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GLOBAL ERROR CONTROL FOR THE CONTINUOUS
GALERKIN FINITE ELEMENT METHOD FOR
ORDINARY DIFFERENTIAL EQUATIONS

DoNALD EsSTEP AND DoONALD FRENCH

ABSTRACT. We analyse a continuous Galerkin finite element method for the inte-
gration of initial value problems in ordinary differential equations. We derive quasi-
optimal a priori and a posteriori error bounds. We use these results to construct a
rigorous and robust theory of global error control. We conclude by exhibiting the
properties of the error control in a series of numerical experiments.

§1. INTRODUCTION

Our main purpose is to outline a rigorous theory of global error control for the
continuous Galerkin finite element method for

w1) {ﬂ+f(y,t)=0, 0<t<T,
. y(0)=yo€R‘, d>1.
The continuous Galerkin (cG) method produces a continuous piecewise polynomial
approximation Y. It has been used previously for certain evolution problems (see
[10],[11), [12]) because it often has the property of preserving an “energy” naturally
associated to the differential equation. We are interested in adaptive error control
for the cG method in order to achieve accuracy and efficiency in computations. On
one hand, it is computationally impractical and even impossible to use a uniform
(small) step-size on many problems. Examples are systems obtained from a method
of lines discretization of a partial differential equation and problems which require
computations over long time intervals. On the other hand, it is generally impossi-
ble to a priori choose step-sizes that guarantee accuracy. However, we show that
information obtained from the approximation can be used to make computations
of a specified accuracy.

The theory of adaptive error control we describe is based on a combination of
rigorous a priori and a posteriori error analyses. This is the same approach that
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has been used in an ongoing project to develop a theory of adaptive error control
for approximations of partial differential equations (see [2]-[8], [14] and references
therein).

A priori error bounds measure the error by quantities that reflect the regularity
of the solution and the stability properties of the numerical scheme. The usual
derivation for a difference scheme is based on estimation of the truncation error by
means of Taylor’s theorem. In contrast, we use Galerkin orthogonality to compare
the ¢G approximation to other approximations in the finite element space. Hence,
we obtain optimal order results rather than the usual sub-optimal bounds derived
for difference schemes. In addition, we prove that the second order ¢cG approxima-
tion is superconvergent at time nodes, i.e. has an extra order of accuracy at those
points.

While a priori error bounds describe the convergence properties of an approxi-
mation, they are not directly useful for error control because they involve unknown
information about the solution. Instead, we use a posteriori error bounds as adap-
tive criteria for choosing step-sizes. An a posteriori bound measures the error by
computable quantities that depend on the regularity of the approximation and the
stability properties of the solution. Suppose that the interval [0, T] is partitioned
into N subintervals I, of length k,,, and that g denotes the order of the ¢G ap-
proximation. Our a posteriori bounds have the form

(12) [¥ (tn) = y(tn)| < S(tn) max k83" max | DIF(Y (£), )]
for 1 < n < N, where |- | denotes the Euclidean norm on R¢, D{ denotes the

¢*? order time derivative and S(t,) depends on t, but not on any km. Note that
k& max;_ |Df f(Y(t),t)] is computed on each interval and measures the local reg-
ularity of the approximation. We call S(t) the stability factor and it is a measure of
the accumulation of error. It is given by a semi-norm on the solution of the linear
dual problem to (1.1) obtained by linearizing (1.1) around the solution. We show
that S(t,) can be approximated using the linear problem obtained by linearising
around the approximation. Hence, the bound involves only information that can
be obtained from the approximation. If Y is computed so as to keep the quantities
on the right-hand side of (1.2) below a given tolerance, then the error is also kept
below the tolerance.

This theory of adaptive error control is completely different from the standard
theories for difference schemes which are based on error estimates that are asymp-
totic in the limit of small step-size. Hence, we avoid some difficulties associated
to this approach. While the asymptotic estimates are valid only when the error is
small, there is no computational criteria for determining if the asymptotic regime
has been reached with the chosen step-sizes. Thus, a small asymptotic estimate
does not imply that the error is small. In fact, the criteria of choosing steps so as
to keep the asymptotic estimates valid is generally harsher than computing approx-
imations of a given accuracy. For example, this is essentially the root of the issue
of choosing the error-per-step or the error-per-unit-step criteria for the widely-used
strategy called local error control. Note that in this context, the goal of adaptive
error control is to use as large as steps as possible while producing an approximation
of the desired accuracy. Finally, asymptotic estimates require extra regularity of the
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solution, which is of particular concern in applications to nonlinear initial-boundary
value problems in partial differential equations.

This approach to error analysis and adaptive error control was initiated by John-
son in [14], which contains an a priori analysis of the discontinuous Galerkin (dG)
method for autonomous ordinary differential equations. The dG method produces
a discontinuous piecewise polynomial approximation that is well suited for stiff, dis-
sipative problems. Eriksson and Johnson made complete a priori and a posteriori
analyses of the dG method for linear parabolic problems in [3] as well as outlined &
theory of error control. Estep did the same for the dG method for non-autonomous
ordinary differential equations in [8]. This analysis has been extended in several
directions in recent years, see [2]-[7].

We would like to extend the theory to cover general numerical methods for a
variety of equations and this paper is a step towards this goal. It is natural to
consider the ¢G method as an alternative to the dG method because its stability
properties make it more suitable for equations with oscillatory and periodic solu-
tions than the dG method (see §2 and §4). The analysis we present here follows
the same lines as the analysis in [8], however the technical details are altered to
account for the differences between the ¢G and dG methods. In particular, we deal
with difficulties associated to the fact that in the cG method, the approximation
space and the test space are different. '

The paper is arranged as follows. In §2, we introduce notation and describe
the ¢G method. In §3, we present the a priori and a posteriori results. In §4, we
outline the strategy for adaptive error control based on the a posteriori result as well
as discuss some technical points concerning implementation. We demonstrate the
adaptive method on four test problems, including the difficult two-body problem.
In particular, we present plots of the error-to-bound ratio as a measure of reliability
and efficiency. We also make a comparison with the dG method on these test cases.
We present the proofs of the a priori results in §5 and of the a posteriori results in
§6.

