is of the form s; = s} + s} where s}, the normal component of
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sk, is a solution of

_ - minimize,er~  ||h(zi) + Vh(zi)T 5|3
(N-STEP) = {subject to lIsl|3 < 762,

where 0 < 7 < 1, and s., the tangent component of si, is of the form s} = Zju,
where Zi ia a basis for the null space of Vh(zy), and u; is a solution of

_ - minimize, g gn-m (Vf(zk)+st',;)TZku+%uTZ,Z'Bkau
(T -STEP) = {subject to lull? < 82 - s 13

A very recent implementation of the two level algorithm is described in Marucha,
Nocedal, and Plantega (1993)[25]

To the best knowledge of the author, all global convergence theories in the liter-
ature for trust-region algorithms that are proposed for solving problem (EQCP) give
global convergence in the sense that the iteration sequence has an accumulation point
that is a Karush-Kuhn-Tucker point of (EQCP). Moreover, these global convergence

-1
results are obtained under the uniform regularity assumption that (Vh(:z:)TVh(z))

is uniformly bounded on a subset of IR” containing the iteration sequence, and that the
functions f and h;,i---m, are twice continuously differentiable. The first hypothesis
is very restrictive, especially for large-scale constrained problems.

In this research we propose an Arbitrary Norm Inexact Trust-Region Algorithm
that is globally convergent in the sense that any accumulation point of the iteration
sequence is a Karush-Kuhn-Tucker point of (EQCP). To obtain this convergence the-
ory, instead of the uniform regularity hypothesis, we assume only that the linearized
constraints are consistent. We also assume that the functions f and h;,i.--m, are
only continuously differentiable.

In our method, we adopt the approach suggested by Vardi (1985)[36], i.e. we
use subproblem (RTRQP) as our local model subproblem. However, we replace the
£o-norm in the trust-region constraint by a polyhedral norm, an arbitrary £,-norm
with p > 2, or a convex combination of these norms. In particular, when polyhedral
norms are used, our method can be considered as a sequential quadratic programming
method or a sequential linear programming method depending on whether or not we
use second order informations in the local model subproblem.

To accept or reject a trial step sk, we will use the actual reduction

(1.1) Aredi(s) = ®(p, zk; s) — ®(px, 1, 0)

and the predicted reduction

(1.2) Predi(s) = ¥(uk, zr; s) — ¥(pe, Tx; 0)
where
(1.3) B(u, z;5) = f(z +5) + pllh(z + 5]l

is the merit function approximated by

(14)  W(uzs) = flz) + Vi(=)Ts + -;-sTBs + ul|h(z) + Vh(z)Ts]].



4 M. EL HALLABI

In (1.3) and (1.4), ¢ denotes the penalty parameter, and || || denotes an arbitrary
(but fixed) norm on IR™.

In Section 2, we give a sufficient condition for the relaxation parameter ai to
define a nonempty feasible region for (RTRQP). In Section 3, we extend to prob-
lem (EQCP) the characterization of stationarity given in terms of minimizers of local
models in El Hallabi and Tapia (1993)[16] for unconstrained minimization. In Sec-
tion 4, we define the Arbitrary Norm Inexact Trust-Region Algorithm (ANITRA),
and we show that the penalty parameter fits well with the objective function and the
constraints. In Section 5, we prove, under rather weak assumptions, and by estab-
lishing some powerful properties of the trust-region strategy such as the one we call
local uniform decrease, that any accumulation point of the sequence generated by the
ANITRA algorithm, from a remote starting point zo, is a Karush-Kuhn-Tucker point
of (EQCP). Extensive use of the well known Farkas Lemma is made throughout this
section. We end this paper by giving some concluding remarks in Section 6.

2. Linearized Constraint Relaxation. In this section we give a sufficient
condition for the relaxation parameter « to define a nonempty feasible region for the
subproblem

(RTRQP) = subject to ah(zi) + Vh(zk)Ts =0,

{ minimize cfs+ }sT Bis
llslly < é,

where || || is any £p-norm on IR™. This condition is stated in the following proposition.
PROPOSITION 2.1. Consider z in R"™ such that

(2.1a) h(z) #£0
and such that the linear system
(2.1b) h(z) + Vh(z)Ts = 0,

is consistent. Let r, < m be the rank of the matriz Vh(z) , and let w, be a positive

lower bound of the positive generalized eigenvalues of Vh(z). Also let p and g be

ezxtended reals satisfying
1 1

2.2 -+-=1

(2.2) g

i.e. (p=1,9=+00) and (p = +00,q = 1) are allowed, and let v, satisfy

(2:3) Il = vall Iz

where || ||, denotes the £, vector norm, and || ||2 denotes the £, vector norm. If
. 6 we

(2.4) 0<a< mm(l,uqm),

then the subset
(2.5) Folz)={s e R" | ah(z) + Vh(z)Ts = 0, [lsllp < 6}

is not empty.
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The proof of this proposition requires the following two lemmas, whose proofs
detract from the matter at hand and will be given immediately following the proof of
Proposition 2.1.

LEMMA 2.1. Assume the hypotheses of Proposition 2.1. If

6 we
(26) OSaSqu,
then the symmetric mairiz
T a )’ T
2. M(z) = Vh(z) Vh(z)— | — ] h(z)h(=
@7) (2) = Vh(@)TVhe) - (35 ) M)hie)

is positive semi-definite.

LEMMA 2.2. Assume the hypotheses of Proposition 2.1. If the symmetric matriz
M(z) in (2.7) is positive semi-definite, then the subset in (2.5), i.e.

F@)={seR" | ah(z)+Vhz)s =0, lsl, < 6}

is not empty.

Proof of Proposition 2.1. Assume that (2.4) holds. Then obviously (2.6) also
holds. Consequently, from Lemma 2.1, we obtain that the symmetric matrix M(z)
defined in (2.7) is positive semi-definite, which, by Lemma 2.2, implies that the subset
Fp(z) defined in (2.5) is not empty.O

Now we give the proofs of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. Let Vh(z) = U,Y__ V7 be the singular value decomposition
of Vh(z), (see Golub and Van Loan (1983)[20]), with

mo (T D), L donn o)
where 05,4 = 1,---,r; are the positive generalized eigenvalues of Vh(z),

Us=(Usp Usz), with Uz €R™™® | U, e RPCE),
and

Vo=(Veq Ve2), with Vo3 e R™@ | ¥, e R (P,
First we show that ‘
(2.8) VI,h(z) = 0.
Let s be any solution of the linear system (2.1b). We have

VTh(z) + S TUTs =0,

or equivalently

(2.9) VI h(z) + Y0 UT s =0,



6 M. EL HALLABI

and
VI,h(z) =0

which is (2.8). Now, we prove that the symmetric matrix in (2.7) is positive semi-
definite. We have

Vh(z)TVh(z) - (3%)*h(2)h(z)T

V.27 Z:VT (5%7) *h(=)h(z)"
Ve [Ez Ez ) V h(:c)(V;.Th(:c))T] VzT'
On the other hand, using (2.8), we obtain
2
< 0
((20,1) O)

() () (nﬁgm)’

TIY. - (7%) VI h(z)(VT h(z))T

where
(2.10) Hep=(T,,) - ( ) (VI () (VI k()T

Therefore, to prove that the symmetric matrix M(z) is positive semi-definite, it is
sufficient to prove that the symmetric matrix H; ; in (2.10) is positive semi-definite.

