Integrating Functional and Imperative
Parallel Programming: CC++ Solutions
to Salishan Problems

John Thornley

CRPC-TR93385
December 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Integrating Functional and Imperative
Parallel Programming: CC++ Solutions
to the Salishan Problems*

John Thornley
Computer Science Department
California Institute of Technology
Pasadena, California 91125, USA
john-t@cs.caltech.edu

December 6, 1993

Abstract

We investigate the practical integration of functional and impera-
tive parallel programming in the contezt of a popular sequential object-
based language. As the basis of our investigation, we develop solutions
to the Salishan Problems, a set of problems intended as a standard
by which to compare parallel programming notations. The language
that we use is CC++, C++ eztended with single-assignment variables,
parallel composition, and atomic functions. We demonstrate how de-
terministic parallel programs can be written that are identical—ezcept
for the addition of a few keywords—to sequential programs that satisfy
the same specifications.

1 Introduction

The difficulty of developing reliable, maintainable, and portable parallel
programs is the major obstacle to the more widespread application of par-
allel programming. To overcome this obstacle, our general goal is to de-
vise high level programming notations that allow parallel programs to be
written close to the level of problem specification, yet still be compiled to

*This work was supported in part by Air Force Office of Scientific Research grant
AFOSR-91-0070.

execute efficiently across a variety of different single and multiple processor
architectures. The specific contribution of the work that we present in this
report is to show how functional and imperative parallel programming can
be integrated in a simple and consistent manner within the framework of
a popular sequential language that supports object-based data abstraction.
We are motivated by the observation that the strengths of functional and
imperative programming are complementary with respect to our goal.

Imperative parallel programming [1] expresses a computation opera-
tionally, as a group of cooperating concurrent processes, each with its own
state and sequential thread of control. Processes communicate and syn-
chronize using, for example, message passing, shared memory with locks, or
remote procedure calls. The strength of imperative parallel programming is
in representing explicitly concurrent entities and operations from the prob-
lem specification, e.g., modeling or controlling physical systems, computer
operating systems, and human interfaces. Its weakness is the complexity of
expressing parallelism that is not explicit in the problem specification, solely
for execution performance on multiprocessor architectures.

Functional parallel programming [2, 3] expresses a computation nonoper-
ationally, as a deterministic mapping from input values onto output values.
Programs can be executed in any manner such that operands are evaluated
before they are needed. Exploitation of parallelism is mostly the respon-
sibility of the compiler and runtime system, not the programmer. Recent
work demonstrates that functional programming can provide execution per-
formance comparable to that of imperative programming [4]. The strength
of functional parallel programming is in representing parallel algorithms for
problem specifications that are given as a functional mapping from inputs
onto outputs, e.g., many scientific problems. Its weakness is the difficulty
of representing state, sequence, and concurrency that are explicit in the
specification of many problems. »

This report investigates the practical integration of the complementary
strengths of functional and imperative parallel programming. Our work
differs from other work that integrates functional and imperative parallel
programming [5, 6] in that we choose to build upon an established sequen-
tial object-based language. The language that we use is CC++ [7, 8], a
simple extension of C++ [9] that supports both functional and imperative
parallel programming. Previous work with CC++ has concentrated on the
definition and use of imperative parallel programming libraries [10]. To
evaluate the benefits of the integrated use of both functional and imperative
parallel programming in this context, we develop solutions to the Salishan

2

Problems [11], a representative set of problems intended as a standard by
which to compare parallel programming notations.

The remainder of this report is organized as follows: in Section 2 we
briefly describe CC++; in Section 3 we introduce the Salishan Problems; in
Sections 4 through 7 we present solutions to the individual problems; and
in Section 8 we conclude with an evaluation of the results of our investiga-
tion. In Appendixes A through D we give the complete text of our solution
programs.

2 The CC++ Language

CC++ (Compositional C++) is C++ with six extensions. Of those exten-
sions, we use the following four in this report:

1. Sync Types:

A variable of a sync type initially has a special undefined value, and
can be assigned a value at most once. Evaluation of an undefined sync
variable suspends until the variable is assigned a value. Types that
are not sync are referred to as “mutable” types.

Examples:
sync int i; // sync int
sync int a[N]; // array of sync int
sync int* p; // mutable pointer to sync int
int *sync q; // sync pointer to mutable int

sync int *sync r; // sync pointer to sync int

2. Parallel Blocks:

The statements in a par-block are executed as parallel processes. Ex-
ecution of a par-block terminates when execution of all its statements
has terminated.

Example:

sync int a, b, c;

par {
c=a+b;
b= 2;
a=1;

// Assert: a == 1 and b == 2and c == 8.

3. Parallel For Statements:

The iterations of a parfor statement are executed as parallel processes.
Execution of a parfor statement terminates when execution of all its
iterations has terminated.

Example:

sync int a[N];

par {
parfor (int i = 0; i < N - 1; i++)
afi] = afi + 1] - 1;
alN-1]1 =N~-1;

}
// Assert: ¥ i: 0< i< N:afi]==1

4. Atomic Functions:

The execution of an atomic function is not interleaved with the exe-
cution of any other atomic function of the same object.

Example:

int count[100];
atomic void increment(int index)

count [index] = count[index] + 1;

}

The two extensions that we do not use in this report are constructs for the
unstructured spawning of processes and for the distribution of computations
across multiple address spaces. A complete definition of the syntax and
semantics of CC++ is given by [8].

3 The Salishan Problems

The Salishan Problems are a set of four problems proposed as a standard
by which to compare parallel programming notations. The problem set
was originally defined at the 1988 Salishan High-Speed Computing Con-
ference. At that conference, invited speakers presented solutions to the
problems in eight different parallel programming languages. Loosely cate-
gorized, those languages were: Ada and Occam (imperative); Haskell, 1d,
and Sisal (functional); C* (data-parallel); PCN and Scheme (combined im-
perative and functional). The Salishan Problems and the original eight sets
of solutions are published in [11].

Three of the four problems—Hamming’s Problem, the Paraffins Prob-
lem, and the Skyline Matrix Problem—are functional mappings from input
values onto output values, without any concurrency in their problem speci-
fications. For these problems we write deterministic functional parallel pro-
grams using sync variables, par-blocks, and parfor statements. The remain-
ing problem—the Doctor’s Office Problem—is a model of the asynchronous
interactions within a system of concurrent entities. For this problem we
write a nondeterministic imperative parallel program using par-blocks, par-
for statements, and communication constructs built on top of sync variables
and atomic functions. Our challenge is, for each problem, to produce a solu-
tion that is at least as simple and elegant as the best of the eight previously
presented. solutions.

4 Hamming’s Problem (extended)

4.1 Problem Description

Given a nonempty set of primes {a, b, ¢, ...} and a positive integer n, output
in increasing order and without duplicates all integers of the form:

a‘xbjxekx...Sn

This problem is intended to test a notation’s ability to express recursive
stream computations and producer/consumer parallelism, and to support
dynamic task creation.

4.2 Motivation

Our solution to this problem introduces our methodology for functional par-
allel programming and demonstrates its integration with object-based data
abstraction and sequential imperative programming. Our solution is very
similar to the solutions presented in Id, Haskell, PCN, Scheme, and Sisal,
yet with sync and par removed and parfor replaced by for, it is a sequential
C++ solution.

4.3 Solution Outline

The specification of Hamming’s Problem is a functional mapping, as shown
in Figure 1. With this kind of problem, our program development method-
ology is as follows:

e Design the solution as a dataflow network.

e Define data structures for which each component can be written at
most once and reading an undefined component suspends.

e Translate the dataflow network into either a sequential program in
which data is written before it is read (not an option when the net-
work contains feedback), or a parallel program in which concurrency
is controlled by the flow of data at runtime.

Using this methodology, we can develop parallel programs that are almost
identical to sequential programs.

{a,b,¢c,..} ==

. i i Ak
| — Hamming —>[a'b'c".. <n]

Figure 1: Hamming’s Problem as a functional mapping.

In our solution to this problem, the dataflow network is a pipeline with
one stage for each prime number, as shown in Figure 2. The data structures
that connect stages of the pipeline are streams of integers with blocking
read operations. We can implement the pipeline as a sequential program,
with each stage generating its entire output stream before the next stage is
executed, or as a parallel program, with all stages executing concurrently,
controlled by the blocking of read operations on streams. Figure 3 shows an
example of the pipeline.

an b n cn
nlla'sn][a'b’sn]...——[a‘ bl ck.. <n]

Figure 2: Dataflow pipeline for Hamming’s Problem.