§2. THE SCHEME AND NOTATION

The finite element method is based on a variational formulation of (1.1) that
reads: find y € C1((0, T)) such that

T T

/ (§v)dt + j (F(¥(2), ), v(t))dt = O,
0 (1]

y(O) = Yo,

(2.1)

for all v € C;((0, T)), where Cy([0, T]) denotes the set of functions with continuous
derivatives of order p and less on [0, T'.
We construct a piecewise polynomial approximation Y to y. We partition [0, T
into
0=:% <133 <t <tz <tg<--- <ty =T,
'etting km = tm = tm-1, tﬂh-l/? = tm - km/zv Im = [tm-lttmll and k :=
max,, km. We choose the finite element space cle) = ¢l)([0,T)) of continuous

1t a————— e
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functions that are polynomials of degree g on each interval I, i.c.
¢ := {U € Co([0,T)) : U|,_ € P(Im), 1 Sm < N},

where P(¢)(I,,) denotes the set of polynomials in R? of degree g on I,. Because
of the continuity, a function in C(®) has only g degrees of freedom on each interval.
Accordingly, we define the test space

Dle-1) = ple-1)([0,T)) := {U : U|,_ € P~ I(Im),1 < m< N}.

Since these functions may be discontinuous, we let U '~ denote the left- and right-
band limits of U € D(1=1) at t,, and [U}m := U} — U, the jump in value.
For 1 < n < N, the ¢G approximationY € c(9) golves

{ T L (V@) + f(Y (2),2), V(2))dt =0,
Y (0) = yo.

for all V € D(1=1), Y can be computed interval by interval as well; for 1 <m < n,
it solves :

- f,“(if, V)dt + J;_(f(Y(t),1), V(t))dt =0,
(22) lim, .- | Y(t) =limy_+ | Y(t).

for all V € P(4=1)(I).
When g =1, Y is the piecewise linear function

(t =tm) (t = tm-1)
Y = Ym- Ym
|1 1= P + P
with coefficient Y;, determined by
(2.3) Y + / (Y (t),8)dt = Yo 1.
Im

When ¢ = 2, Y is the piecewise quadratic function on Im
2
Y| =Ymoagz(t- tm-1/3)(t — tm)
™m
4 2
= Ymojag5(t = tme1)(t = tm) + Ym o5 (¢ - tm-1)(t = tm-1/2);
ko ke

with coefficients determined by

{ Ym + f;_ f(Y (2),t)dt = Ym-1,

5tm +tm-1— tht =Yo_1.

@4) Ym-1/2 + J;_ F(Y (E)2) 3k

Existence and uniqueness can be shown for k sufficiently small.

© g ———— o o |01 I
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Remark 2.1. Consider f(y,t) = Ay. The ¢ = 1 scheme (with uniform step) is

_1-)k/2

¥Ym = 14 Ak/2

Ym-ll
which agrees with the second order trapezoidal rule at nodes. When ¢ =2, the cG

approximant agrees at nodes with the fourth order Runge-Kutta scheme

_1=2k/242%3/12
=1+ 2E/2+Ak3/12 ™V

(2.5) Ym

Both cG schemes are A-stable; stable for Re())> 0 and unstable for Re (M<o.
In particular, when Re (2)> 0, y decreases in size as time increases and the cG ap-
proximations have the same property without restriction on the step-sise, as would
be needed for an explicit scheme for example. However, note that for fixed k, the
factors above tend to one in magnitude as [A| — oo. This contrasts both with
the behavior of the solution and the discontinuous Galerkin method. On the other
hand, when Re())= 0 and y is purely oscillatory, the ¢G approximants are nei-
ther increasing or decreasing in magnitude, indicating that the cG method might
be a good choice for problems with periodic and oscillatory solutions. The dis-
continuous Galerkin method is not particularly suitable for such problems because
the approximants exhibit numerical damping. See §4 for further discussion on this
issue.

We also note that the cG schemes preserves discrete versions of the conservation
properties or Lyapunov functionals which the original system might possess (see
[12])). This property can be used to analyze the stability properties and the long
time behavior of the numerical scheme (see [10] and [11]).

The ¢G schemes are not equivalent to any standard Runge-Kutta schemes when
applied to truly nonlinear, non-autonomous problems.

We use the following notation. For an time interval I, we let

lglr := sup|g|-
tel

In addition,
e=y-Y

8
fv(yst) = %i'aft(ylt) = %%’sfyt(y)t) = %}: etc.,

Mq:gmmg':%uaﬁ:%u+xy
o = T8
dr’

N == {(u,1) : u € Co([0, T]) and |u(t) —y(t)] L6 for0<t < T}.

We employ several interpolants and projections of u in cl9), T satisfies

7 (0) = u(0),
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and on Im,1 <m<n,

{ fj(tm) = 4(tm), 9=1,2,
U(tm-1) = 4(tm-1), ¢=2.

The following error bound is easy to show

kmlilr., g=1,2,

2.6 b—-al <
@) AL (i,

Pp denotes the L? projection of u into D(1-1); in other words, Ppu € D~
satisfies

/o T (Pow, V)it = fo T V)i,

for all V € D(1-1), In places, we abuse notation to let Pp denote Polr.- By
standard results,

i lsldt < kmlilra, g=12,

(2.7 Ppu — ulr, < _ -
. Chn . laldt < CRR i1, =2
For u € Cp41(I), 0<p< g, welet Ziu € C(9) denote the interpolant such that on
In,1<m<n,
{ I,u =uattm1,tm, ¢=1,2,
Ziu=uattm_y/3, ¢=2.

From standard theory (see [16]), there is a constant C = C(p) such that

< CERF |y * )y,

(2.8) li:; (u=Zyu) -

for 0 < r < p < q. We recall the following inverse result from Ciarlet ([1]), there is
aC > 0such that for U €C9),1<r<00,1<8<00,and0<p< g,

1/r 1/s
(2.9) ( / |U(’)|"dt) SCI:;"(”“‘/')( / |U|‘dt) ,
Im Im

(with the usual interpretation if r or s = 00).

Finally, to simplify the presentation of the proofs, we use a global Lipschitz
assumption on f and define the domain 2 := R¢4. More sophisticated assumptions
can be used without significantly altering either the results or the proofs.

§3. ERROR ANALYSIS

We now present the analysis of the error that serve as the basis for error control.
We begin with an a priori analysis that reveals the convergence properties of the cG
method. The a priori bound measures the error by quantities that depend on the
regularity of *he solution and the stability properties of the scheme. The first result
shows that the cG scheme converges at the optimal order on the interval [0, 7).
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Theorem 3.1. Assume that y € Cy41([0,T]) and f is Lipschits continuous with
constant L. Then, for1<n < N, ¢= 1,2, and k sufficiently small,

(3.1) lelioal < C(1+ Ltne® )" max k¥ 3*+V)s,,,
and
(3.2) [éliosal S C(1+ Ltne®™t=) " max bt Jy(e+1)..