The matrix H,; results from the shifting of the matrix (Z:z’l)2 by the rank

one matrix ( 6‘,',q)2(V,Th(z)) (vr h(z))T. Therefore, if the £2-norm of this rank one
matrix is smaller that w2, i.e.

0 < ( ”VT h(x)"2)2 < wz)

which is, by (2.8), equivalent to (2.6), then the matrix H. ; is symmetric positive
definite.0

Now we prove Lemma 2.2.

Proof of Lemma 2.2. By Theorem 1 of the alternative of Dax (1990)[9] (see
Appendix B), the subset F,(z) is not empty if and only if

(2.13) §[IVh(z)ylly > ah(z)Ty
holds for all y € R™.
Assume that the symmetric matrix M (z) in (2.7) is positive semi-definite. Then
o [Vh(z)TVh(z) - ( ) h(z)h(z)T]y > 0
or equivalently

(6 v,) yT Vh(z)TVh(z)y — o?yT h(z)h(z)Ty > 0
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holds for all y € IR™. Therefore we have
5 vy Vh(z)yll2 2 leh(z)Tyl, YyeR™,
which implies that
(2.14) 6 lIVh(@)ylla > ah(z)Ty, Vy €R™.
Now, from (2.3), i.e. || |lg = vgll ||z, and (2.14), we obtain (2.13), which implies

that the subset F,(z) is not empty.0

In some applications (see El-Alem and Tapia (1993)[15]), the trust-region con-
straint is a convex combination of £,-norms. To include this case, we give the following
corollary.

COROLLARY 2.1. Assume the hypotheses of Proposition 2.1. Let p; and g; be

eztended reals and v; be a positive scalar such that

1 1
2V and —+—=1,
Il 2wl and
where || ||g; is the £, vector norm for i =1..-1. Letv;,i = 1---1 be positive reals

satisfying E£-=1 vi = 1. Also let v = mimci<ivi. If
b we
0<a<vi—m—
= 1A(=)ll2
then the subset of R"

1
F={s€R"|ah(z) + Vh(z)Ts =0, Y vllsllp; <}

i=1
18 not empty.

Proof. By Proposition 2.1, F,,(z) is not empty, for i = 1,---,1. Let p; =
minj<i<i pi- It is obvious that the p;-ball of radius é is contained in the p;-ball of
the same radius for i = 1---l. Let z; be in F,,(z). We have

llzjllp: < ”zj”Pj <6 Vi=1---L

Therefore we obtain

3" wllzille < D wé =4,

1<i<l 1<i<l
and hence the subset

{s €R" | aVh(z)Ts+h(z) =0, Y xllsllp. <6}
1<i<l

is not empty. O

Proposition 2.1 implies that the choice of the equality constraint relaxation pa-
rameter « is practical only if we have a way of computing a lower bound wj of the
positive generalized eigenvalues of Vh(z) for the current iterate zx. It is obvious
that this is exactly the rank determination problem, and is a hard problem. But
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the QR-decomposition with column pivoting is an acceptable solution. In Appendix
A, we propose a way for obtaining wi by using the QR-decomposition with column
pivoting.

3. Characterization of stationary points of problem (EQCP). In uncon-
strained optimization, the notion of stationarity can be defined in terms of minimizers
of the local model subproblem. This was done in El Hallabi and Tapia (1993)[16],
where the local model subproblem was convex. That notion was that a given point z
is stationary for the objective function if zero solves the local model subproblem. In
El Hallabi and Tapia (1993)[16], this notion was shown to be equivalent to saying that
there is no descent direction of the objective function at z. In the present research,
the second order approximation matrices may not be positive semi-definite; hence
the subproblem may not be convex and the El-hallabi-Tapia theory does not apply.
Therefore, we give a characterization of stationarity for problem (EQCP) in terms of
local minimizers of subproblem (RTRQP).

PROPOSITION 3.1. Let By € R™*", and let 6 > 0. Consider z} satisfing
h(zx) = 0. If s = 0 is a local solution of the local model subproblem

minimize  Vf(z)7s + ;5T Bes
(3.1) (RTRQP) = subject to Vh(zx)Ts=0
llsllp < bk,

then zj is necessarily a Karush- Kuhn-Tucker point of (EQCP).

Proof. Assume that s; = 0 is a local solution of (RTRQP). Let s € IR" be any
point such that

(3.2) Vh(zi)Ts = 0.

Then for sufficiently small positive ¢, the point ts is feasible for subproblem (RT'RQP)
and sufficiently close to the local solution sg = 0. Therefore we have

Vf(:t;,)Ts + %tsTBks >0,
for all sufficiently small positive ¢, which implies that

(3.3) Vi(zi)Ts > 0.

;From (3.2), (3.3), and the well known Farkas Lemma, we conclude that zj is a
Karush-Kuhn-Tucker point of (EQCP). O

4. Arbitrary Norm Inexact Trust-Region Algorithm . In this section we
propose an Arbitrary Norm Inexact Trust-Region Algorithm (ANITRA) for solving
problem (EQCP). We also show that the choice of the penalty parameter fits well with
the objective function and the constraints in the sense that the predicted decrease in
the merit function is bounded above by the sum of the predicted decreases in the
objective function and in the constraints considered separately.

At each iteration, we solve a local model subproblem of the form

minimize Vf(z)Ts + }s7 Bs
(RTRQP) ={ subject to ah(z)+ Vh(z)Ts=0,

llslly < 6
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for some fixed (z, B,a,§), and within some tolerance ¢ in the sense given in the
following definition.

DEFINITION 4.1. Letz € R, BER"™", 0< a, and 0 < §. Assume that ¢ is
not a Karush-Kuhn-Tucker point of (EQCP). Then we say that s, is an e-solution of
subproblem (RTRQP) if s¢ is feasible,

(4.1) Viz)Ts+ %S?BS; < Vi) s+ %STBS +e€

for any feasible s where 0 < §, and if in addition h(z) = 0, we also ask that

(4.2) Vi(z)Tse + %.»z’;'Bsc <0.

Our trial step s will be any €g-solution of the subproblem (RTRQP) for fixed
(zk, Bk, ak, 6x), and with the tolerance

(4.3) &= {min(usk”m aellh(ze)l]) if h(zi) # 0

[Iskllp otherwise

for some 0 < 7, that will set by the algorithm.

To accept or reject the trial step si, we will use the actual reduction Ared(si)
and the predicted reduction Predi(sx) defined in (1.1) and (1.2) respectively. The
penalty parameter will be given by the following update scheme.

To define our Arbitrary Norm Inexact Trust-Region Algorithm (ANITRA), it
remains to describe our way of updating the penalty parameter px. Usually, in con-
strained optimization, the use of a penalty parameter answers to concerns. First, the
penalty parameter should be set so that the predicted decrease is negative. In our
case this first concern is answered by choosing

where p is an arbitrary positive constant, and

0 if h(zx) =0
= T T
(4.5) HE 2 max(0, Vf(“gkﬁ;:("":%')’lr Besk)  otherwise.