3 25 5 25 7 25
8] 11,3,9] [1,3,5,9,15,25] [1,3,5,7,9,15,21,25]

Figure 3: Example of pipeline with primes {3, 5, 7} and n = 25.

4.4 Implementation

Streams of integers are instantiated from the following generic single-writ-
er/single-reader stream class:

template<class element>
class stream {

public:
streanm(void) ; // Constructor.
“stream(void) ; // Destructor.
void write(const element item); // Write to rear of stream. (non-blocking)
void close(void); // Terminate writing. (non-blocking)
void read(element &item); // Read from front of stream. (blocking)
element head(void) const; // Front element of stream. (blocking)
boolean end.of_stream(void) const; // No more elements to read? (blocking)
private:
}:

The single-writer/single-reader restriction combined with the blocking read
property ensures determinacy. The stream class can be defined as a linked
list with sync links and mutable front and rear pointers.

The Hamming function implements the top level of the program. Input is
an array of one or more distinct prime numbers primes[0..num_primes-1],
and a positive integer n. Output is a stream of integers result.

void Hamming(const int primes[], comst int numprimes,

{

}

const int n, stream<int> &result)

stream<int># streams = new stream<int>[numprimes];

par {

{ streams[0].write(1); streams[0].close(); }
parfor (int i = 0; i < numprimes - 1; i++)
powers(primes[il, n, streams([i], streams(i + 1]);
powers (primes[numprimes - 1], n, streams [numprimes - 1], result);

delete [] streams;

The stages of the pipeline are executed in parallel, with an array of streams
of integers providing the connections between adjacent stages.

The povers function implements a single stage of the pipeline. Input is
a prime number prime, a positive integer n, and a stream of integers input.
Output is a stream of integers output.

void powers(comst int prime, const int n,

{

}

stream<int> Zinput, stream<int> &output)

int item;
stream<int> feedback;

input.read(item);
output.write(item);
feedback.write(primesitem);
do {
if (!input.end.of_stream() & input.head() < feedback.head())
input.read(item);
else
feedback.read(item);
if (item <= n) {
output.write(item);
feedback.write(primer*itenm);

}
} while (item <= n);
output.close();

Each iteration of the sequential loop reads one element from either input
or feedback, and writes one element to both output and feedback. Execu-
tion continues until all output elements less than or equal to n have been
generated. Figure 4 shows an example of the operation of powers.

feedback

(b) 5
input output 9.3 E@l !
(© 5,15 @ 15,25

Figure 4: Example of the operation of powers.

@
9,3,1

5 The Paraffins Problem

5.1 Problem Description

Given an integer n, output the chemical structure of all paraffin molecules
for i < n, without repetition and in order of increasing size. The chemical
formula for paraffin molecules is C; H2;4+2. Include all isomers, but no dupli-
cates. Duplicates are molecules that are identical except for the ordering of
bonds. Isomers are molecules that have the same chemical formula but are
not duplicates. Figure 5 shows the paraffins of size 1, 2, 3, and 4.

H
H HoOH H W M H OH M OH HHHH
H@-H H©—©-H w@—@—@-n H{C)-e)c)~c)n n{c)c)cr~
H HoH H H H H H H H H W H

Figure 5: Paraffins of size 1, 2, 3, and 4.

This problem is intended to test a notation’s ability to represent, cre-
ate, and manipulate recursive tree structures, and to express nested loop
parallelism.

5.2 Motivation

Our solution to this problem presents a second example of our methodology
for functional parallel programming and its integration with object-based
data abstraction and sequential imperative programming. Again, our solu-
tion is very similar to the Id, PCN, Scheme, and Sisal solutions, yet with
sync and par removed and parfor replaced by for, it is a sequential C++
solution.

5.3 Solution Outline

The specification of the Paraffins Problem is a functional mapping. There-
fore, we apply the program development methodology described in Sec-
tion 4.3. In our solution to this problem, the dataflow network is based
on the relationship between paraffin molecules and radical molecules. A
radical is a molecule with chemical formula C;H2;+1, i.e., a paraffin with
one free bond. Figure 6 shows radicals of size 1, 2, and 3.

H
HC)rH
H H H H H H H
@@@@@@%@
H H H H H H H H

Figure 6: Radicals of size 1, 2, and 3.

A paraffin molecule of size k consists of either a bond center connecting
two radicals each of size k/2, or a carbon center bonded to four radicals each
of size < k/2. Therefore, paraffins of size k can be generated by enumerating
all distinct quadruples of radicals each of size < k/2 with combined size k—1,
and if k is even, enumerating all distinct pairs of radicals each of size k/2.

A radical of size k > 0 consists of a carbon atom bonded to three sub-
radicals with combined size k — 1. Therefore, radicals of size k > 0 can be
generated by enumerating all distinct triples of radicals each of size < k with
combined size k — 1. The hydrogen atom is the only radical of size k = 0.

Our solution is to generate lists of radicals of size 0 to n/2, and to gener-
ate lists of paraffins of size 1 to n from those radicals, as shown in Figure 7.
The list data structures have blocking read operations. The solution can be
implemented as a sequential program, with radicals generated in increasing
size, then paraffins generated in increasing size, or as a parallel program,

10

-

|

with radicals of all sizes and paraffins of all sizes generated concurrently,
controlled by the blocking of read operations on lists.

— Generate . lists of radicals) Generate _*lists of paraffins
Radicals of size 0 to n/2 Paraffins of size 1ton

Figure 7: Generating paraffins from radicals.

5.4 Implementation

Lists are instantiated from the following generic single-writer 1ist class dec-
laration:

template<class element>

class list {
public:
list(void); // Constructor.
“list(void); // Destructor.
void append(const element item); // Append to rear of list. (non-blocking)
void close(void); // Terminate appending. (non-blocking)
pointer<element> open(void) comst; // Pointer for reading. (non-blocking)
private:
}:

Pointers for reading from lists are instantiated from the following generic
single-reader pointer class declaration:

template<class element>
class pointer {

public:
pointer(void) ; // Constructor.
“pointer(void) ; // Destructor.
void read(element Zitem); // Read from and advance pointer. (blocking)

boolean end.of.list(void) const; // No more elements to read? (blocking)
pointer(const pointer<element> ©.-from);
pointer<element>& operator=(const pointer<element> Zassign.from);
boolean operator==(const pointer<element> right);

private:

}:

The single-writer and single-reader restrictions combined with the blocking
read property ensure determinacy. The 1ist class can be defined as a linked

11

list with sync links and a mutable rear pointer. The pointer class can be
defined as a mutable pointer.

The generate_paraffins function implements the top level of the pro-
gram. Input is a nonnegative integer n. Output is an array of lists of
paraffins paraffins[0..n-1], where paraffins [i] is a list of paraffins of size

i+l.

void generateparaffins(const int n, list<paraffin> paraffins[])

{

list<radical>* radicals = new list<radical> [n/2 + 1];

par {
parfor (int rsize = 0; rsize <= n/2; rsize++)
. radicals.of _size(rsize, radicals, radicals[rsize]);
parfor (int psize = 1; psize <= n; psize++)
paraffins.of size(psize, radicals, paraffins [psize - 11);

}
delete [J radicals;

}

Lists of radicals of size 0 to n/2 and lists of paraffins of sizes 1 to n are
generated in parallel. For brevity, we do not give the declarations of the
radical and paraffin classes. Both can be defined as pointers to dynami-
cally allocated structures.

The radicals.of_size function implements the generation of a list of
radicals of a given size. Input is a nonnegative integer size, and an array
of lists of smaller radicals radicals[0..size-1]. Output is a list of radicals
result.

void radicalsof_size(const int size, const list<radical> radicals(d,
list<radical> &result)

if (size == 0)
result.append (hydrogen.radical());
else
for (int k = (size+1)/3; k <= size-1; k++)
for (int j = (size-k)/2; j <= min(k, size-1-k); i+
radicals.of_shape(size-1-k-j, j, k, radicals, result);
result.close();

}

For zero size, the only radical is the hydrogen atom. For positive size, two
nested loops generate all distinct triples of subradical sizes with combined
size size-1. Radicals of each of these “shapes” are appended to result.
The paraffins_of.size function implements the generation of a list of
paraffins of a given size. Input is a positive integer size, and an array of

12

lists of radicals radicals[0..size/2-1]. Output is a list of paraffins result.

void paraffinsof size(const int size, const list<radical> radicals[],
list<paraffin> &result)

if (size % 2 == 0)

bond.centered.paraffins(radicals[size/2], result);
for (int 1 = (size+2)/4; 1 <= (size-1)/2; 1++)

for (int k = (size+1-1)/3; k <= min(l, size-1-1); k++)

for (int j = (size-1-k)/2; j <= min(k, size-1-1-k); j++)
carbon.centered.paraffins(size-1-1-k-j, j, k, 1,
" radicals, result);

result.close();

}

For even size, bond-centered paraffins consisting of two radicals of size
size/2 are appended to result. For all size, three nested loops generate all
distinct quadruples of radical sizes each <size/2 with combined size size-1.
Carbon-centered paraffins of each of these “shapes” are appended to result.