The second result shows that the cG method is superconvergent at time nodes for
g = 2, if the ratio of the largest step to the smallest step is bounded. The order of
convergence at nodes (2q) agrees with the order of convergence of the Runge-Kutta
scheme (2.5) for the linear problem in remark 2.1. But, we note that the form of
the bound means that there can be an effective loss of order if the problem is stiff,
for example. We thank J. Schaeffer [16] for giving us the proof of this result.

Theorem 3.2. Assume that q¢ = 2, that y € Cs(I), that for § sufficiently small,
the partial derivatives of f of order q are continuous and bounded in norm by L
on N, and that there is a constant p > 0, independent of k and N, such that for
1<n<N,

glg . <p .

Then, for 1 < n < N and k sufficiently small,

3 r
(33)  le(ta)] < Ctne®5t (14 Ltne® )" max kfy - max y™1'(1+ 1),
r820

where C = C(L, p).

The proofs of these results are given in §5. In both cases, the analysis uses
Galerkin orthogonality to compare the ¢cG approximation to approximations of the
solution in C(?) with known interpolation errors. But, unlike approximations of
the solution computed with full global knowledge of the solution, the error in the
¢G approximation accumulates with time. This is the reason for the exponentially
increasing stability factors. The accumulation has to account for the worse possible
rate of accumulation in the class of problems under consideration. Under these
general assumptions, these large factors are the best possible.

These a priori results are not useful for error control because they involve un-
known information about the solution. Next, we present an a posteriori result that
bounds the error by computable quantities that reflect the regularity of the approx-
imation and the stability properties of the linearized dual problem to (1.1). As to
the latter, we let z denote the solution of

{ —i4+A'()z2=0, ta>t20,
z(tn) = en/lenl,

and define a quantity that turns out to be the stability factor for the a posteriori
bound,

(3-5) Sp(n) = /o - |z(P|dt.

It is convenient to begin the analysis with an a priori bound on S,.

(3.4)

. 1 SO 4D § S S B 1. S 2N
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Proposition 3.3. Assume that there is an integrable, bounded function L(t) > 0
such that

(3.3.1) A < L(t),

for 0 <t < T. Then,

(3.6) Sy(n) < elo™ B _ 1,
If, in addition,
(3.3.2) (A(t)w,w) >0,

for allw € C% and t € [0, T), then

(3.7) Si(n) < /o " Lit)at.

If we assume that the partial derivatives of f of order q and less are bounded in
norm by L(t) on N, then

(3.8) Sa(n) < (efo™ L4 — 1) (efo™ LI 4 |L|fo,e0))-

This result is proved in §6.

Remark 3.1. There are other possibilities for bounds on Sa(n). The case when A(t)
is invertible turns out to be computationally important. Then,

(39) sim < ([ o [Alos) ()

Now, the a posteriori result.

Theorem 3.4. Assume that the q*? order partial derivatives of f are continuous
on N, for some § > 0, and that there is an integrable, bounded function L(t)>0
such that for all u,v € 2, w,z € C%, and t € [0, T,

(3‘4‘1) |f(u1 t) - f(",t)‘ < L(t)h" - ”Io
(3.4.2) (A()w, w)| < L(®)|wl?,
and

(3.4.3) [((fy(ut) = fy (v, t))w, z)| < Cmin{L(t)|lu - v||wllz], lu— vllwl|4°(t)z(}.

Then, there is a constant C > 0 such that for k sufficiently small,

(3.10) leliosa) € C(S:(n) + maxkt!? i—';f(Y(t),t)L-.




GLOBAL ERROR CONTROL FOR THE CONTINUOUS GALERKIN METHOD 9

for1<n< N,q=1,2. IfY is computed so that for some C > 0,

d?

q+1
(3.4.4) kY

frenn| <o
Im
for 1 < m < n, then

ds
d_t;f(y(t)' t) I

(3.11) max|em| < C51(n) max ki

for1<n< N,g=1,2. Finally, forq=2,

d?
@] +

(3.12) max lem| < CS3(n) gg.;:k;‘n

CS;(n)egkf,, g:-,f(Y(t).t)

3
I

This result is proved in §6. We discuss the construction of an error control based
on theorem 3.4 in §4. We conclude this section with a result that shows that the a
posteriori bounds are of optimal order.

Proposition 3.5. Assume that the hypotheses of theorem 3.1, 3.2, and 3.4 hold.
Then, for k sufficiently small and ¢ = 1,2,

l% FY(2),t) - ilx- < C(L, T, y)¥!,

while for ¢ = 2,
d’

@) -y <CL Tk

§4. ADAPTIVE ERROR CONTROL

We employ adaptive error control in order to achieve the related goals of accu-
racy and efficiency. In the case that a fixed scheme is used, this means producing
approximations of a desired accuracy using the largest possible step-sizes. In this
section, we show how the a posteriori error bound can be used as the basis for an
adaptive error control and then exhibit properties of the control through a series
of experiments.

There are two contributions to the global error in the approximation of an initial
value problem (ignoring round-oft error). The first is the interpolation error made
in approximating a general function by piecewise polynomials. This error is deter-
mined by the behavior of certain derivatives of the solution. The first goal of the
adaptive error control is to choose a mesh that allows interpolation of the solution
with an error that is uniform in an appropriate norm over the interval of computa-
tion. The second source of error is due to the cumulative effects of integrating an
initial value problem interval by interval. The rate of accumnulation is determined

o s e e e 40 i
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the stability properties of the solution, i.e. the behavior of trajectories that
art pear the target solution at a given time. The second goal of the adaptive
ror control is to choose the mesh size 80 that the accumulated error is not too

1ge at specified times.
Examination of the proof of theorem 3.4 makes it clear that the result clearly

clineates the two sources of error. For example, we quote (3.11)

ds
ey

4.1) lenl £ CcSi(n) t;‘lg.;&‘ k] \ T jit 4 (t)’t)\x..
The quantities inside the maximum taken on the right measure the local approxima-
tion properties of the mesh for functions in cl9), The accounting of the accumulation
of error is made in S 1(n) which is & semi-norm of the solution of the dual problem
over the interval of computation- By controlling the expression on the right in (4.1)
at specified timesta, 1 < n* < N, we control the global error at those points a8
well.