This property will be demonstrated in Proposition 4.1. Second, for sufficiently large k,
the penalty parameter should force the penalty function to become an exact penalty
function. This is usually obtained by choosing a penalty parameter that is constant
for sufficiently large k. To answer this second concern, we begin by allowing the
parameter to only satisfy (3.5) for a maximum of km,z iterations, where kpmqaz is an
arbitrary large integer. If all iterations k < kmaz fail to locate a Karush-Kuhn-Tucker
point of (EQCP), then we will force pj to become constant for sufficiently large k. In
summary, given an arbitrary large integer kmaxz,

1) for k < kmaz, we choose pup > pix + p, and

ii) for k > kmaz, we set

_ [ B i per 2 pe +p
PE = jix +2p otherwise,
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where i is defined by (4.5). Observe that the sequence {ur,k > kmaz} is not
decreasing.

Definition of the algorithm ANITRA.
Let ¢;,i=1,---,5,7,p, €1,€2, 0, andAnin be constants satisfying

0<ci1<ecz<l , 0<ea<es<l |, 1<es
0<T<1, ) 0<P ) 0<Am|n
0<ea kKl , 0<exl , 0<v<l, B

Let p and q be extended reals such that

1ilot, p=t1orp2
P q

i.e. (p,q) = (+00,1) and (p,q) = (1, +00) are allowed .

Let 7o € IR® be an arbitrary point, By € IR**" be an arbitrary square matrix,
0 < Ao, Bo = B, and po = p. Also let knaz be a very large integer.

Let zi be the iterate given by the k** iteration (iteration zero is the initializa-
tion), and 0 < k. The algorithm generates z;4; by the following iterative scheme:

STEP 1. Set 6 = Ak, = Br

STEP 2. If h(zx) = 0 set ax = 1 and go to STEP 5,

STEP 3. Choose a positive lower bound wy = w, of the positive generalized eigen-
values of Vh(z:),

STEP 4. Set

_&ﬁ_)
lA(ze)llz

STEP 5. If 6 = Ag, choose a square matrix B € R**",

STEP 6. Obtain an ex-solution of the subproblem (RTRQP) with €x = €x(nk, sk)

STEP 7. Update the penalty parameter u;

TEP 8. If Aredk(sk) < clPredk(sk)
set Tx41 = Tk + sk and go to STEP 9

ap = min(l,r

Else
choose 6 such that
csllsellp < 8k < callsellp,
choose 0 < e < Yme
and go to STEP 4.

STEP 9. Choice of Ar41
If Ared(sk) < czPredi(sk)
then
choose Ay satisfying
61 < Ak < max(bx, csl|sellp)
Else
choose A4 satisfying
callsellp < Arsr < [lskllp-
Set Apy1 = max(Ak.,.l,Am;,.).

STEP 10. Choose 0 < Br4+1 < 8.
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REMARK 4.1.
i) The merit function ®, defined in (1.3), has the drawback of possessing the Maratos
effect ( see Maratos (1978)[24]). So, to overcome this difficulty, one may use a second
order correction before decreasing the trust-region radius 6 in STEP 8. Since adding
a second order correction is irrelevant to obtaining a global convergence result, we
will not extend on this technique in the present paper, and refer the interested reader
to Coleman and Conn (1982)[7], Fletcher (1982)[18], or Byrd, Schnabel, and Schultz
(1985)[4].
ii) We could update Bj in STEP 10 instead of STEP 5 that appears quite unusual.
This organization will be cleared in Section 6 ( see An equivalent subproblem). STEP
5 means that, if at the iteration k, the trust-region has been decreased because of a
non acceptable step, and since all what has been changed in the local model subprob-
lem are the trust-region and the relaxation parameter ay, we do not update B.
iii) The parameter 7 in STEP 4 plays the same role that the parameter 7 plays in the
subproblem (N - STEP) that approximates the normal component of the solution in
the approach of Byrd, Omojokun, Byrd, and Shultz (1987)[3].

We start each iteration with the trust-region radius Ay > Apmin. But the actual
trust-region radius, which we denote é;, might be smaller than Amin. Throughout
the paper we will use the following definition.

DEFINITION 4.2. If for some couple (8x,nx) defined in STEP 1, the test in
STEP 8 is satisfied, then we say that (8x,nk) (or 6¢) determines an acceptable step
s with respect to (zx, Bk, Ak, Br). Moreover, the iterate Tp41 = Tk + Sk will be called
a successor of Tk.

The penalty parameter p; fits well with the objective function and the con-
straints. Indeed, as the following proposition shows, the predicted decrease in the
merit function is less than or equal to ( can be equal if k¥ < kmaz and p; is at its lower
bound) the sum of the predicted decrease in the objective function and the predicted
decrease in the constraints if they were considered separately.

PROPOSITION 4.1. Assume that =i is not a Karush-Kuhn-Tucker point of
(EQCP). Then the approzimation ¥ of the merit function ® satisfies

(4.6) Predi(si) < —|Vf(zk)T s + %s{Bksk — pag||h(zi)]|,
and consequently

(4.7) Predi(sk) < 0.

Moreover if si is an acceptable step, then

(4.8) Aredi(se) < 0.

Proof. We have
U(pr,zk, ) — W(pp, 26,0) = VF(z)Tse + 557 Bese
pilllh(ze) + Vh(ze)T skl = [|h(ze)ll]

or equivalently

1
(4.9) Predk(sk) = Vf(zk)Tsk + ESZBkSk - ykak”h(zk)u.
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First, we assume that
1
(4.10) Vi(zi)T sk + 53{3,,5,, > 0.
Therefore h(zi) # 0 must hold. We have

V f(z)T sk + 357 Bisi +p
ak|lh(ze)ll ’

which, together with (4.9), implies that

Be 22

17
Predi(si) < —(Vf(ze) si + 25k % Bisi) — paxllh(zs)ll,

which can be written as (4.6). From (4.6) and (4.10), we obtain (4.7).

Now we assume that
(4.11) Vf(ze)T s + -sk T Bise < 0.
We have uj > p. Therefore (4.9) implies that
Predi(sk) < Vf(ze)T sk + —sk T Bisi — pai||h(ze)],
or equivalently
(4.12) Predi(st) < |V F(ze) sk + -;-szksk — pailh(@p)l,

which is (4.6). When h(zi) # 0, (4.12) implies that (4.7) holds. On the other hand if
h(zx) = 0, we obtain from Definition 3.1 that

Vf(zk)Tsk + —s,, Bksk <0,

which, together with (4.12), implies that(4.7) holds also in this case . Finally, from
(4.7) it is obvious that (4.8) holds whenever s; is an acceptable step.O

5. Global Convergence. In this section, we demonstrate under rather weak
hypotheses that any accumulation point of the sequence generated by the ANITRA
Algorithm is a Karush-Kuhn-Tucker point of (EQCP). To obtain this result, we estab-
lish useful and important properties of the trust-region strategy, mainly the property
we call local uniform decrease. In our proofs, we will use extensively the well known
Farkas Lemma.

We make the following hypotheses:
H.1) The functions f and h;,i---m, are continuously differentiable,
H.2) The iteration sequence {z+} is bounded,
H.3) The sequence {B} is bounded,
H.4) The systems of linearized constraints h(zx) + Vh(zk)Ts = 0, are consistent for
all k, and
H.5) The sequence {f;} used to obtain an approximate solution of the local model
converges to zero.
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The global convergence result is given by Theorem 5.3.