The radicals_of_shape function implements the generation of a sublist
of radicals of a given shape. Input is the subradical sizes i, j, and k with
0 < i< j <k, and an array of lists of smaller radicals radicals[0..i+j+k].
Output is a list of radicals result.

void radicals.of_shape(const int i, const int j, const int k,
const list<radical> radicals[], list<radical> é&result)
{

pointer<radical> pi, pj, pk;
radical subradical.l, subradical2, subradicall3;

pk = radicals(k].open();
while (!pk.endoflist()) {
pk.read(subradical3);
pj = radicals[j].open();
while (!(pj.endoflist() || (j == k && pj == pk))) {
Pj.read(subradical2);
pi = radicals[i].open();
while (!(pi.endoflist() || (i == j && pi == pj))) {
pi.read(subradicall);
result.append(carboniferous.radical(
subradical.l, subradical2, subradical3));

}
}
}
}

Three nested loops generate and append to result all distinct radicals with
subradicals of sizes i, j, and k. For brevity, we do not give the defini-
tions of the functions bond_centered_paraffins and carbon_centered paraf-

13

- e e e

fins which implement the generation of paraffins of given shapes. These are
analogous to the radicals_of_shape function.

6 The Doctor’s Office Problem

6.1 Problem Description

Given a set of patients, a set of doctors, and a receptionist, model the
following interactions:

e Initially, all patients are well, and all doctors are in a FIFO queue
awaiting sick patients.

e At random times, patients become sick and enter a FIFO queue for
treatment by one of the doctors.

e The receptionist handles the two queues, assigning patients to doctors
in a first-in-first-out manner.

e Once a doctor and patient are paired, the doctor diagnoses the illness
and cures the patient in a random amount of time. The patient is then
released, and the doctor rejoins the doctors queue to await another
patient.

This problem is intended to test a notation’s ability to represent a set
of concurrent asynchronous processes with circular dependencies. This is
neither an event-driven nor time-driven simulation.

6.2 Motivation

Our solution to this problem introduces our methodology for imperative
parallel programming. Our solution is almost trivial, as a result of being
able to represent directly state, concurrency, and nondeterminacy from the
problem specification. In the original solutions, functional languages with-
out any source of nondeterminacy were unable to satisfy the specification.
Additionally, all solutions based on functional programming were compli-
cated by the need to represent state as an infinite sequence of values. Our
solution is most similar to the parallel imperative solution presented in Ada.

14

6.3 Solution Outline

The specification of the Doctor’s Office Problem defines explicitly concurrent
asynchronous entities and their nondeterministic interactions. With this
kind of problem, our program development methodology is as follows:

e Identify the concurrent entities in the system.

e Decide on a model of communication to represent interactions between
concurrent entities.

e Identify the state transitions of each concurrent entity as it communi-
cates with other entities.

e Translate the system directly into a parallel program with one process
representing each concurrent entity and with concurrency controlled

by communication.

In our solution to this problem, the concurrent entities are the patients,
the doctors, and the receptionist. We model the interactions between enti-
ties as message-passing on FIFO channels. Each patient and each doctor has
an input channel to which other entities can send messages. The receptionist
has two separate input channels: one to which patients send messages, and
one to which doctors send messages. Figure 8 shows the concurrent entities
and communication channels. Figures 9, 10, and 11 show the state transi-
tions of patients, doctors, and the receptionist. For simplicity, the system
never terminates.

|} -
[] o .]
patients doctors

Figure 8: Entities and communication in the Doctor’s Office Problem

15

) Send ID to
Receivé cure. receptionist.

with awaiting
doctor doctor

\——-/

Receive doctor’s ID;
Send ID to doctor.

Figure 9: State transitions for patients.

Send gure Send ID to
to patient. receptipnist.

with awaiting
patient patient

__/

Receive patient's ID.

Figure 10: State transitions for doctors.

Receive doctor's ID.

/—\s

awaiting
patient

Receive patient's ID;
Send doctor's ID to patient.

Figure 11: State transitions for the receptionist.

16

6.4 Implementation

Channels are instantiated from the followiﬁg generic multiple-writer/single-
reader FIFO channel class:

template<class message>
class channel {

public:
channel(void) ; // Constructor.
~channel(void) ; // Destructor.
atomic void send(const message item); // Non-blocking send.
void receive(message &item); // Blocking receive.

private:

|5

The send function is atomic to prevent the interference of multiple concur-
rent writers. Concurrent send operations on the same channel are executed
in fair nondeterministic order. The channel class can be defined as a linked
list with sync links and mutable front and rear pointers.

The office function implements the top level of the program. Input is
the number of patients num_patients, and the number of doctors num_doctors.

void office(const int num_patients, const int num.doctors)

{

channel<int>* to_patients = new channel<int>[numpatients];
channel<int>#* todoctors = new channel<int>[numdoctors];
channel<int> from.patients; // (to receptionist).

channel<int> fromdoctors; // (to receptionist).

par {
parfor (int p = 0; p < num.patients; p++)
patient(p, to_patients[p], from.patients, to.doctors);
parfor (int d = 0; d < num.doctors; d++)
doctor(d, todoctors[d], fromdoctors, to.patients);
receptionist(frompatients, fromdoctors, topatients);

delete [J topatients;
delete [to.doctors;

}

The given number of patient and doctor processes and the receptionist pro-
cess are executed in parallel. Channels are declared for communication

between processes.

The patient function implements a patient process. Input is the patient’s
identification number my_ID, and a channel from other processes input. Out-
put is channels to other processes to_receptionist and to.doctors.

17

void patient(const int my.ID, channel<int> &input,
channel<int> &to_receptionist, channel<int> to.doctors(])

while (true) {
int doctor.ID;
int cure;

well(myID);

toreceptionist.send(myID);
input.receive(doctor.ID);

todoctors[doctorID] .send (myID);
with.doctor(myID, input, to.doctors[doctorID]);
input.receive(cure) ;

}
}

The implementation follows directly from the state transitions shown in
Figure 9. For brevity, we do not give the implementations of the doctor
and receptionist functions. These follow directly from the state transitions
shown in Figures 10 and 11 and are analogous to the patient function.

7 The Skyline Matrix Problem

7.1 Problem Description

Solve the following system of linear equations:
Az =b

without pivoting, where A is an n by n skyline matrix. A skyline matrix
has nonzero values in row % in columns row; through 7, and nonzero values
in column j in rows column; through j, where row and column are vectors
of size n. Figure 12 shows an example of a skyline matrix.

This problem is intended to test a notation’s ability to represent sparse
array structures, and to express efficient parallel and iterative computations
on those structures.

7.2 Motivation

Our solution to this problem presents a third example of our methodology
for functional parallel programming. Object-based data abstraction allows
us to develop a program that is independent of the representation of skyline
matrices. Again, our solution is very similar to the solutions presented in

18

O W:O|=
o:0w:0 ofwm

O O O 0 o:u»|o
O O 0O 0o 0 Oof|l®

.....................

aa O »p O M =+ O

o O
o O

0

row={0,1,1,3, 1, 3, 6}
column={0, 1,2,0,2, 1, 6}

o
o
o
©

Figure 12: Example of a skyline matrix.

Haskell, Id, PCN, Scheme, and Sisal, yet with sync and par removed and
parfor replaced by for, our solution is a sequential C++ solution.

7.3 Solution Outline

The specification of the Skyline Matrix Problem is a functional mapping.
Therefore, we apply the programming methodology described in Section 4.3.
In our solution to this problem, the dataflow network is a pipeline consisting
of LU factorization, forward substitution, and backward substitution, as
shown in Figure 13. At the top level, our design does not depend on the
special skyline structure of A.

A—> Soive [LU“E_—SF———’ Solve
e

Figure 13: Dataflow pipeline for the Skyline Matrix Problem.