Remark 4.1. We use (3.11) and compute with theg=1 scheme for the purpose of
illustration. The other bounds in theorem 3.4 and the higher order scheme can be

used in an analogous fashion.
Because the bound uses & maximum of local quantities, it does not seem wise to

let the local quantities become large at some points. Hence, We adopt the following
strategy: given LTOL > 0, for 1<ms<n compute Ym on I so that

(4.2) kg:l\% HY (t),t)\l‘ < LTOL.

Note that proposition 3.5 implies that (4.2) can be achieved by taking km sufficiently
small. In practice, km i8 determined iteratively. From & given point tm—-1, 8 8t€P
kpred is predicted via

pred = LTOL )‘/ (a+2)
" ESRECRII

and YZ'ed is computed. If (4.2) 18 satisfied with Ym = yzred, the step is accepted
and the computation proceeds. If (4.2) is violated, the jteration is repeated with a
new step i8 predicted via

ERREZOD]

Global error control is achieved by choosing LTOL so that

( LTOL 1/(g+1)

(4.3) €Sy (n")LTOL < GTOL:

for certain 1°, 1 <n® < N, where GTOL is the desired global error tolerance. I
an a priori bound on S1 (n) is known, then a correct LTOL can be chosen before the
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computation begins. Unfortunately, the general bound on S3(n) given in propo-
sition 3.3 is too large to allow computation past a short transient. Since Sp(n)
is specific to the solution of (1.1) that is being approximated, an alternative is to
compute Sp(n) for each problem. Of course, this is not directly possible in general
precisely because this would require the solution. Instead, consider { solving

{4+hWM@1=mtﬁnzm

(44) C(ta) = o, =1

We can prove (see [8])

Theorem 4.1. Assume that f has continuous second partial derivatives and that
the assumptions of theorems 3.1 or 3.2 and theorem 3.4 hold. Further assume that
there is a constant § > 0 such that for allU € c) with max{|U - ylo,7), for U -

yldt} <&,
}5L.
Ton

Then, any consistent and stable one step method for (4.4) with dn, = e /lex|
computed on a mesh that includes {t1,-++ ,tN} as nodes converges to z as k—0.

dr
S GOR)

max max
m<n p<g+l

We approximate S3(n) by using the values of a trapezoidal rule approximation for
(4.4) in a Simpson’s rule formula for

jo 1, (), 8 Clat.

Similarly, we can approximate S3(n) by a quadrature formula for

[ |garenores e

Since this approximation of Sp(n) requires an approximation of y over [0, 2}, we
resort to an iteration to achieve global error control. We begin by assuming that
Sy(n) = 1 and LTOL = GTOL is chosen. Y is computed so as to satisfy (4.2).
Next, Sp(n*) is approximated using ¥ and (4.3) is checked at the desired points
tn.. If (4.3) is violated, a new local tolerance is chosen via

GTOL
LTOLngw = -0_5:(11_‘) .

Finally, the computation is restarted with the smallest of the new local tolerances
(presuming (4.3) is violated at some point).

Remark 4.2. The constant C in the bounds in theorem 3.4 is determined by the
technical details of the analysis and, hence, is somewhat problem dependent. For
example, it depends on the choice of norms, and so on the dimension, on the
largest possible step size, and so on. To determine C precisely, one would have
to be more careful in the analysis than we have been. (For example, use optimal
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estimates in each line, etc.) Instead, we compute C for a linear problem (presented
in example 4.1) in which the solution is known and use this value in the rest of the
computations, which are all low dimension. For many problems, this appears to be
a reasonable value, though in some cases, the scale is clearly off.

Remark 4.3. The error control outlined above is robust in the sense that a step
is accepted only if (4.3) is satisfied and a computation is accepted only if (4.3)
is satisfied. In practice, it is possible that the iterative processes used to achieve
(4.2) and (4.3) can produce approximations that are more accurate than requested.
Whether this warrants recomputing the step or the computation is uncertain. For
the computations below, we did not want computations that are too accurate. We
choose 7, 0 < n < 1, and during the local step control, accepted a step only if

9
(4.5) nLTOL < k&t -gt-,f(}’(t),t) < LTOL,
I
while we accept the computation only if
(4.6) nGTOL < CSi(n°) £ GTOL,

at the desired points tn-. The modifications to the iterations outlined above are
straightforward. We use n = .5 in the computations below.

Remark 4.4. An important issue in higher dimensions is the choice of the initial
direction vector d,. Note that theorem 4.1 requires the initial vector en/|en|, which
is unknown of course. A satisfactory conclusion to this theory would be a result
that measures the effect of perturbations in the initial vector in (4.4) on Sp(n)
together with an a posteriori estimate of e /lez|. A rough heuristic argument
suggests that if the local interpolation errors in the a priori bound in theorems 3.1
is a good measure of the error on the corresponding intervals, then Y should point
largely in the direction of the error. In practice, dn = (Ya — Yn-1)/I¥Ya = Ya-1l
has proven to be a reliable choice for many problems. It is not clear to us whether
this is because the computation of the stability factor is insensitive to the choice
of initial direction on many problems or because this is actually a good choice.
In the computations below, we compare results computed with dn = e /|e;;| and
dy, = (Yn - Yn-l)/lyﬂ - Yn-ll-

Next, we present four examples. In each case, we implement the iterative global
error control outlined above. For the successful computation, we present a plot of
the error-to-bound ratio

len]
CS,(n)LTOL’

This is a convenient measure of reliability and efficiency. If the ratio becomes large,
then reliability is suspect, while if the ratio becomes small, then the error control

is inefficient.

4.7)

Example 4.1. The problem is

{ V1= yl(o) =0,
n=un w0)=1



GLOBAL ERROR CONTROL FOR THE CONTINUOUS GALERKIN METHOD 13

with the periodic solution

y1(t) = sin(2),

¥a(t) = cos(t)-
We use GTOL = .05. The error control iteration balts after two iterations. The
first iteration uses LTOL = .045 and the second uses LTOL = .000888. In figure
4.1, we plot the error-to-bound ratio (4.7) versus time; the ratio is nearly constant.
The error control yielded a constant stepsise. We plot the stability factor versus
time in figure 4.2. The result in proposition 3.3 gives a bound on S3(n) that grows
linearly in time; the computational result suggests that such a bound is not too
large.