Generally, to obtain a global convergence result for solving (EQCP), the uniform
regularity assumption, i.e. (Vh(z)T Vh(z))~! is uniformly bounded on a subset of IR"
containing the iteration sequence {z;} is used. This assumption implicitely provides a
unifrorm lower bound for the generalized eigenvalues of Vh(zt). In the present paper,
we do not use the regulatity assumption, but we need some uniform lower bound for
the generalized eigenvalues of Vh(zi). Therefore, in the following lemma, we show
that the lower bound w; of the generalized eigenvalues of Vh(zy) that is used in the
definition of the equality constraints relaxation parameter o can be chosen so that
it is bounded away from zero.

LEMMA 5.1. Assume hypothesis H|. Then there ezists a positive constant w
such that
(5.1) w < wg

holds for all k € IN.

Proof. The proof of this lemma depends on the choice we made to obtain w; in
Appendix A, i.e. the QR-decomposition with column pivoting. Therefore, it will be
also give in that appendix.

In the following lemma and its corollary, we demonstrate that the penalty pa-

rameter uj is constant for sufficiently large k. First we prove that g is uniformly
bounded.

LEMMA 5.2. Assume hypotheses H1 and H2. Then the sequence {ix} defined
by (4.5) is bounded.

Proof. Because of the definition of /i, it is sufficient to consider the case where
1
2

Observe that this excludes the case where h(zx) = 0. Consequently, we have

(5.2) Vf(zi)T st + =57 Brsi > 0.

Vf(zk)Tsk + %S{Bksk

5.3 0<

(5.3) eS|
Consider

(5.4) v = —arlUi 51 Vi ih(zi)
where

Uk,l € mank, Vk,l € IRmxr., , and Ek,l = diag(dk_l, ce e Uk,rk);

with r; indicating the rank of Vh(zy). ;From (2.8), i.e. V,Z:zh(zk) = 0, and equality
(5.4), we obtain

(5.5). arh(z) + Vh(zi) v = 0.

In the case p > 2, the definition of «) in STEP 4 and equality (5.4) imply that
[lvell2 < 8k, which implies, since || ||, < || [|2, that

(5.62). lollp < 6.
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Now we consider the case p = 1. We know that || ||s < vn |l |l2. We also have
VAl lle 21l |l2, which according to (2.3), implies that v, = 1/y/n. Therefore,
we obtain from the definition of a; and the definition of v, in (2.3) that

(5.6b). "vklll < 6.

iFrom (5.5), (5.6a), and (5.6b), we obtain that v is a feasible point for the subproblem
(RTRQP) for p = 1 or any extended real p > 2. Therefore, because sy is an €x(sk, Nk)-
solution of (RTRQP) we have
Vi(ze)Tse + %S{Bksk Vi(ze)Tve + %vakvk n

alh@)l = @ )

for some 0 < i < B, which implies that

V§(zi)T sk + 15T Bisy < lvellz
ak||h(ze)l| = axl|h(z)l|

0<

(5.7) 0< vn

(I9 720l + 311Bellpée) + .

Since V f is continuous, the sequences {zi}, {6x}, {Bx} are bounded, and 0 < nx < 3
for all k , we obtain from (5.7) that

V f(zi)T sk + 35T Bisi < V7 ||vel2 My + o,
ai||h(ze)ll ai||h(zi)ll

for some positive constant M. ;From (5.4), we obtain

loellz _ WUk Tk 1 Vi1 h(0)ll2
ak||h(ze)ll 1R (ze)ll ’

or, because ||Ug,1ll2 < 1,

(5.8) 0<

el IZE Vi)l
arllAz0ll = [Tzl

On the other hand, there exists a positive constant vm;, such that
(5.10) 12> lvmin 2
Therefore, from Lemma 5.1, (5.9), (5.10), and ||V& 1]|2 < 1, we obtain

ol 1
alh(ze)l = @ v

(5.9)

(5.11)

which, together with (5.8), implies that

Vf(:l:k)Tsk + %S{Bksk < M,
ar||h(ze)ll

for some constant M. Consequently the sequence {4} is bounded.O

0<
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Now we show that the penalty parameter yi is constant for sufficiently large &.

COROLLARY 5.1 Assume the hypotheses of Lemma 5.2. Then there ezists an
integer k* such pr = p- for all k.

Proof. The sequence {ytk,k > kmaz} is not decreasing; let us show that it is
bounded. Assume that there exists a subsequence {ux,k € N} such that
li = .
kGNan-%-oo P +oo

Denote by M the upper bound of {/fx}. Let k1 > kmac be the smallest integer in N
such that pr, > M + p. Since {ui, k > kmaz} is not decreasing, we obtain

Be-1 2 Hk+p YE2ki+1,

and hence g = pg- for all k > k. This contradicts the divergence hypothesis of the
subsequence {uk,k € N}. Consequently {u} is bounded. Now, for k > kmaz, pi is
either equal to p_; or it is increased by at least p. Therefore, in the entire process of
updating the penalty parameter, the increase can happen at most p+ 1 times, where
p is the smallest integer greater or equal to (M — p,,,.)/p. Consequently there exists
k* such that p; = pge for all k > £k*.0

In the following lemma, we establish an intermediate result needed to prove
Proposition 5.1 and Theorem 5.1.

LEMMA 5.3. Let {(zk, Bk, 6k, Bt)} converge to (z.,B.,0,0). Assume that for
all k, sg is feasible for subproblem (RTRQP), but it is not an acceptable step with
respect to (zk, Bk, 0k, Bk). Then we have

LI
5.12a lim ——= =0,
(B.122) ¢ 2o Tisell,
(5.12b) h(z.) =0,
and
(5.13) lim inf V f(z3 )T d > 0,

k—<+00

where di = si/||skllp-

Proof. Since s is not acceptable, we have
(pk, Tk, k) — B(pk, Tk, 0) > €1 [¥ (e, Tk, 5k) — (e, 7k, 0)]

or equivalently

(5.14)  fan+ ) = Fax) + e [IhGze + s0)ll = (] > 5 o Buswt

ex [V F(ex)T s + e IA(z) + Vh(@n) sell = 16z
On the other hand, the exists £ € (zk, zx + si) such that

f(zk + sx) = f(zx) V()T sk,
V f(zi)T sk + [VF(E) — VF(ze)] sk,
V£ (ze)T sk + om4a (lIskllp),
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which implies that
f(ze + s1) — f(=zx)

llsell = Vf(ze)Tde + om+1([Isk]] )'
P

5.15
(5.15) ol

Similarly we have for j=1,---,m
hi(zk + s1) = hj(zr) + Vhj(ze) s + 0j(lIsellp),

and therefore

lIa(ze + se)ll = Azl _ lIh(ze) + Vh(ze)Tsell = Azl olllsklls)
< +I Il
llsklls llsll llskllp

(5.16)

Since {z;} converges to  and {s¢} converges to zero, we have that

(5.17) lim olllsell) _ =0 and lim om+1(IIskl) =0
. k—+oo ||sk|lp k=400 ||sk|lp )

Because {ur} and {B} are bounded, 0 < 1 — ¢, and {s¢} converges to zero, we
obtain from (5.14), (5.15), (5.16) and (5.17)

() + V(@R T sill = lIA(zell _ olllsell)

5.18a Vf(ze)Tde +
(5-182) (@0)"de + e ol > Tselle

where

5.18b tim  XllexlD)
(5.18b) eI Tisaly

Using arh(zi) + Vh(zi)Tsp = 0, we can rewrite (5.18a) as

(5.18¢) V(ze)Tdy — pro llA(z)ll 0(“Sk“p)
“ ”p “5k”p '

or

(5.18d) VH(z2)Tds > prar kGl | olllsellp)
“Toelle el

which, together with (5.18b), implies (5.13), i.e.