Dataflow within each stage of the pipeline is determined by the following
mathematical equations:

19

(a) L =(aij— E{;%, Lk X ugj)/uj; 0<i<n, 0<j<q
(b) uij = aij — Tin lik X Uk 0<i<n,i<j<n
(c) yi=bi—2§;})lij><y,' 0<i<n
(d) =zi=(¥i-— ;:,-14.1 uij X zj)/uii 0<i<n

L is a lower triangular matrix with unit diagonal, and U is a general upper
triangular matrix. We represent L and U as a square matrix LU, consisting
of U and the below-diagonal elements of L.

From equations (a) and (b) we see that if A is a skyline matrix, LU is
a skyline matrix with the same shape. Therefore, we need only compute
elements of L and U that lie inside the skyline. We also see that the range
of summation in the innerproduct computations can be reduced to avoid
redundant multiplications by zero elements of L and U.

The solution can be implemented as a sequential program with the stages
of the pipeline executed in sequence, and the output elements of each stage
computed in sequence. Alternatively, if we use arrays and vectors of sync
elements, the solution can be implemented as a parallel program with all
stages of the pipeline executed concurrently, and all output elements of each
stage computed concurrently, controlled by suspension on undefined sync
elements. Object-based data abstraction allows the computational structure
of the solution to be independent of the particular storage structure used
for skyline matrices.

7.4 Implementation

Skyline matrices are instantiated from the following generic matrix class:

20

av—

p—

template<class element>
class matrix {
public:
matrix(const int size, const int row[], const int column[]);
“matrix(void);
int size(void) const;
int* row(void) const;
int* column(void) const;

private:
b

The matrix class hides the storage structure of skyline matrices from the rest
of the program. Skyline matrices are constructed with a given row[] and
column([], and subscripting of elements outside of this skyline is an error.
For brevity, we have omitted the declaration of the subscripting operators.
A memory-efficient implementation is two ragged arrays: one for the rows
of the lower triangle (excluding the diagonal), and one for the columns of
the upper triangle (including the diagonal).

The solve function implements the top level of the program. Input is
a sync float skyline matrix A, and a sync float vector b. Output is a sync
float vector x. A, b, and x must all have the same size. For brevity, we do
not give the declaration of the generic vector class.

void solve(const matrix<sync float> &A, const vector<sync float> &b,
vector<sync float> &x)

{
matrix<sync float> LU(A.size(), A.row(), A.column());
vector<sync float> y(A.size());
par {
LU.factorize(A, LU); // Solve A = LU for L and U.
forward _substitute(LU, b, y); // Solve Ly = b for y.
backward substitute(LU, y, x); // Solve Uz = y for z.
}
}

The use of sync elements allows the LU factorization, forward substitu-
tion, and backward substitution stages to be executed in parallel. LU is
constructed to have the same shape as A.

The function LU_factorize implements the LU factorization stage of the
solution. Input is a sync float skyline matrix A. Output is a sync float
skyline matrix LU. A and LU must have the same size and shape.

21

void LU_factorize(const matrix<sync float> &A, matrix<sync float> &LU)

parfor (int i = 0; i < LU.size(); i++) par {
parfor (int j = LU.row()[il; j < i; j++) {
float innerproduct;

innerproduct = 0.0;

for (int k = max(LU.row()[i], LU.column()[j1); k < j; k++)
innerproduct += LU[i][k1»LUCK][j1;

LULil[j] = (A[i1[j] - innerproduct)/LUCj1[;];

}
parfor (int J = LU.column()[il; J <= i; J++) {
float innerproduct;

innerproduct = 0.0;

for (int k = max(LU.row() [J]1, LU.column()[i]); k < J; k++)
innerproduct += LU[J] [k1+LULk][il;

LULJ]I(i] = A[J]1[i] - innerproduct;

}
}
}

The implementation follows directly from equations (a) and (b), with loop
ranges adjusted to avoid writing or reading matrix elements outside of the
skyline. For brevity, we do not give the implementations of the functions
forvard_substitute and backward_substitute. These follow directly from
equations (c) and (d) and are analogous to the LU factorize function.

8 Conclusion

In this report we have presented compatible methodologies for both func-
tional and imperative parallel programming in the context of a popular
sequential object-based language extended with a few simple constructs for
expressing and controlling parallelism. The concepts that are involved are
independent of the particular base language.

Our functional parallel programming methodology is applicable to prob-
lems with specifications given as functional mappings. We develop the solu-
tion as a dataflow network, then translate the network into either a sequen-
tial program or a parallel program with concurrency controlled by the flow
of data at runtime. The basic structure of the program is the same in both
cases. For the three Salishan Problems of this kind, our parallel solutions
were genuinely no more difficult to develop than sequential solutions. In
fact, except for the addition of a few keywords, the parallel programs are
identical to sequential programs that satisfy the same specifications.

22

a—

Our imperative parallel programming methodology is applicable to prob-
lems with specifications that define explicitly concurrent entities and their
interactions. We represent the concurrent entities as parallel processes and
their interactions as communication between processes. For the one Salis-
han Problem of this kind, our parallel solution was almost trivial, as a result
of being able to represent concurrency, state, and nondeterminacy directly.
Most notations that support functional parallel programming are not well
suited to this kind of problem.

The contribution of this work is to show how both these methodologies
can be integrated within the framework of a popular sequential object-based
language. Integration in this manner complements the strengths of both
functional and imperative parallel programming and makes these method-
ologies accessible to a large body of programming practitioners.

Acknowledgments

We are grateful to the authors of the original solutions to the Salishan Prob-
lems for the quality of their solutions and accompanying discussions. We
also thank all the members of the Compositional Systems Group at Caltech
for their many discussions and suggestions.

References

[1] G. R. Andrews. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, Redwood City, California, 1991.

[2] T. Ito and R. H. Halstead, Jr., editors. Parallel Lisp: Languages
and Systems. Springer-Verlag, Berlin, Germany, 1990. Proceedings
of US/Japan Workshop on Parallel Lisp.

[3] B. K. Szymanski, editor. Parallel Functional Languages and Compilers.
ACM Press, New York, New York, 1991.

[4] D. Cann. Retire Fortran? A debate rekindled. Communications of the
ACM, 35(8):81-89, August 1992.

[5] R. K. Dybvig. The Scheme Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, 1987.

23

[6] K. M. Chandy and S. Taylor. An Introduction to Parallel Programming.
Jones and Bartlett, Boston, Massachusetts, 1992.

[7] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent
object oriented programming language. Technical Report CS-TR-92-
01, Computer Science Department, California Institute of Technology,
1992.

[8] P. Carlin, M. Chandy, and C. Kesselman. The Compositional C++
language definition. Technical Report CS-TR-92-02, Computer Science
Department, California Institute of Technology, 1992.

[9] M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1990.

[10] P. Sivilotti. A verified integration of imperative parallel programming
paradigms in an object-oriented language. Technical Report CS-TR-93-
21, Computer Science Department, California Institute of Technology,
1993.

[11] J. T. Feo, editor. A Comparative Study of Parallel Programming Lan-
guages: The Salishan Problems, volume 6 of Special Topics in Super-
computing. North-Holland, Amsterdam, The Netherlands, 1992.

24

A Hamming’s Problem (extended)

A.1 streams.h

#ifndef STREAMS
#define STREAMS

/ /
/* =/
/* Stream Class Template Declaration »/
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. -/
/* ./
/+ DESCRIPTION: */
/* . /
/* Generic single-writer/single-reader stream class: =/
/* */
/* - Non-blocking write operations: write and close. */
/* - Blocking read operations: read, head, and end_of_stream. =/
/* - Copy and assignment operations are prohibited. =/
/* */
/* Multiple concurrent write operations are erroneous, multiple concurrent =*/
/* read operations are erroneous, but concurrent write and read operations */
/* are allowed. =/
/* */
/ LTSIy
#include "boolean.h"
template<class element>
struct node;
template<class element>
class stream {
public:

stream(void) ;

“stream(void) ;

void write(const element item); // Non-blocking.

void close(void); // Non-blocking.

void read(element &item); // Blocking.

element head(void) const; // Blocking.

boolean end_of_stream(void) const; // Blocking.
private:

node<element>* front;

node<element>#* rear;

boolean closed;

stream(const stream<element> ©._from);

stream<element>& opotators(const stream<element> &auign-trom);
};
/ /

25

#endif // STREAMS

26

A.2 streams.C

/* /
/* */
/* Stream Class Template Definition =/
/* ./
I */
/* Written by: John Thormley, Computer Science Dept., Caltech. ./
/* Last modified: Tuesday 30th November 1993. */
/* »/
/* /

#include <stdio.h>

#include <assert.h>
#include "boolean.h"
#include "streams.h"