In this example, there is no discernable difference in the results obtained with

the exact and approximate initial data for (4.4).

20 25 30 35 40 45 S0 55

time
FIGURE 4.1.
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Example 4.2. The problem is

§1 = —.0lyy — 99y + .99, 1(0)=2,
Y2 = —va — 99, ¥(0) =2,
ﬁ = -1001&» 73(0) = 1!

with solution
n(t) = et +et 1%,

y(t) = et 471,
ya(t) = €71

This problem was chosen as an example of a stiff computation. There are three
time scales in the solution’s behavior and the problem becomes stiff when the
faster modes have decayed. We use GTOL = .001. The error control iteration halts
after two iterations. The first iteration uses LTOL = .0009 and the second uses
LTOL = .000304. In figure 4.3, we plot the error-to-bound ratio (4.7) versus time.
The ratio tends to a constant value after an initial transient region; stiffness causes
no trouble in this sense. However, as discussed in [8], the error in this problem
changes direction radically several times in the transient region. These changes
correlate to periods when the ratio changes value. In figure 4.4, we plot the step
size sequence versus time. Finally, we plot the stability factor versus time in figure
4.5. For this dissipative problem, the stability factor should tend to 3 as time
passes, and it clearly does this.

In this problem, the two choices of initial direction for (4.4) yield some differences
in the corresponding stability factors. In figure (4.6), we plot the stability factors
versus time for the exact direction eq/|en| and for (Yn ~ Ya-1)/1¥a — Ya-1|. After
the transient region, the values become close. In figure (4.7), we plot the error-to-
bound ratios versus time for the two choices.

} Ermor-to-Bound Ratio
0.8 .
0.6 -

1Y
04 o
02 ..°°...‘ .......... o © [ ] [ J L L o
® 0O
o 1 2 Il 1 1 1 1
0 50 100 150 200 250 300 350 400
time
FIGURE 4.3.

Example 4.3. The problem is

W -

. Va

et ah @ -
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25 b . -
20 " . ) q
15+ . . -
i o ®
1: .0‘00000000 o © o [ J -
OL ‘ : . A L 4 1
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time
FIGURE 4.4.
: Stabiity Factor
v L] v 1] ® o o .T —
= ° o ® P R 4 o0 @ o © d
2 000‘°° -
15 ..°°.°° ‘
1 -
05 -
o - 3 1 Il . ‘ . . |
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time
FIGURE 4.5.
. Stability Factor
Y Y T T ——— e o
“spproximate” ~— .|
‘oxact” —+-
ol | | | |
0 50 100 150 200 250 p - 1
time
FIGURE 4.6.
with the solution
yi(t) = VI+E cos(t?),
w(t) =vV1+t sin t,),

The solution is dynamically unstable, so we might expect that the error bounds
will be sharp. We use GTOL = .02. The error control iteration halts after two
iterations. The first iteration uses LTOL = .018 and the second uses LTOL =
.000223. In figure 4.8, we plot the error-to-bound ratio (4.7) versus time and the
ratio does remain fairly constant. If figure 4.9, we plot the step sise sequence versus
time. The solutions oscillate with increasing amplitude, which is reflected in the
time steps. Finally, we plot the stability factor versus time in figure 4.10. The
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1 Error-t0-Bound Ratio

08 “approximate” -e—
‘exact ——-- |
0.6 -
04 -
* - ysssshgssskapssscsasmisyly

02 -

° 'l 1 A ' 'l 1 1

0 50 100 180 200 250 300 350 400
tme
FIGURE 4.7.

stability factor reflects the instability of the solution.
In this example, there is no discernable difference in the results obtained with
the exact and approximate initial data for (4.4).

Ermor-t0-Bound Ratio
1-2 T T T Y Y T Y '
‘-.°0.....oooooooooooooooooooooooo
08 | . )
06 | i
04 i
02t i
° 1 2 3 2 . N N N
0 1 2 3 4 5 ) 7 8 9
time
FIGURE 4.8.
Sizes
0.03 e ' M v l“ T T T T
0025} ¢ i
°
0.02 + - i
0.015 PY ]
°
0.0t o.. i
0.005 - *%cenoee ]
0 A ) \ . 0000000009000
0 1 2 3 4 5 6 7 8 °
time
FIGURE 4.9.

Example 4.4. The last example is the two body problem,

=1, n(0) =4,
2 = VYo ¥:(0) =0,

g3 =-n/(B +1)P?% »(0)=0,
g = -1/ +13)P% w(0)=2
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FIGURE 4.10.

with the periodic solution

y1(t) = cos(7) - .6,

ya(t) = .8sin(7),

y3(t) = —sin(r)/(1 — .6 cos(7)),

va(t) = B cos(r)/(1 = .6 cos(T)),

r:7—.6sin(r) =t

own test problem that is difficult both in terms of performing error
control and choosing stability properties of the numerical method. The accumulated
error grows rapidly with each successive period and it is not clear that tracking
particular trajectories of this problem is meaningful, but it is an interesting test

case for this theory. We use GTOL = .01 and compute just past three periods.
The error control iteration takes three iterations in this example because the second

iteration overpredicts the bound on the error. The first iteration uses LTOL = .008,

the second uses LTOL = .000000139, and the third uses LTOL = .000000669. In

this problem, very small local tolerances are used to counteract the tremendous
rate of accumulation of error. In figure 4.11, we plot the error-to-bound ratio (4.7)
versus time. While the ratio remains below one, it is disappointing that it decreases
as time passes. The bound is clearly overpredicting the sise of the error. On the
other hand, the error accumulatesat a tremendous rate. We plot the stability factor
versus time in figure 4.12. Note the vertical scale. If figure 4.13, we plot the step
size sequence versus time. The oscillating behavior of the solutions is reflected in

the range of step sises. Finally, w
There is little difference in the bounds given for the two choices of initial data
for (4.4). In figure 4.14, we plot the error-to-bound ratios versus time, where some

This is a well kn
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difference is notable. But, this is not the reason that the error is overpredicted. It
is perhaps not surprising that the stability constants for the two choices of data are
20 close considering the small local tolerances used in the computation. We show
results also for the first iteration with LTOL = .009 for the sake of comparison in
figure 4.15. There is more difference between the computations than in the final

iteration, but it is still not significant.