(5.19) lim +infv f(ze)Tde > 0.

Adding inequalities (5.18c) and (5.18d), we obtain

(5.20) IV f(z)Tdy — prcx R ILCTY]| Oll #kak”h(zk)ll o(|Iskllp)

FTlsally lIsllp llsllp
which, together with (5.18b), implies that

.. T, _ ” (zk)”
(5.21) lkllr.xlgxof[2\7f(zk) dh — prees ]>0
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But we have

Vf(:l:k)Tsk + -sk Bkslc
BE 2>
a||h(ze)ll

or equivalently

h
llsllp lIskll»
which implies, since liminfx— 400 d’,f Bisi = limg—yoo (If Bisip =0, that
. h(zi)ll 1Azl
5.22 lim inf( 2V Td, — ” < liminf -
(5.22) k_",_oo( f(zr)" di — pra ol ) im inf o S
iFrom (5.21) and (5.22) we obtain
h
(5.23) lim inf - GRS
Eetoo ¢ lselly

which implies that

.

lim sup a 1Az )l =0,
k—too  |lskllp

and therefore

(5.24) lim o LAEEN _
k=400 ||sk||,,

iFrom the definition of the equality constraint relaxation parameter we obtain

UGl . (bl S lIhze)l
(5.25) gt = ™0 el TGl

Suppose that there exists N C IN such that

U7 LICTY) R G|
"Tsely IA(z0)l12 = Telly
holds for all sufficiently large k € N. This implies that for large k € N we have
o PG _ e A=)l
Tselle  Tsellp A(z0)ll2
Therefore, we obtaib from (5.24), (5.25), (5.10) and Lemma 5.1, that

. 1
lim ——
k€N—+o0o ||sk|lp

(5.26)

=0

which contradicts the inequality ||sk||, < 6k for all k. Consequently, for all large k we
have

Al _  Sewe Azl

5.27 T .
(5.27) Toxls < sl NAGz0)]l2



18 M. EL HALLABI

Now from (5.24), (5.25), and (5.27), we obtain(5.12a), i.e.

IRl _
k—+too ||skllp

’

which in turn implies, since {sx} converges to zero, that h(z.) =0, i.e. (5.12b). O

In the following proposition, we establish that, unless the iterate z} is a Karush-
Kuhn-Tucker point of (EQCP), the algorithm ANITRA finds an acceptable step si
by solving a finite number of times the subproblem (RTRQP) with decreasing trust-
region radii. This is the first important property of the trust-region strategy.

PROPOSITION 5.1. If z; is not a Karush-Kuhn-Tucker point of (EQCP), then
the algorithm finds an acceptable step si after a finite number of loops between STEP
8 and STEP 4.

Proof. Assume that the algorithm loops indefinitely between STEP 8 and STEP
4 without obtaining an acceptable step si. The algorithm generates a sequence {s;}
of non acceptable steps that converge to zero. Therefore, we obtain from Lemma 5.3
that necessarily h(z:) = 0 and ’

(5.28) limsup V f(z:)Td; > 0,

Jj=++o00
where d; = s;j/||sj|lp- Let s € R" such that ||s||, = 1 and
(5.29) Vh(zi)Ts = 0.

Observe that s; is an ¢j-solution (RTRQP) with €; = 7;{|s;||, where 0 < n; converges
to zero. Let t; > 0 be such that ||¢;s||, = ||sj|lp, i.e. t;js is feasible for the local model
subproblem. Because s; is an ¢;j-solution, with €; = 7;||s;||, we have

1
2

which, together with (5.28) and the convergence of {7;,j € IN} and {s;} to zero,
implies that

1
Vf(zk)de + -is}‘Bkdj < Vf(z:k)Ts + tjsTBks + n;

(5.30) Vf(zi)Ts > 0.

iFrom the Farkas Lemma, (5.29), and (5.30) we obtain that z is a Karush-Kuhn-
Tucker point of (EQCP)which contradicts our hypothesis.O

Proposition 5.1 implies that either the algorithm ANITRA generates a sequence
{zi,i = 1,---,s} such that z, ia a Karush-Kuhn-Tucker point of (EQCP), or the
iteration sequence is infinite. Therefore, throughout the remaining part of the paper,
we assume that ANITRA algorithm generates an infinite sequence {zx} and hence, for
convenience, we set knaz = 0, which implies that the sequence {u} is not decreasing.

The way we update the trust-region radius follows from El Hallabi and Tapia
(1993)[16]. It implies, since we assume that the iteration sequence is bounded, that
the trust-region radii are uniformly bounded.

LEMMA 5.3 [El Hallabi and Tapia](1993)[16]. Assume that the iteration se-
quence {zr} is bounded. Then the sequence {Ar} is bounded.

The second important property of our trust-region framework is established in
the following theorem in the form it will be used later. This property is equivalent
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to saying that if the iteration sequence {z;} converges to z. and the sequence of
trust-region radii that detemine acceptable steps converges to zero, then necessarily
z. is a Karush-Kuhn-Tucker point of (EQCP). (see El Hallabi and Tapia (1993)[16]
or El Hallabi (1993)[17]).

THEOREM 5.1. Let {(zk, Bk, Ak, Be)} converge to (z., B., A.,0) where z) and
z. are not Karush-Kuhn-Tucker points of (EQCP) and 0 < A.. If (6g, ) determines
an acceptable step sy with respect to (zi, By, Ak, Bk), then there ezists a positive scalar
5(z«, By, AL) such that

(5.31) 8. > 6(z., B., AL)

holds for any accumulation point 6. of {6¢}.

Proof. Let 6, be any accumulation point of {6x}. Without loss of generality, we
can assume that {6;} converges to 6,. We have §; < Aj. First, assume that there
exists a subsequence {6,k € N C IN} such that 6 = A, for all £ € N, in which
case we have 8, > Amin. Consequently (5.36) holds for §(z.,B.,A.) = -Amm
Now we assume that 6, < Ax for all sufficiently large k, which implies that (Ak, B)
never determines an acceptable step. Let s # 0 be the last non acceptable step with
respect to {(zk, Bk, Ak, Bk)}. Observe that si is an € (sk, 7k)-solution of the local
subproblem

minimize  V f(zx)Ts + 35T Bys
(RTRQP) subject to arh(ze) + Vh(:ck)Ts =
lisllp < &
for some 0 < 7k < Bk, 6k < 5k < Ag and the corresponding ai. We have
callsikllp < 6k < callskllp-

Suppose that §, = 0. Then the sequence {5} converges to zero. ;From Lemma 5.2,
we obtain

(5.32) h(z.) = 0,
()l

5.33 lim WRER_ o

(5-33) 2 Taally

and

(5.34) limsup V f(z¢)7 fk >0.
k—+oco “ ”P

Let s € IR" verifies
(5.35). Vh(z.)Ts=0 and |ls]l, =1

To obtain a contradiction to our assumption that z. is not a Karush-Kuhn-Tucker
point of (EQCP), we need to show

Vf(z.)Ts > 0.
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Since si tends to be an exact minimizer of (RTRQP), (5.34) suggests to us to con-
struct a feasible point for (RTRQP), say wg, such that