//

template<class element>
struct node {
element Item;
node *sync next;
node(void) { }

node(const element item) { Item = item; }

b

/

template<class element>
stream<element>: :stream(void)
{
front = new node<element>;
assert(front != NULL);
rear = front;
closed = false;
}

/1

template<class element>
stream<element>:: “stream(void)
{
while (front != rear) {
node<element>* old_front;

old_front = front;
front = front->next;
delete old_front;

}

delete front;

1/

27

template<class element>
void stream<element>::write(const element item)
{

assert(!closed);

node<element>#* new_rear;

new_rear = new node<element>(item);
assert(new_rear != NULL);
rear->next = new_rear;

Tear = new_rear;

}

//

template<class element>
void stream<element>::close(void)

{
assert(!closed);
rear->next = NULL;
closed = true;

}

/1

template<class element>
void stream<element>::read(element &item)
{
assert(front->next != NULL);
node<element>* old_front;

old_front = fromnt;
front = front->next;
delete old_front;
item = front->Item;

}

//

template<class element>
element stream<element>::head(void) const
{
assert (front->next != NULL);
return front->next->Item;
}

//

template<class element>
boolean stream<element>::end_of_stream(void) const
{

return front->next == NULL;

}

/

28

A.3 Hamming.h

#ifndef HAMMING
#define HAMMING

/ /
/* */
/* Hamming Function Declaration */
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. */
/* Last modified: Tuesday 30th November 1993. =/
/* =/
/*» DESCRIPTION: =/
/* */
/* Given a set of prime numbers {a, b, c, ...} and an integer n, generate =/
/* in increasing order and without duplicates, a stream of integers of the =/
/+ form: »/
/= */
/* i J k */
/* a *b *c * ... <=nqn, =/
/= =/
/* PROBLEM FROM: */
/* */
/* "A Comparative Study of Parallel Programming Languages: The Salishan */
/* Problems", edited by John T. Feo. Special Topics in Supercomputing, Vol- */
/* ume 6. North-Holland, Amsterdam, 1992. */
/* */
/ /
#include "streams.h"
void Hamming(const int primes(], const int num_primes,

const int n, stream<int> &result);
// Input Condition:
// num_primes > 0 and
// primes[0] .. primes[num_primes - 1] are distinct prime numbers and
/ n >0 and
/! result is an empty and not closed stream.
// Output Condition:
// result is a closed stream, in increasing order and without duplicates,
1/ of all integers of the form:
// i h] x
// primes[0] * primes[1] # ... * primes[num_primes - 1] <= n.
/ /

#endif // HAMMING

29

A.4 Hamming.C

[/
/* */
/* Hamming Function Definition =/
/* =/
/* =/
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/* =/
/* /

#include "streams.h"
#include "Hamming.h"

/1

void powers(const int prime, const int n,
stream<int> &input, stream<int> Zoutput)
{
int item;
stream<int> feedback;

input.read(item);
output.write(item);
feedback.write(prime*item) ;

do {
if (!input.end_of_stream() && input.head() < feedback.head())
input.read(item);
else
feedback.read(item);
if (item <= n) {
output.write(item);
feedback.write(primesitem);
}
} while (item <= n);

output.close();

}

/l

void Hamming(const int primes[], const int num_primes,
const int n, stream<int> &result)

{

stream<int>* streams = new stream<int>[num_primes];

par {
{ streams(0].write(1); streams[0].close(); }
parfor (int i = 0; i < num_primes - 1; i++)
povers(primes[i], n, streams[i], streams[i + 1]);
povers(primes[num_primes - 1], n, streams[num_primes - 1], result);
}

delete [] streams;

30

31

B The Paraffins Problem
B.1 radicals.h

#ifndef RADICALS
#define RADICALS

- /
/* «/
/* Radical Class Declaration ./
/* =/
/= =/
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/= */
/* DESCRIPTION: */
/» */

/* Radical molecule class. A radical molecule consists of either a single */
/* hydrogen atom or a carbon atom bonded to three smaller radical molecules. */

/* cules. =/
/* =/
/ /

struct radical_descriptor;
typedef enum {hydrogen, carboniferous} radical_kind;

class radical {

public:
radical(void);
“radical(void);

friend radical hydrogen_radical(void);

friend radical carboniferous_radical(const radical subradical.l,
const radical subradical_ 2,
const radical subradical_3);

radical_kind kind(void) comst;
radical subradical(const int position) const;

radical(const radical ©.from);
radicalZ operator=(const radical Zassign_from);

private:
radical_descriptor* access;
};
/ /

#endif // RADICALS

32

B.2 radicals.C

./

/'._ /
/* ./
/* Radical Class Definition =/
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. »/
/*

/ /

#include <stdio.h>
#include <assert.h>
#include "radicals.h"

//

struct radical_descriptor {
radical_kind kind;
radical subradicals[3];

};

/l/

radical: :radical(void)

{
access = NULL;

}

//

radical::“radical(void)

{

}

//

radical hydrogen_radical(void)

{
radical resuls;
result.access = new radical_descriptor;
assert(result.access != NULL);
result.access->kind = hydrogen;
return result;

}

//

radical carboniferous_radical(const radical subradical.i,
const radical subradical_2,
const radical subradical.3)

radical result;

33

result.access = new radical_descriptor;
assert(result.access != NULL);
result.access->kind = carboniferous;
result.access->subradicals[0] = subradical_i;
result.access->subradicals[1] = subradical_2;
result.access->subradicals[2] = subradical_3;
return result;

}
//
radical_kind radical::kind(void) const
{
assert(access != NULL);
return access->kind;
} .
//

radical radical::subradical(const int position) const
{
assert(access != NULL);
assort(access->kind == carboniferous);
assert(position == 1 || position == 2 || position == 3);
return access->subradicals{position - 1];

}

//

radical::radical(const radicalZ copy._from)

{
assert (copy.from.access != NULL);
access = copy.from.access;

}

//

radicalt radical::operator=(const radicalt assign_from)
{

assert(assign_from.access != NULL);

access = assign_from.access;

return *this;

/=

34

B.3 paraffins.h

#ifndef PARAFFINS
#define PARAFFINS

/ ens /
/* */
/* Paraffin Class Declaration %/
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. -/
/* Last modified: Tuesday 30th November 1993. =/
/* */
/* DESCRIPTION: */
/* =/
/* Paraffin molecule class. A paraffin molecule consists of either a bond */
/* center connecting two radical molecules or a carbon center bonded to four */
/* radical molecules. */
/* */
/ /
#include "radicals.h"
struct paraffin_descriptor;
typedef enum {bond_centered, carbon_centered} paraffin_kind;
class paraffin {
public:
paraffin(void);
“paraffin(void);
friend paraffin bond_centered_paraffin(const radical neighbor._1,
const radical neighbor_2);
friend paraffin carbon_centered_paraffin(const radical neighbor.1,
const radical neighbor._2,
const radical neighbor._3,
const radical neighbor_4);
paraffin_kind kind(void) const;
radical bond_neighbor(const int position) const;
radical carbon_neighbor(const int position) const;
paraffin(const paraffin ©_from);
paraffing operator=(const paraffin &assign_from);
private:
paraffin_descriptor* access;
}:
/ /

#endif // PARAFFINS

35

B.4 paraffins.C

/“'- b /
/* »/
/* Paraffin Class Definition =/
/* ./
/* =/
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/% Last modified: Tuesday 30th November 1993. =/
/* */
/ /

#include <stdio.h>
#include <assert.h>
#include "radicals.h"
#include "paraffins.h"

//

struct paraffin_descriptor {
paraffin_kind kind;
radical neighbors([4];
};

/1

paraffin: :paraffin(void)
{

}

access = NULL;

/

paraffin::~paraffin(void)
{
}

/1

paraffin bond_centered_paraffin(const radical neighbor_1,
const radical neighbor_2)
{
paraffin result;

result.access = new paraffin_descriptor;
assert(result.access != NULL);
result.access->kind = bond_centered;
result.access->neighbors[0] = neighbor_1;
result.access->neighbors[1] = neighbor._2;
return result;

}

/1

paraffin carbon_centered_paraffin(const radical neighbor_1,

36

const radical neighbor_2,
const radical neighbor_3,
const radical neighbor_4)

{
paraffin result;
result.access = new paraffin_descriptor;
assert(result.access != NULL);
result.access->kind = carbon_centered;
result.access->neighbors[0] = neighbor_1;
result.access->neighbors[1] = neighbor_2;
result.access->neighbors[2] = neighbor_3;
result.access->neighbors[3] = neighbor_4;
return result;

}

//

paraffin_kind paraffin::kind(void) const

{
assert(access != NULL);
return access->kind;

}

/!

radical paraffin::bond_neighbor(const int position) comst
{
assert(access !'= NULL);
assert(access->kind == bond_centered);
assert(position == 1 || position == 2);
return access->neighbors[position - 1];

}

/

radical paraffin::carbon_neighbor(const int position) const
{
assert(access != NULL);
assert(access->kind == carbon_centered);
assert(position == 1 || position == 2 ||
position == 3 || position == 4);
return access->neighbors [position - 1];

}

//

paraffin: :paraffin(const paraffin ©.from)
{

assert(copy_from.access != NULL);

access = copy.from.access;

1/

37

paraffing paraffin: :operator=(const paraffin tassign_from)
{

assert(assign_from.access != NULL);

access = assign_from.access;

return *this;

38

B.