Error-t0-Bound Ratio
0'3 ’. L] L] L] L] LJ L] L] 1 1 ]
0.25: L L
02+t * : -
°
0.15 . -
0." .. -
0.05 *teame*®®e,
.S o LIPS P K X Y I
o Il I 1 1 1 .".l l.’.’-.
0 2 4 6 8 *1'(‘)‘ 12 14 16 18 20
FIGURE 4.11.
Stability Factor
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<
10000
8000 I
6000 |
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0

02646 8101214161820
sme

FIGURE 4.12.

Remark 4.5. In an effort to understand the results in example 4.4, we discuss the
stability properties of the ¢G method in more detail. We recall the analysis of the
discontinuous Galerkin (dG) method carried out in [8]. The dG method yields stiffly
A-stable schemes that are well suited for stiff problems. We makea simple numerical
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comparison of the cGg=1 scheme with the dG ¢ = 0 scheme (which isa variation
of the backward Euler scheme).  The a posteriori error bounds for both methods are
closely related and we expect the error control behaves similarly for both methods.
In particular, the stability factors for the two schemes is exactly the same. Thus, the
theory predicts the same accumulation of error for both schemes applied to a general
problem. However, the schemes have different stability properties and we surmise
that the error might accumulate more slowly for a particular scheme depending on
the stability behavior of the solution. The following computations were made using
the same local tolerance LTOL for each scheme and we are interested in the way
in which the errors made at each step accumulate.

In figures 4.16 and 4.17, we plot the first component of the approximation and
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the solution versus time for the ¢G and dG schemes for example 4.1 respectively.
We note that the dG scheme dissipates the amplitude of the periodic solution and
the ¢G method does not do this. One can show that the dG method must have this
behavior. The error-to-bound ratios of both schemes remain almost constant over
time, with a little more variation in the dG value.

In figures 4.18 and 4.18, we plot the error versus time for both schemes applied to
example 4.2. The oscillations present in the error of the cG scheme are indicative
of stiff problems and the amplitude of the oscillations increase with increasing
stiffness. The error-to-bound ratios of the schemes behaves roughly the same over
time, though there is larger amplitude in the variation of the ratio for the cG
method.

In figures 4.20 and 4.21, we plot the first component of the approximation and the
solution versus time for the ¢G and dG schemes applied to example 4.3 respectively.
As in example 4.1, the dG scheme introduces dissipation. The error-to-bound ratios
of the two schemes again behave similarly. We conjecture that the instability of
the solution means that the error of both discretisations increases at the maximum
rate.

Finally, in figures 4.22 and 4.23, we plot the first component of the approxima-
tion and the solution versus time for the ¢G and dG schemes applied to example
4.4 respectively. While there is not much decrease in amplitude in the dG approx-
imation, the approximation does “shorten” each successive period. We conjecture
that this is due to the dissipative properties of the scheme. In figure 4.24, we plot
the error-to-bound ratio for the dG scheme. In contrast to the behavior of the cG
scheme, this ratio increases as time passes and it is clear the the error of the dG
method is closer to the predicted values. We conjecture that the stability properties
of the ¢G method inhibit the error from growing at the maximum rate.

Continuous Galerkin
1 L] A 1 L] L] o
s VI ' 3 *gelution” bl
05IF % s P A e -
0 : ................... ‘\ bl ‘: » . _1.'. fo
N v 2 L % 4
osr S Z “ £ % 4“ % &
() 5 10 sme 15 20 25
FIGURE 4.16.

§5. Proors or A PRIORI RESULTS
Proof of theorem 3.1. Consider
y(t) + £() =0, 0<t<T,
{ ¥(0) = 30,

and let X € C1) denote the ¢G approximation to y. We choose V with V|;_ =1
in (2.2) and find that Xm = ym, for 1 S 3 < n. When g = 1, we conclude that
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Discontinuous Galerkin
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there is a C > 0 such that

for 1 < m < n. When g = 2, we take V with V|z_ = (t = tm-1)/km in (2.2) and
integrate by parts to obtain

1 1 3 e
(5.1) Xm-1/3 = —zym - zy,,.-; + -2-;»- j‘..‘ y(t)dt.
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We estimate

< | Xm-1/2 = ¥m-1/al + gy — ¥l1a

where we use (2.8) and expand in (5.1) around tm_1/3 using Taylor’s theorem.
Now, we take f(t) = f(y(t),t) and conclude that :

(5.2) ly - X1 < CEEP O |r,

forl<m<n.
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FIGURE 4.24.
Because of (1.1),
‘/I (§—X,V)dt =0,
for all V € D{1=1), Therefore,
[ -tve= [ G-#.a

b ) £
for all V € D(1-1). We choose V = X — ¥ and estimate using Young’s inequality
and (2.9) to get
(5.3) i = X1 < CRLIW 1,
fori<m<n.

We split the error e := p— ¢ with pi=y-Xandg¢p:=Y-X¢€ c(e), Starting
with (2.2) and using (1.1), we write

(5.4) [ G /J (- S0, V=0,

for all V € D(1-1). We choose V = Pp¢ and use the fact that é € D=V to
conclude that

Lioml = Slom-al + [ (FZ(E.0) = Fl3(e), 1), PobE)ée = 0.
I

B — ———
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Therefore,

1 1
Homl < HHbmosP 4L [ 1Y —sliPogl

Now, we estimate and use the stability of Pp to get

2 2 2 2
(5.5) 16ml? < [l +L/1“ ol dt+3L/I_ |6 [%dt.

When g =1, |2 < 2|¢m-1]* + 2|¢m|*, 50

1+6Lkm L
¢m2 Sm- 1y / #2dt.
ol < T2t g [

We continue back to m = 0, using ¢o = 0, and get
(5.6) |6n] < CLtneCLtul} . |,

for 1 < n < N. The bound on §(t), t € I, is immediate when ¢ = 1.
When g = 2, we choose V = Pp(t — tm-1)¢(t) in (5.4) to get

f, (B(2), (¢ — tm—2)6(2))dt + f, (F(¥ (8),2) = F(u(t), 1), Po (¢ — tm-1)B(2)) )dt = O.