. Wi
lim —— =
¥4 TTwelly

5.
Let us construct w. We have seen in (2.8) that VT,h(z) = 0. Now, we show that
(5.36) Vi, Va(z)T = 0.

We have

VI, Vh(zk)T = VLT UL,

0 ’ Zk,1Uk.1
VI, Vh(z)T = ,
Imer, 0

therefore (5.36) holds. Let vi be defined by

or

(5.37), ve = Ukt Tpy [~V h(zi) — '-‘f’;ivglw(z,,)%]
which implies that
(5.38) S UE o = VI, [~h(ar) - ls;ﬁw(zk)%].
On the other hand, from (5.36) and (2.8), we obtain
5.39) 0 = V.5, |-arh(zx) - Mﬂw zi)7s|.
k2 2
Consequently both equalities (5.38) and (5.39) can be gathered into
S U = VT [-a’kh(xk) - ”s%\?h(zk)frs] ,
or equivalently
VT U v = [~dih(ae) - '-'ﬂ‘?-”—PVh(zk)Ts],

and therefore

(5.40) Vh(zi)Tve = —drh(zi) — "s;”" Vh(zi)Ts.
Let us set
(5.41) wi = v + ”s;“*’s.

From (5.40), we obtain

(5.42) arh(zi) + Vh(zi)Twi = 0,
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i.e. wy satisfies the linear constraints of (RTRQP). Let us establish that it also
satisfies the trust-region constraint. ;From (5.37) and Lemma 5.1, we obtain

lvell2 _ 1 llh(z)llz | 1 .
5.43 ulls o Ll | 1o vrg
o4 lsille = wl lIsklly FIIVh(z) Ilz]

Form (5.43), (5.33), (5.35), we obtain

(5.44) lim 2l _ o
k—+oo ||kl

Since ||s||, = 1, the definition of w; in (5.41) implies that

lloxlo 1\ < lwellp  Nloelly

sille 217 llselle ~ lIskll

;From this double inequality and limit (5.44) we obtain

+1
5

k—too ||Sk|lp

[

which implies that, for sufficiently large k, we have

(5.45) llwellp < llskllp < 8

i.e. wy satisfies the trust-region constraint of the subproblem (RTRQP), and
1 _

(5.46) lselle < llwellp-

iFrom (5.42) and (5.45), we obtain that w; is a feasible point for (RTRQP). Now let
us obtain limg_ 40w /||wi|l,. We have

Wi wi_ (|lwellp) —?
(547) == ( Py y
lwellp — llsklls \lIskllp )
where
Wi Vg 1
- = —— 4 =s.
lsklle  llskll, ~ 2

which, together with (5.44), implies that

Wi

5.48 im ——
(5.48) S TR

=1,
=35
Since ||s||, = 1, from (5.47) and (5.48) we conclude that

5.49 im ——— =s.
(5.49) e Ty

Finally, we are ready to establish that Vf(z)Ts > 0. Because s is an € =

€k (S, 7k )-solution of the subproblem (RTRQP ) and because w; is a feasible point
for this subproblem, we have

1 1
(5.50) Vf(zk)Ts'i, + '2's—kTBks-k < Vf(zk)ka + §w{Bkwk + €
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First let us assume that for all sufficiently large k, we have

(5.51) Vf(zk)ka + %w{Bkwk > 0.
This implies that

’ 1 w
5.52 Vf(ze)T = + ~wl By —— > 0.
(5:52) ) Ty + 2 B T,

Since {wy} converges to zero, {zx} converge to z., and {Bx} is bounded, we obtain
from (5.49) and (5.52) that

(5.53) Vi(z.)Ts>0.

Now let assume that there exists a subsequence {zx,k € N C IN} for which
1
(5.54) Vi(zi)Twe + Ew{Bkwk <0.

iFrom (5.50) and (5.54) we obtain
Vf(zk)Ts'k + %s’kTBks'k — €k Vf(:l.‘k)ka + %wakwk
[lwellp - [lwellp

which, together with (5.45), implies

(5.55)

<0,

Vi(ze)T sk + 26T Besi — €& _ Vf(zr)Tsk + 3527 Besi — &
sl - llwell

Inequalities (5.55) and (5.56) imply that

(5.54) 3

Vf(ze)T sk + 26T Bese _ VSf(zi)Twe + jw] Brws

5.57 3 —
(5.57) Tl < Twelly

+ 3k

Therefore, because V f is continuous, { B; } is-bounded, {wk}, {5k}, and {7;} converge
to zero, and {z;} converges to z., we obtain form (5.57), (5.49), and (5.34) that
inequality (5.53) holds also in the case (5.54). Therefore in both cases (5.51) and
(5.54), we obtain that

Vf(z.)Ts>0.

Now, since this inequality holds for any s such that (5.40) holds, i.e. Vh(z.)Ts =0,
and because of (5.32), i.e. h(z.) = 0, we conclude from the Farkas Lemma that z.
is a Karush-Kuhn-Tucker point of (EQCP), which contradicts the hypothesis of the
theorem. Therefore there exists a positive scalar §(z., B., A.) such that

8. > 6(z., B.,A,)
holds for any accumulation point 6, of {6}, where 6; determines an acceptable step

at the k*» iteration.O

Before we give our global convergence result, we establish in the following theo-
rem, perhaps the most important property of our trust-region algorithm. This prop-
erty is called local uniform decrease. We emphasize that this property played a pivotal
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role in El Hallabi (1993)[16]. Since, for all sufficiently large k the penalty parame-
ter ur = pre (see Corollary 5.1), and since we assume that the iteration sequence
is infinite, the merit function ®(uk, z, s) is constant with respect to this parameter.
Therefore, we denote ®(z + s) instead of ®(ug, z, s).

THEOREM 5.2 (Local Uniform Decrease). Consider (z., B.,A.,0), where B.
is an arbitrary matriz, and 0 < A.. If z. is not a Karush-Kuhn-Tucker point of
(EQCP), then there ezists a neighborhood N, = N,(z., B, A.,0) and a positive scalar
p« such that for any (z,B, A, ) € N.

(5.58) ' B(z4) < B(z.) — pu

holds for any successor (z4+,B4+,A4, By) of (z, B, 6, ).

Proof. We prove the contrapositive. Then there exists a sequence {(zx, Bk, Ak, Br)}
converging to (z.,B.,A.,0), a sequence {pr} converging to zero, and a sequence

{(zk+,Br+, Dk, Pr+)} where (zk4, Bet, Ay, Br4) is a successor of (zk, Bk, 6k, Br)
(see Definition 4.2) such that

(5.59) B(zrs) 2 B(z) - i

holds fo all k. Therefore there exists an €; = €(z, 7k )-solution of the local model
subproblem

(RTRQP) = subject to aiph(zi) + Vh(zi)Ts =0 ,

minimize  Vf(zx)T s+ 35T Bis
{ lsllp <
for some 0 < 7 < Bi and 0 < & < A, such that zx4 = z¢ + s and
(5.60) ®(zx + sk) < B(zk) + c1 [¥(zr + s2) — V(zr)].
Inequalities (5.60) and (5.59) imply that
(5.61a) ®(z.) — B(zr) < 1 [¥(zr + k) = ¥(ze)] + pr,
or, by Proposition 4.1,

1

(5.61b)  ®(z.) — B(zk) < c1[—pallh(@)ll] = cr|VF(zr)T sk + 2

s{ Bisk| + pr.
Since {z)} converges to z., and {pi} converges to zero, we obtain from (5.61b)
(5.62a) Jim_anllh(z)l| = 0.