5 lists.h

#ifndef LISTS
#define LISTS

/ /
/= */
/* List and Pointer Class Template Declarations =/
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. -/
/* Last modified: Tuesday 30th November 1993. =/
/* */
/* DESCRIPTION: =/
/* */
/* Generic single-writer list class: =/
/* »/
/* - Non-blocking write operations: append and close. =/
/* - Non-blocking open (for reading) operation. */
/% - Copy and assignment operations are prohibited. */
/= */
/* Multiple concurrent write operations are erroneous. */
/* */
/* Generic single-reader pointer class: =/
/* */
/* - Blocking read operations: read and end_of_list. */
/* - Copy, assignment, and equality operations are defined. */
/* =/
/* Multiple concurrent read operations are erroneous. */
/= =/
/ /

#include "boolean.h"

template<class element>
struct node;

template<class element>
class list;

template<class element>
class pointer {
public:

pointer(void) ;
“pointer(void);

void read(element &item); // Blocking.
boolean end_of_list(void) comnst; // Blocking.

pointer(const pointer<element> ©.from);
pointer<element>& operator=(const pointer<element> tassign_from);
boolean operator==(const pointer<element> right);

private:

node<element>* Position;
pointer (node<element>* position);

39

friend class list<element>;

};

template<class element>
class list {
public:
list(void);
“list(void);

void append(const element item); // Non-blocking.

void close(void); // Non-blocking.

pointer<element> open(void) const; // Non-blocking.
private:

node<element>* head;

node<element>* tail;

boolean closed;

list(const list<element> ©_from);
list<element>% operator=(const list<element> tassign_from);

};

/...-.
#endif // LISTS

40

B.6 lists.C

/* /
/* =/
/* List and Pointer Class Template Definitions =/
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. %/
/* Last modified: Tuesday 30th November 1993. »/
/* «/
/ /

#include <stdio.h>
#include <assert.h>
#include "boolean.h"
#include "lists.h"

//

template<class element>
struct node {
element Item;
node *sync next;
node(void) { }
node(element item) { Item = item; }

};

/7
template<class element>
pointer<element>: :pointer(void)

{
}

Position = NULL;

1/
template<class element>
pointer<element>: :pointer(node<element>* position)

{
}

Position = position;

//

template<class element>
pointer<element>:: “pointer(void)
{

}

/1
template<class element>

void pointer<element>::read(element Zitem)

{

41

assert(Position != NULL && Position->next != NULL);
Position = Position->next;
item = Position->Item;

}

//

template<class element>
boolean pointer<element>: :end_of_list(void) const

{
assert (Position != NULL);
return Position->next == NULL;
}
/

template<class element>
pointer<element>: :pointer (const pointer<element> ©.from)
{

assert(copy.from.Position != NULL) ;

Position = copy.from.Position;

}

//

template<class element>
pointer<element>&
pointer<element>: :operator=(const pointer<element> &assign_from)
{
assert(assign_from.Position != NULL);
Position = assign_from.Position;
return *this;

}

1/

template<class element>
boolean pointer<element>::operator==(const pointer<element> right)
{

assert(Position != NULL && right.Position != NULL);

return Position == right.Position;

}

/!

template<class element>
list<element>::list(void)

{
head = new node<element>;
assert(head != NULL);
tail = head;
closed = false;

}

//

42

template<class element>
list<element>::"1list(void)

{
vhile (head != tail) {
node<element>* old_head;
old_head = head;
head = head->next;
delete old_head;
}
delete head;
}
/1l

template<class element>
void list<element>::append(const element item)
{
assert(!closed);
tail->next = new node<element>(item);
assert(tail->next != NULL);
tail = tail->next;

}

1/

template<class element>
void list<element>::close(void)

{
assert(!closed);
tail->next = NULL;
closed = true;

}

//

template<class element>
pointer<element> list<element>::open(void) const

{
}

return pointer<element>(head);

/

43

B.7 generate.h

#ifndef GENERATE
#define GENERATE

/ /
/* */
/* Generate_Paraffins Function Declaration */
/* */
/* =/
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/* */
/#* DESCRIPTION: */
/* =/
/* Given an integer n, generate the chemical structure of all paraffin =/
/* molecules for i <= n. The chemical formula for paraffin molecules is: =/
/* . =/
/* CH =/
/* i 2i+2 /
/* */
/*= Include all isomers, but no duplicates. =/
/* =/
/+ PROBLEM FROM: =/
/* */
/* "A Comparative Study of Parallel Programming Languages: The Salishan =/
/+ Problems”, edited by John T. Feo. Special Topics in Supercomputing, Vol- =/
/* Volume 6. North-Holland, Amsterdam, 1992. */
/* */
/ /

#include "paraffins.h"
#include "lists.h"

void generate_paraffins(const int n, list<paraffin> paraffins[]);
// Input Condition: ’
/! n >= 0 and

// paraffins[0] .. paraffins[n - 1] are empty and not closed lists.

// Output Condition:

// For all i in 0 .. n - 1 : paraffins[i] is a closed list of

// the chemical structures of paraffin molecules of size i + 1.

/ /

#endif // GENERATE

44

B.8 generate.C

yAL 1] /
/* */
/* Generate_Paraffins Function Definition =/
/* =/
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/* */
/ /

#include "radicals.h"
#include "paraffins.h"
#include "lists.h"

#include "generate.h"

//

int min(const int x, const int y)

¢ if (x <= y) return x; else return y;
}

1l

void radicals_of_shape(const int i, const int j, comst int k,

const list<radical> radicals[], list<radical> &result)

{
pointer<radical> pi, pj, pki;
radical subradical_1, subradical_2, subradical_ 3;

pk = radicals[k].open();
while (!pk.end_of_list()) {
pk.read(subradical_3);
Pj = radicals[j].open();
while (!(pj.end_of_list() || (j == k && pj == pk))) {
Pj.read(subradical_2);
pi = radicals[i].open();
while (!(pi.end_of_list() || (i == j && pi == pj))) {
pi.read(subradical_1);
result.append(carboniferous_radical(

subradical_i, subradical_2, subradical_3));

}

1/

void radicals_of_size(const int size, const list<radical> radicals(],
list<radical> &result)
{
it (size == 0)
result.append(hydrogen_radical());

45

else
for (int k = (size+1)/3; k <= size-1; k++)
for (int j = (size-k)/2; j <= min(k, size-1-k); j++)
radicals_of_shape(size-1-k-j, j, k, radicals, result);
result.close();

}

1/

void bond_centered_paraffins(const list<radical> &neighbors,
list<paraffin> &result)

{
pointer<radical> p1, p2;
radical neighbor_1, neighbor_2;
P2 = neighbors.open();
while (!p2.end_of_list()) {
P2.read(neighbor_2);
Pl = neighbors.open();
while (!(pl.end_of_list() || p1 == p2)) {
pl.read(neighbor_1);
result.append(bond_centered_paraffin(neighbor_1, neighbor_2));
}
}
}
//

void carbon_centered_paraffins(
const int i, comst int j, const int k, comnst int 1,
const list<radical> radicals[], list<paraffin> &result)

{
pointer<radical> pi, pj, pk, pl;
radical neighbor_1, neighbor_2, neighbor_3, neighbor_4;
pl = radicals(1].open();
while (!pl.end_of_list()) {
pl.read(neighbor_4);
pk = radicals[k].open();
while (!(pk.end_of_list() || (k == 1 && pk == pl))) {
pk.read(neighbor_3);
Pj = radicals(j].open();
while (!(pj.end_of_list() || (j == k &k pj == pk))) {
pj.read(neighbor_2);
pi = radicals[i].open();
while (!(pi.end_of_list() || (i == j && pi == pj))) {
pi.read(neighbor_1);
result.append(carbon_centered_paraffin(neighbor._1,
neighbor_2, neighbor_3, neighbor_4));
}
X
}
}
}