We integrate by parts, use the Lipschitz assumption on f, and the stability of Pp
to find that

/ (6[2dt < krmldm|? + 2L / It = tmeslle(t)]16(2)]dt.
Iom Iom

Now, we assume that kmL is sufficiently small and estimate

(5.7) [/ 1602t < 2hmléml? + 2Lk [ e

We combine this with (5.5), taking km L even smaller, to get

2
bml? < il + S [

GLk 6Lkm
and then undo the recursion,

|6m|? < CLtne® " |ulf 1 )-
Now, we use (2.9) together with (5.7) to get

km|8[2_ < ChmLtaeCtt|ul}, | + CLkq|ul},
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or noting that Lk, < C,for1 <m < n,
(5.8) |81, < C(1+ Ltne ') luly o -
To complete the estimate on the error, we use (5.2) and (5.8) to get

|3|?o,t,.] < |¢|[20,:.) + ll‘l[zo,t,.]
< C(1+ Dtne®) max KEFIE_

Now, for the bound on |é], we choose V = ¢ in (5.4) to get

/ lPdt < / (FY (1)) - F(u(2),2), (2))ldt
Iom Iom

2 .
<= / lefdt + / 162,
Im 21

80
(5.9) | / |62t < L / le[2dt.
Inm Inm
We use (2.9) on (5.9), (5.3), and the result for |e]jo,,] to compute

lra < © (14 k(1 + Ene®) ) mpx Ao, O
m<n

Proof of theorem 3.2. We start with a regularity result for Y.

Lemma 5.1. Under the assumptions of theorem 3.2, for k sufficiently small and
1<m<n,

k; -
[Y®)|; < ClyP s, +C(1 + Ltme®Lt=) max (.L) k3P |yl )|

(5.10) km/)
<C(L,T,p),

for0<p<g.

Proof.
d? dar

Y@, <Cly®lr, + l— Y-Iy)| + I—(I y-v)

pr I PR I In

By (2.9),

< CEkPIY = Tyylr.
Im
< Ck;P(IY = yltm + Iy — Teylra)-

Now, we combine (3.1) and (2.8) to prove the first equation in (5.10). Under the
assumptions of theorem 3.2, the conclusion follows immediately. O

ar
| - T
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For functions V(t) and W (t), we let

1
MV, W)= /0 1,0V (2) + (1 = P)W(2), t)dp,
8o
fly,t) = f(Y,t) = M(t,y,Y)e.
We define on each interval,

(1) =Y () + f(Y (), 2),

so e solves the equation
e+ M(t,y,Y)e=-r,

on each interval. We use M(t) to denote M(t,y,Y) in the following.
We let ®; € Cgy41 X Cy41 denote the fundamental matrix solution on Iy:

{ d1(t) + M(t)3,4(t) = 0, 0<t,
®,(0) = I (the d x d identity).

Variation of constants implies

e(ts) = &1(t1) (e(O) - /0 " <I>1'1(t)-r(t)dt>.

Equation (2.2) implies that
t
(r,V)dt =0,
0

for all V € P?-1(I;). Hence,

e(t) = o) (#(0) - [ " (@70 - vr(t)ar),

for all V € P9-1(I;) x P9~1(I1), and therefore,

ty 1/2
le(tl)lsnél(t1>|(|e<0)1+0k:”(/o |r|’dt) |¢;1-vnh)-

for all V € P9-1(I;) x P9~}(I;), where we use the obvious matrix norm. Using
the equivalence of norms on a finite dimensional vector space and (2.8) on each
component of 7, we know that

d __,
e

]
I,

187" = Zo-1287 |1, < CK

where we extend the definition of 7 in the obvious way. Next, note that for V €
'pq—l(Il),

|r = V|3dt > / |7|3dt.
Ix Ii
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Choosing V = I,_;7, we get

1/2
([ triae) " < crgapetons,

|"'(')|h)-
I,

|.,-(q) | I...) .
I

»

Thus,

q
.d_.q)1-1

G el S o) (o) + OB 2

Generalized to the m** interval, 1 < m < n,

Eq_qu

(612)  leltm)) < 20 (leltmos)l + CRE| 55

Next, we bound the various quantities in this inequality. Since deg(Y'[r,) =g,
£Y =0and

dit d?
EtT = -Ef(y(t)i t)'

By assumption, the partial derivatives of f of order ¢ and less are smooth and
bounded uniformly in A; while by theorem 3.1, Y is close to y for k small, hence
(5.10) implies that

(513) If(q)lh < S(L; p)k’q7t11 y),
with
S(L) P k) q, tl) y)
:= C'max {1, L} max {1, p*} max {1, k}(1 + Lt,e€r*) max (") (0,2,

+8<g+1
r,820

Similarly, M is bounded as

d? cL, qg=0,
5.14 M| < {
( ) di? I E(Ls P’k’qxtlv y)v q= 1.

Note, both of these bounds carry over to I, witht; = tn in £.
Since,

d _ - d__
0= -&E(Qj_@l 1) = (‘MQI)Q], 1 + Qla—tél 1,

on I, &7 solves

d. 1 .-
{54’11:4’11”‘" t>0,
4’(1-1)(0)=I.

Thus,

(5.15) Tt =T+ /; t 37 (s)M(s)ds,
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for 0 < t < t;. We estimate, using the bound on M,
t
@7} 0] < 1+0L [ 187 (2)de,
0
for 0 < t < t;. Gronwall’s inequality implies that
|87 1 (ta)] < OFH

By (5.15),

< CLeCLks,

o

Similarly,
d? <I>1

< (CL? + £(L, o, ky g, t1,y)) 52

(t1)

Note that these arguments carry over to I, with & (tm-1) = I and computing
the integrals from tm_1 to t: tm-1 <t < tm, hence for1<m<n,

(5.16) 1853 b)) < 52,
(5.17) ‘d"- (t,,.)l < CLeCLhm,
and
qu,- 2 CLk
(5.18) (tm)| < (CL? + £(L, p, ,q,tm,y)) -

Finally, we estimate |®m(tm)| just as we did |®~(tm)|,
(5.19) |Bm(tm)] < €5,

for 1 < m < n. We return to (5.11) and use (5.13), (5.14), and (5.16)—(5.19) to

find that _
le(t1)] < Ck1eCLEk} E(L, p, k, 4,11, 9),

with
?(L’ Pk g tm, y) = S(Li Pk g, tm, y)(L2 + S(La P k,q,tm, y))

By (5.12),
le(tm)| < € ™(le(tm-1)| + CkA** E(LEb, k, gy tm, ¥)-
By induction, for 1< n < N,

le(tn)| < Ctne®"t» max k7! E(L, o, Ky, tm, V).