But we have

ag||lh(zx)|| = min(||h(z)|], T6rwi Illlhh((::))lll‘z )

which, by Lemma 5.1, Theorem 5.1, and (5.10), implies that

. 6(z., B., A.
(5.62b) axllh(@n)ll 2 min (A0, 7 vmin Z22202 20 )
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holds for sufficiently large k. Therefore, from limit (5.62a) and (5.62b), we obtain
(5.63) h(z.) =0,

which, together with Lemma 5.1, Theorem 5.1, and the definition of ay, implies that,
for all sufficiently large k, the constraint relaxation parameter a; is identically equal
to one. Hence, for all sufficiently large k, s; is an €x-solution of the local model
subproblem

(5.64a) (RTRQP) = subject to  h(zi) + Vh(zx)Ts =0

{ minimize  Vf(zi)7s + 1sT Bys

llslly < b
The sequences {sr} and {6;} are bounded, then without loss of generality, we can
assume that they converge respectively to s., and 6., where, by Theorem 5.1, 0 <
6.. Therefore, by Theorem A15 of Huard (1975)[21], we have that s. solves the
subproblem

(5.64b) subject to Vh(z.)Ts =0

{ minimize Vf(z.)Ts+ 1sTB.s

lIsllg < &
(Huard’s Theorem establishes, in a more general case, the continuity of an approxi-
mate solution (in our case sx) of a given optimization problem (in our case RTRQP),
considered as function of the variables that play the role of parameters (in our case
zi, Bk, and 6;). On the other hand, we obtain from (5.61b) that

(5.65) Vi(z.)Tse + %s?B.s. = 0.

Consequently s = 0 solves the subproblem (5.64b) which, by Proposition 3.1, contra-
dicts the hypothesis that z, is not a Karush-Kuhn-Tucker point of (EQCP).0

Finally, we give our global convergence result which detracts from the matter at
hand.

THEOREM 5.3. Let {zi} be a sequence generated by the algorithm ANITRA of
Section 3, and let {By} be the sequence of matrices used by the algorithm. Assume
that
1) {zi} is bounded,

2) {Bx} is bounded,

3) for all k, the linearized constraints are consistent,

4) the functions f and h;,i =1---m, are conlinuously differentiable, and

5) the sequence {Px} that is used to obtain €x-solutions of the local model subproblem
converges to zero.

Then any accumulation point of {zi} is a Karush-Kuhn-Tucker point of (EQCP).

Proof. Let z. be an arbitrary accumulation point z. of {z;}. Consider the
sequence {zr,k > k*} where k* is defined in Corollary 5.1. Because for k > k* the
penalty parameter u; is constant, the merit function ® is constant with respect to
this parameter and therefore will be denoted ®(z). Since, for all £ > k*, z; is not a
Karush-Kuhn-Tucker point of (EQCP), we have

O(zp41) < D(zi) VE> K.
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Let {z;,j > k*} be a subsequence that converges to z.. Consider k¥ > k*. There
exists j(k) > k such that

O(zj(x)) < &(zk),
and consequently
®(z;) < (=k),
holds for all j > j(k). Therefore, we obtain
(5.66) &(z.) < O(zk) VEk > k",

Assume that z, is not a Karush-Kuhn-Tucker point of (EQCP). Since {z;,j > k*}
converges to z., there exists j(z.) > k* such z; € N, for all j > j(z.), where N. is
defined in Theorem 5.2, which implies that

®(zj+1) < B(za) V5 2 (z.).

This contradicts (5.66). Therefore z, is a Karush-Kuhn-Tucker point of (EQCP).0

Actually, Theorem 5.3 can be obtained as an application of Theorem 5.1 and the
work of either Huard (1979)[22] or Polak (1970)[26] dealing with the global conver-
gence of conceptual algorithms. We choose to give a direct proof because that proof
is not long and contributes to the cohesiveness of the presentation.

6. Concluding Remarks. In this paper, we have presented an Arbitrary
Norm Inexact Trust-Region Algorithm ANITRA for approximating a solution of the
equality constrained problem

- minimize  f(z)
(EQCP) = {subject to hi(z)=0,i=1.---m,

where f :IR® = R and h; : IR® = IR, ¢=1---m < n, are continuously differen-
tiable.

The local model has the form

minimize V f(zk)Ts + 1sT Bys
(RTRQP) = subject to arh(zr) + Vh(zk)Ts =0

”s“P < Ok,

where the fixed || ||, can be a polyhedral norm or an arbitrary £, norm with p > 2.

When || ||, is a polyhedral norm, i.e. £; or £ norm, or a convex combination of
polyhedral norms, the subproblem can be formulated as an SLP or SQP depending
on whether or not we use second order information matrices By. Because we only
assume first order differentiability of the functions f and h;,i = 1---m, our theory
fits well both SLP and SQP formulations. Moreover, since at each iteration, only an
approximate solution is required, we believe that our theory would apply to the case
where the first derivatives are approximated by some finite difference scheme.

We established, under rather weak assumptions, that any accumulation point of
the iteration sequence is a Karush-Kuhn-Tucker point of (EQCP). To the best of our
knowledge, the other convergence results establish that there exists some accumula-
tion point of the iteration sequence that is a Karush-Kuhn-Tucker point of (EQCP).
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Also, we only assume that f and h;,i = 1---m, are continuously differentiable, and
that the system of linearized constraints is consistent, whereas generally stronger as-
sumptions such as uniform linear independence of the gradients Vhi(z),i = 1---m,
and continuity of the second derivatives of f and h;,i=1---m.

Also observe that to obtain a trial step sk, one subproblem per trust-region
radius needs to be solved within some tolerance, while in the two level algorithm
in Byrd, Omojokun, Byrd, and Shultz (1987)[3], two subproblems per trust-region
radius need to be solved approximately.

An equivalent subproblem to RTRQP. Before ending this section we present
an equivalent local model subproblem to ( RTRQP) that, we believe, deserves further
consideration. This equivalent subproblem is

minimize  V f(zz)Tu + 1u7(crBi)u
(RTRQP") = subject to h(zi) + Vh(zx)Tu=0 ,

lullp < &
where

6; = gk— = max(6k, Mi‘l)ﬂl)
k k

Observe that ( RTRQP) and ( RTRQP’) are equal when h(zi) = 0. Also, when
h(zx) # 0, it can be shown that s is an €x-solution of subproblem (RTRQP) with ¢, =
e min(||sk|lp, @x||(zk)|]) if and only if ug is an €}-solution of subproblem (RT RQP’)
with €, = ng min(||uk|lp, || A(zx)||) where si = apuk.