46

/

void paraftins_ot-aize(const int size, const list<radical> radicals(],
list<paraffin> gresult)
{
if (size) 2 == 0)
bond_centered_paraffins(radicals(size/2], result);
for (int 1 = (size+2)/4; 1 <= (size-1)/2; 1++)
for (int k = (size+1-1)/3; k <= min(l, size-1-1); k++)
for (int j = (size-1-k)/2; j <= min(k, size-1-1-k); j++)
carbon_centered_paraffins(size-1-1-k-j, j, k, 1,
radicals, result);
result.close();

}

1/

void generate_paraffins(const int n, list<paraffin> paraffins(])

{
list<radical>* radicals = new list<radical>[n/2 + 1];

par {
parfor (int rsize = 0; rsize <= n/2; rsize++)
radicals_of_size(rsize, radicals, radicals[rsize]);
parfor (int psize = 1; psize <= n; psize++)
paraffins_of_size(psize, radicals, paraffins[psize - 1]);
}

delete [J radicals;

47

C The Doctor’s Office Problem

C.1 channels.h

#ifndef CHANNELS
#define CHANNELS

FETITT T L whnn/
/* ./
/* Channel Class Template Declaration =/
/* */
/* =/
/* Written by: John Thornley, Computer Science Dept., Caltech. */
/* Last modified: Tuesday 30th November 1993. =/
/* »/
/* DESCRIPTION: =/
/* . =/
/* Generic multiple-writer/single-reader channel class: »/
/* */
/* - Non-blocking write operation: send. =/
/* - Blocking read operation: receive. =/
/% - Copy and assignment operations are prohibited. */
/* */
/* Multiple concurrent write operations are allowed, multiple concurrent */

/* read operations are erroneous, and concurrent write and read operations
/* are allowed.
/*

*/
*/
*/

/-

template<class element>
struct node;

template<class message>
class channel {
public:
channel(void) ;
“channel(void);

atomic void send(const message item); // Non-blocking.

void receive(message &item); // Blocking.
private:

node<message>* front;

node<message>* rear;

channel(const channel<message> ©.from);
channel<message>t operator=(const channel<message> &assign_from);
};

/
#endif // CHANNELS

48

C.2 channels.C

[ne = i
/* =/
/* Channel Class Template Definition =/
/* w/
/* »/
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/* -/
/ /

#include <stdio.h>
#include <assert.h>
#include "channels.h"

1

template<class element>
struct node {
element Item;
node *sync next;
node(void) { }
node(const element item) { Item = item; }

};

//

template<class message>
channel<message>: :channel(void)

{
front = new node<message>;
assert(front != NULL);
rear = front;

}

!l

template<class message>
channel<message>: : “channel(void)

{
while (front != rear) {
node<message>* old_front;
old_front = front;
front = front->next;
delete old_fromt;
}
delete front;
}
//

template<class message>
atomic void channel<message>::send(const message item)

49

{
node<message>* new_rear;
new_rear = new node<message>(item);
assert(new_rear != NULL);
rear->next = new_rear;
rear = new_rear;

}

/"

template<class message>
void channel<message>::receive(message gitem)

{

node<message>+* old_front;

old_front = front;
front = front->next;
delete old_front;
item = front->Item;

50

4 -1

C.3 office.h

#ifndef OFFICE
#define OFFICE

/ sees/
/* ./
/* 0ffice Function Declaration */
/* ./
/* ./
/* Written by: John Thornley, Computer Science Dept., Caltech. */
/* Last modified: Tuesday 30th November 1993. */
/* */
/* DESCRIPTION: */
/* */
/* Given a set of patients, a set of doctors, and a receptionist, model the #*/
/% following interactions: */
/» : s/
/* - Initially, all patients are well, and all doctors are in a FIF0 queue */
/* awaiting patients. */
/% - At random times, patients become sick and enter a FIFO queue for treat- */
/* ment by one of the doctors. =/
/* - The receptionist handles the two queues, assigning patients to doctors */
/* in a first-in-first-out manner. »/

/+ - Once a doctor and patient are paired, the doctor diagnoses the illness */
/* and cures the patient in a random amount of time. The patient is then */

/* released, and the doctor rejoins the doctors queue to await another */
/* patient. */
/* */
/* No termination conditions are specified. -/
/* */
/= PROBLEM FROM: */
/* ./
/* "A Comparative Study of Parallel Programming Languages: The Salishan */
/* Problems", edited by John T. Feo. Special Topics in Supercomputing, Vol- =/
/* ume 6. North-Holland, Amsterdam, 1992. -/
/* =/
/ /

#include <iostream.h>

void office(const int num_patients, const int num_doctors);
// Input Conditiom:

// num_patients > 0 and num_doctors > 0.

// Output:

// A trace of treatments is written to cout.

/1 Execution is non-terminating.

/ /

#endif // OFFICE

51

C.4 office.C

/* /
/* */
/* 0ffice Function Definition =/
/* */
/* i
/* Written by: John Thormley, Computer Science Dept., Caltech. =/
/* Date of last alteration: Tuesday 30th November 1993. =/
/* «/
/ /

#include <iostream.h>
#include "boolean.h"
#include "channels.h"
#include "office.h"

//

void well(const int my_ID)
{
}

void with_doctor(const int my_ID,

channel<int> &from_doctor, channel<int> &to_doctor)
{
}

void patient(const int my_ID, channel<int> &input,
channel<int> &to_receptionist, channel<int> to_doctors(d)
{
vhile (true) {
int doctor_ID;
int cure;

well(my_ID);

to_receptionist.send(my_ID);
input.receive(doctor_ID);
to_doctors[doctor_ID].send(my.ID);

with_doctor (my_ID, input, to_doctors[doctor_ID]);
input.receive(cure) ;

}

1/

void with_patient(const int my_ID,

channel<int> &from_patient, channel<int> Zto_patient)
{
}

void doctor(const int my_ID, channel<int> &input,
channel<int> &to_receptionist, channel<int> to_patients[])

{
while (true) {

52

int patient_ID;
const int cure = 0;

to_receptionist.send(my_ID);
input.receive(patient_ID);

with_patient(my_ID, input, to_patients[patient_ID]);
to_patients[patient_ID].send(cure);

}

1/

void receptionist(channel<int> &from_patients, channel<int> &from_doctors,
channel<int> to_patients[])
{
int doctor_ID, patient_ID;

while (true) {
from_doctors.receive(doctor_ID);
from_patients.receive(patient_ID);
cout << "Patient " << patient_ID << " treated by "
<< "Doctor " << doctor_ID << endl;
to_patients[patient_ID].send(doctor_ID);

}

/1

void office(const int num_patients, const int num_doctors)

{
channel<int>* to_patients = new channel<int>[num_patients];
channel<int>* to_doctors = new channel<int>[num_doctors];
channel<int> from_patients;
channel<int> from_doctors;

par {
parfor (int p = 0; p < num_patients; p++)
patient(p, to_patients[p], from_patients, to_doctors);
parfor (int d = 0; d < num_doctors; d++)
doctor(d, to_doctors[d], from_doctors, to_patients);
receptionist(from_patients, from_doctors, to_patients);
}
delete [J to_patients;
delete [J to_doctors;

53

D The Skyline Matrix Problem

D.1 vectoré.h

#ifndef VECTORS
#define VECTORS

/#tl#v- % Ll 2 L] ®k hRRk /
/* »/
/* Vector Class Template Declaration */
/* »/
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. */
/* Last modified: Tuesday 30th November 1993. =/
/* */
/* Generic vector[0..size-1] class: -/
/* . */
/* - Size is an argument of the constructor. =/
/* - Index values must lie in the range 0..size-1. =/
/* - Copy and assignment operations are prohibited. */
/* */
/» /
template<class element>
class vector {
public:

vector(const int size);

“vector(void) ;

int size(void) comst;

elementt operator[](const int index) const;
private:

int Size;

element* Elements;

vector(void);

vector(const vector<element> ©_from);

vector<element>& operator=(const vector<element> assign_from);
};
/ /

#endif // VECTORS

54

D.2 vectors.C

/ /
/» */
/= Vector Class Template Definition */
/= */
/= */
/* Written by: John Thornley, Computer Science Dept., Caltech. */
/* Last modified: Tuesday 30th November 1993. »/
/* */
/ /
#include <stdio.h>
#include <assert.h>
#include "vectors.h"
//
template<class element>
vector<element>::vector(const int size)
{
assert(size >= 0);
Size = size;
Elements = nev element[size];
assert (Elements != NULL);
}
//
template<class element>
vector<element>:: “vector(void)
{
delete [] Elements;
}
//
template<class element>
int vector<element>::size(void) const
{ .
return Size;
}
/7
template<class element>
element& vector<element>::operator[](const int index) const
{
assert(0 <= index && index < Size);
return Elements[index];
}
/ /