The result follows by making straightforward estimates on €. 0

+ e s s e o o
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§6. PROOF OF A POSTERIORI RESULTS
Proof of Theorem 3.4. On In,

(6.1) Y + f(Y,t) = (1 - Pp)f(Y,t),

taking one-sided limits at the ends of the intervals. By subtracting this from the
equation in (1.1), we get

1
é+ [ filou+ (1= AY,t)(y = Y)dp = (P - VK1)
This motivates the definition
ta | tn 7 Pl
s vy= [ "oy [T [ ) + 0 - ¥ e,04we) ve)a

0 () o
for functions W, V, since
(6.2) ' D(e,V) =0,

for all V € D(9-1), Associated to D is the linear form
ta /.
D(W, V) := / ((w, V) + (AW (2), V(t))) dt.
0

If V is continuous,

D)= [ (7@, -7 () + (W), AV (e
+ (W (tn), V(tn)) = (W(0), V(0)))-
Since e(0) =0,
(6.3) le(tn)| = D(e,z) = D(e, z) - (D - D)(e, 2),
where z solves (3.4). We subtract (6.2) and obtain

tn

D(e,z) = D(e,z - Ppz) = - /0 (F(Y (£),t) — PoF(Y (2),1), 2(t) — Ppz(t))dt.

We take norms and use (2.7) to get

d -
@) - [ e

tm~1

Dlea) <Y k- &8,
(6.4) m=1

d?
+1
< Si(n)max kn'\ 2 f(¥Y(2)t)

Im
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We can write this as follows:

LoD

F 2
(6.5) |D(e, 2)| < Sq(n) max k2 T

1

Im

by taking the second derivative of z in the case that ¢ = 2. To estimate the second
term on the right in (6.3), we compute

(D-BYen)= [ [ (A0 - Aowe) + (1= A (@ 0)eCt) z(t)) dpdt
and estimate using (3.4.3),
(6.6) |(D = D)(e, 2)| < CSi(n)lelfy,s,)-

We use (6.3), (6.4), and (6.6) and conclude that

+ CSl(n)Ielfo,g.d»

+1
(6.7) le(tn)] < 51(n) max ki dt!

and with (6.5),

(6.8) eta)] < Sq(n) max kX + Su(n) el

d?
O

Next, we make a local estimate. Subtracting (6.1) from the equation in (1.1) and
taking the inner product with e, we get

(é,e) + (f(v, t) - f(¥,1), e)=((Pp - 1)f(Y,1), e).

We integrate from tm-1 to t, take norms, and use the fact that e is continuous to
conclude that

el € leem-)F + [ 1((Po = DAY, 00 e(0) dt + || Hera
and so,
lel}.. < le(tm-1)I* + C( /1 _1(Po - l)f(Y(t),t)Idt)z
+elell+ [ Tt Lol

for € > 0 small. We assume that k., is sufficiently small and use (2.7) to conclude

that

ST,

(69) el < ©lem-al + B2 5

- g — o o—_——— o 12
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We place (6.7) into (6.9) and use the fact that S;(m) is monotonically increasing
in m to get

2

d?
elf, < OSu(n)? max Kt | LAV @)+ O\ lefye
k2q+2 df 2
+ng m 'dt_qf(y(t)vt) I

Since the right-hand side is monotonically increasing in n, we have

d? 2
E;f(y(t)a t) I

+ (CS1(ﬂ)2|¢|(20,‘..]) |e|[zo,t‘]'

(6.10) lelfp,e,) < C(Sa(n) +1)* max kzI+?

In the case of the superconvergence result (6.8), we get

di

raeqOn)

+(CS: (n)? Ie][:o,t.]) |e|[2°|’w] :

2
|e|f°',‘] < C(S4(n) + 1)? :,n‘g.ic ki .

Next, we prove the bounds on Sj(n) given in proposition 3.3. For simplicity’s sake,
consider the forward problem which arises from the change of variables x(t) :=

z(tn — t),

A (b, —t)x =0, 0<t< tn,
(6.11) {x (8 = t)x Stn

x(0) = en/lenl.

We take the inner product of the equation in (6.11) with x and get

(%, %) + (A% (tn — t)x, x) = 0.

In the general case, we use (3.3.1) or (3.4.2) and integrate to find that
x()]? < €2 Jem £,

and so, ‘ ‘
/ Ix(s)lds < _/ L(s)els L) gg = elo L(8)ds _
o 0

Under (3.3.2), we find that 4|x|* <0, s0 |x(t)]> < 1 and

[ iconas < [ sy

Returning to the proof of theorem 3.4, in both cases, the a priori result (3.1)
implies that we can choose k small enough so that

1
CS;(n)zlel[zo',‘] < 3
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and therefore, we reach (3.1) via (6.10).

Remark 6.1. This condition on k can be viewed as determining the length of time
over which the a posteriori analysis is valid.
To obtain the nodal result, we start with (6.9), which implies that

2 2 29+2
(6.12) leljo,ca) < max, lem|” + C max ke dtq f(Y(t),

We put this into (6.7) and use the monotonicity of the nght-hand side to get

d?
EeOnl]

+ CS1(n) max lem| 'ggleml-

2

2
SAY @) B

max |eqn| < CSi(n) max kf,,“
m<n m<n

+051 (n) max k,z,.f+2
m<n

Now, we use (3.4.4) and (3.1) to conclude (3.11) for k sufficiently small. For the
superconvergence result, we put (6.12) into (6.8) and obtain

.

<C k"'
I,ng lem| < CSq(n) ng

29+2
+CS;(n) x"r‘xg.} ki? dtq f(Y(t),

+ CSy(n) max |em | - max lem ],

dt?

and finally, (3.12) for k sufficiently small. O

Proof of Proposition 3.5. We give the proof for d = 1. The generalization to d > 1
is straightforward. First,

% FY(2),t) = f,( )Y + fi(Y,2)

= f,(w )i + fe(y,t) + f (V)Y — 9)
+ (Y1) = £ (0, 8)3 + £i(Yot) = fe(wit)

so

< CL(1 + Ltae5*) (1 + [9]10,e1) 199 lio, a1 K°-
Im

—-f(()) g

Similarly,
dz
dt?

We estimate as above and use the fact that

(Y @t),t) = f(Y, t)? + fyy (Y, t)(Y)2 + 2fy: (Y, t)Y + fu(Y,t).

- 4
Y = 5 (Ym-1 = W12 +Ym)
m

implies that
¥ = §lra < C(1+ 2 (1 4+ CLtne®) )kl 0,001,

to prove the result. O
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