In this equivalent subproblem formulation, the equality constraints relaxation
parameter a; also seems to behave like a scale for the second order approximation
B:i. In STEP 5, we could scale before updating the matrix Bi. In our theory, we ask
for a; to satisfy

. Opwi
6.1 0 < ar = min(l,a;) where a} =TV,
( ) ( k) k q”h(zk)IIZ

and we expect to have a; = 1 for sufficiently large k. On the other hand, in quasi-
Newton’s methods, it is common to scale the matrices B (see Contreras and Tapia
(1993)[8] or Dennis and Wolkowicz (1990)[10]). When these matrices are symmetric
positive definite, a scaling factor is

y{ Sk

. 0 =
(6.2) k sZ'Bksk

which is known to converge to one, under suitable assumptions (see Yabé, Martinez,
and Tapia (1993)[37]). Therefore, our theory applies for any relaxation parameter &
satisfying

(6.3) 0 < ax = min(1, aj, 6:),

where a} is defined in (6.1) and 6} is given by (6.2) or could be any other scaling pa-
rameter for B’s that is bounded away from zero at non stationary points of (EQCP).
This would shift the linearized constraints and scale the second order approximation
matrices in the same time away from a solution of (EQCP) and become inactive in
some neighborhood of a solution of (EQCP).
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7. Appendix A. In this appendix, we show that the use the QR-decomposition
with column pivoting algorithm provides an w, that may be taken as the lower bound
sought for in Proposition 2.1. Also, since it is a by-product of the determination of
ak, we use the QR-decomposition to obtain the least square estimate of the vector
of Lagrange multipliers. Finally, we give the proof of Lemma 5.1, showing that wj
can be obtained such that it is bounded away from zero. When we apply the QR-
decomposition to Vh(z), we stop at the iteration number rz, where r; < m is the
smallest integer such that

") Raallr < €1 max(ez, "= Rl|F),
or by orthogonality
(7.1) 1) Raallr < €1 max(ez, | VA(z)]|F).-

where || ||r denotes the Frobenius norm, 0 < ¢; € 1,0<e2 < 1 and

(":)R (":)R
(rs) P — 11 12
R= ( 0 (r,)Rzz) ’

with the upper-left index (rz) indicating the QR-decomposition iteration number. We
refer to (rz) for which (7.1) holds as the estimated rank of Vh(z). Observe that this
definition depends on the method used to obtain (r;) (in our case QR-decomposition
with column pivoting).

The following proposition and its corollary give a positive lower bound w;.

PROPOSITION 7.1. Let r; be the estimated rank of Vh(z) where z is a given
point in IR". Consider the partial QR-decomposition

(7.2) Vh(z) M =Q;---Q1 YR

where II; and Q;,i =1,---j < rz, are permutation matrices, and

. G)R,, WR
P = 1 2
R= ( 0 (J)Rn) '

where U)R,, is a nonsingular upper triangular matriz of rank j. Then

(7.3) |(PRu), 5| < 03(Vh()).

Proof. Let U)Q = Q;---Q1 and () = I, --- ;. Then equality (7.2) can be
written as

(7.4) Vh(z) On=(D4, , W4y)
where

) o (P Ru ) 0o (Y Rz
(7.5) A= Ul and WAy = Q| ()R, |-

By Theorem 12.12-1 of Golub and Van Loan (1983)[19], (7.4) implies that
(7.6) a;(V) A1) < 05(Vh(z)).
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On the other hand, the matrix () A, is full rank (i.e. j) and its QR-decomposition is
given in (7.5). Therefore

|((j)R11)j,j| < o] ((j)Al)

which, together with (7.6), implies (7.3). O

COROLLARY 7.1. Let r; be the estimated rank of Vh(z) where z is a given
point in R™. Then

< or, (Vh(z))

Tz,z

ve = | Ru)

where ("=) Ry, is the nonsingular upper triangular component of

(":)R (":)R
(rs) P — 11 12
R= ( 0 (=) Rzz)

given by the QR-decomposition with column pivoting satisfying

19 Rzl < €2 max(ea, IVA(@)IIr)-

Usually, the matrices Bj are approximation to the Hessian of the Lagrangian. So
to perform STEP 5 of the ANITRA Algorithm, we will need the vector of Lagrange
multipliers Mg, which may be determined as follows. Consider the QR-decomposition
with column pivoting Vh(zi) I = Q R(*), where the subscript on Il and Q are
omited. Let A; be the matrix of the first r¢ columns of the matrix Vh(z)II, and b
the vector of the first 7 components of 1T h(z;). Therefore A is a full rank n x ¢
matrix whose QR-decomposition is given by

R{Y
(7.7) A= Q ( ) .
0

We define A\; as
(7.8a) A =0Ty

where the first r; components of y; satisfy

-1
(7.8b) (Y152 Yk, T =- [A{Ak] AT (Vf(zk) + Bisi),
and the last m — r; components satisfy

(7.8¢) Y, =0 j=re+1,---,m.

To end this appendix, we give the proof of Lemma 5.1.

Proof of Lemma 5.1. Let Ti be the estimated rank of Vh(zi) by performing the
QR-decomposition with column pivoting

(7.92) Vh(z), - -, = Qry -+~ Q1 () R
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where
(fk)R(k) (f'k)R(k)
(7gb) (r;,)R(k) = ( 11 12 ) ’
k
0 (rx) R(2 2)
along with the stopping criterion
(7.10) 1™ R |IF < 2 max(ea, [ VA(=4)lIF),

where the upper-left index (ri) indicates the QR-decomposition iteration number,
and the upper-right (k) the iteration number of the algorithm ANITRA of section 3.
Let € = €; max(ez, ||Vh(ze)||F). Inequality (7.10) implies that

(7.11) ||( (re) p8) ) j“2 <e

for any column j of the matrix (("*)Rg’;)), j=r+1,---,m. We also have
(7.12) I RG> e

But

a9 mes J( R ) =1 @R )

On the other hand

" (ru-l)R(z’;) "FS(""”""I) max "( (r».—1)Rg§) );"2

re=1<j<m

Therefore, from (7.11), (7.12), and (7.13), we obtain

)

__E____<|( ("‘)R(ll;) )
vm—=—r+1 .

which implies that

€ k)
—< ( (r) RS ) .
7m<I( e ) |

’

Consequently, we obtain

(7.14) ‘\/‘—-:_Z < |< (ri) R{®) ) |
TkTk
Let us set
_ €€z
(7.15) w=—=.

Therefore, from Corollary 7.1, (7.14), and (7.15), we obtain (5.1), i.e w < w; for all
k.0
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8. Appendix B. We give in this appendix the Theorem of the alternative
of Dax (1990)[9] used in the proof of Lemma 2.2. According to the dimensions in
(EQCP), we cite the original Dax’s Theorem with inverted dimension n and m, since
there are no conditions on these dimensions. Also, in the present work, the extended
reals p and q are in reverse order with respect to [9]. So, we invert the roles of p and
q in the original version of Dax’s Theorem.

THEOREM OF THE ALTERNATIVE [Dax] (1990) [9]. Let p and q be ertended
reals satisfyingq > 1 and p = q/(g—1). Let A be an n x m matriz, let g be an non-zero
m-vector, and let W be an nxn matriz with positive diagonal elementsw;,i=1,---,n.
Then either the inequality

(8.1) g y+IWAyll, <0
has a solution y € R™, or the system
(8.2) ATs=g and ||Wls]|,

has a solution s € IR™, but never both.

In our application, for a given z € IR" satisfying h(z) # 0, we set:
g = —ah(z) e R™
A= Vh(z) € R"™™ and
W = §I,,, where I,, denotes the identity matrix in IR"*".

Therefore, the system (8.2), which becomes

1.
2.
3.

(8.3) Vh(z)Ts +ah(z) =0 and s, <6,
has a solution s € IR", if and only if the inequality (8.1), which becomes
8|IVh(z)ylly > eh(z)Ty,

for all y e R™.
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