55

D.3 matrices.h

#ifndef MATRICES
#define MATRICES

[eennn LLT T /
/= »/
/* Skyline-Matrix Class Template Declaration -/
/* s/
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. */
/* =/
/* Generic skyline-matrix[0..size-1][0..size-1] class: -/
/* */
/* - Size and shape are arguments of the constructor. */
/* - Index values must lie in the range 0..size-1 and within the shape. */
/* - Copy and assignment operations are prohibited. =/
/* */
/ /

template<class element>
class matrix_row;

template<class element>
class matrix {
public:

matrix(const int size, comnst int row[], comst int column[]);
“matrix(void);

int size(void) const;

int* row(void) const;

int* column(void) const;

matrix_row<element> operator[](const int first_index) const;

private:

};

int Size;

int* Row;

ints Column;

element** Lower; // Lower triangle rows (excluding diagonal).
elements* Upper; // Upper triangle columns (including diagonal).

matrix(void);
matrix(const matrix<element> ©.from);
matrix<element>t operator=(const matrix<element> &assign_from);

friend class matrix_row<element>;

template<class element>
class matrix_row {
public:

elementZ operator(](const int second_index) const;

private:

const matrix<element>#* Parent;
int First_Index;
matrix_row(const matrix<element> *const parent, const int first_index);

56

matrix_row(const matrix_row<element> ©.from);

matrix_row(void);
matrix_row<element>& operator=(const matrix_row<element> &assign_from);

friend class matrix<element>;

};

/
#endif // MATRICES

57

D.4 matrices.C

[ennnn sRREEE /
/* */
/* Skyline-Matrix Class Template Definition */
/* */
/* */
/* Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. =/
/* */
/ /

#include <iostream.h>
#include <stdio.h>
#include <assert.h>
#include "matrices.h"

/

template<class element>
matrix<element>: :matrix(const int size, const int row[], comst int column[])
{
assert(size >= 0);
Size = size;
Row = new int[size];
Column = new int[size];
Lower = new element*[size];
Upper = new element*[size];
assert(Row !'= NULL && Column != NULL && Lower != NULL && Upper != NULL);
for (int i = 0; i < size; i++) {
assert(0 <= row[i] && row[i] <= i);
Row[i] = row(il;
assert(0 <= column[i] && column[i] <= i);
Column[i] = column[i];
Lover[i] = new element[i-row[il];
Upper[i] = new element[i-column[i]+1];
assert(Lower[i] != NULL && Upper([i] != NULL);

}

//

template<class element>
matrix<element>:: “matrix(void)
{
delete [] Row;
delete [J Column;
for (int i = 0; i < Size; i++) {
delete [J Lower[il;
delete [J Upperl[il;
}
delete [] Lower;
delete [1 Upper;

58

// ——=-
template<class element>
int matrix<element>::size(void) const

{
}

return Size;

//
template<class element>
int* matrix<element>::row(void) const

{
}

return Row;

/1l
template<class element>
int* matrix<element>::column(void) const

{
}

return Column;

1/

template<class element>
matrix_row<element> matrix<element>::operator[](const int first_index) const
{

assert(0 <= first_index && first_index < Size);

return matrix_row<element>(this, first_index);

}

/"

template<class element>
matrix_row<element>::matrix_row(const matrix<element> *const parent,
const int first_index)

{
Parent = parent;
First_Index = first_index;
}
//

template<class element>
element& matrix_row<element>::operator[](const int second_index) const
{
assert(0 <= First_Index && First_Index < Parent->Size);
assert(0 <= second_index && second_index < Parent->Size);
if (First_Index > second_index) {
assert(second_index >= Parent->Row[First_Index]);
return Parent->Lower[First_Index]
[second_index - Parent->Row[First_Index]];
} else {

59

assert(First_Index >= Parent->Column(second_index]);
return Parent->Upper[second_index]
[First_Index - Parent->Column(second_indexl];

}

//

template<class element>
matrix_row<element>::matrix_row(const matrix_row<element> ©.from)
{

Parent = copy._from.Parent;

First_Index = copy.from.First_Index;

60

D.5 solve.h

#ifndef SOLVE
#define SOLVE

/ /

/ */

/* Solve Function Declaration */

/* */

/* =/

/* Written by: John Thornley, Computer Science Dept., Caltech. »/

/* Last modified: Tuesday 30th November 1993. */

/* */

/* DESCRIPTION: =/

/* */

/* Solve the following system of linear equations: */

/* */

/* . Ax = b -/

/* */

/* without pivoting, where A is an n-by-n skyline matrix. A skyline matrix =/

/* has nonzero values in row i in columns row[i] through i, and nonzero val- #*/

/* ues in column j in rows column[j] through j, where row and column are */

/% vectors of size n. */

/* =/

/* PROBLEM FROM: »/

/* »/

/* "A Comparative Study of Parallel Programming Languages: The Salishan */

/* Problems", edited by John T. Feo. Special Topics in Supercomputing, */

/% Volume 6. North-Holland, Amsterdam, 1992. =/

/* */

/ /

#include "vectors.h"

#include "matrices.h"

void solve(const matrix<sync float> &A, const vector<sync float> &b,
vector<sync float> &x);

// Input Condition:

// A.size() >= 0 and

1/ A.size() = b.size() and A.size() = x.size() and

/! for alli inO0 .. n -1 :

// (0 <= A.row()[i] <= i and 0 <= A.column()[i] <= i) and

// for all i in 0 .. n -1, j in A.row()[i] .. i : A[i]J[j] !'= 0 and

// for all j in 0 .. n -1, i in A.column()(j§] .. j : A[iJ[j] !'= 0 and

// A is non-singular.

// Output Condition:

// Asx = b.

/ /

#endif // SOLVE

61

D.6 solve.C

yALIAL L /
/* */
/* Solve Function Definition =/
/* */
/* =/
/% Written by: John Thornley, Computer Science Dept., Caltech. =/
/* Last modified: Tuesday 30th November 1993. »/
/* =/
/ /

#include "vectors.h"
#include "matrices.h"
#include "solve.h"

//

int max(comst int x, const int y)

¢ if (x > y) return x; else return y;
}

1/

void LU_factorize(const matrix<sync float> &A, matrix<sync float> &LU)
{
parfor (int i = 0; i < LU.size(); i++) par {
parfor (int j = LU.row()[il; j < i; j++) {
float innerproduct;

innerproduct = 0.0;
for (int k = max(LU.row()[i]l, LU.column()[j1); k < j; k++)
innerproduct += LU[i] [k]»LUCk][j];
LU[i][j] = (ACil[j] - innerproduct)/LULj1[;]1;
} .
parfor (int J = LU.column()[il; J <= i; J++) {
float innerproduct;

innerproduct = 0.0;

for (int k = max(LU.row()[J], LU.column() [il); k < J; k++)
innerproduct += LUL[J][x]sLU[K]I[i];

LULJI(i] = A(J][i] - innerproduct;

}

1/

void forward_substitute(const matrix<sync float> &L,
const vector<sync float> &b, vector<sync float> 2y)

{
parfor (int i = 0; i < L.size(); i++) {
float innerproduct;

62

-4

innerproduct = 0.0;

for (int j = L.row()[il; j < i; j++)
innerproduct += L[i]l[jl*y[jl;

y[il = b{i] - innerproduct;

}

//

void backward_substitute(const matrix<sync float> &U,
const vector<sync float> &y, vector<sync float> &x)
{
parfor (int i = U.size() - 1; i >= 0; i--) {
float innerproduct;

innerproduct = 0.0;
for (int j = i + 1; j < U.size(); j++)
i? (i >= U.column()[j1)
innerproduct += U[i]l[jl*x[j];
x[i] = (y[i] - innerproduct)/Uli][i];

}

//

void solve(const matrix<sync float> &A, const vector<sync float> &b,
vector<sync float> &x)

{
matrix<sync float> LU(A.size(), A.row(), A.column());
vector<sync float> y(A.size());
par {
LU_factorize(A, LU); // Solve A = LU for L and U.
forward_substitute(LU, b, y); // Solve Ly = b for y.
backward_substitute(LU, y, x); // Solve Ux = y for x.
}
}
/

63

