Installation Guide for LAPACK

Edward Anderson
Jack Dongarra
Susan Ostrouchov

CRPC-TR93408
March, 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by the NSF.

LAPACK Working Note 41
Installation Guide for LAPACK!

Edward Anderson?, Jack Dongarra, and Susan Ostrouchov
Department of Computer Science
University of Tennessee
Knoxville, Tennessee 37996-1301

REVISED: VERSION 1.1, March 31, 1993
Abstract

This working note describes how to install, test, and time version 1.1 of LAPACK, a linear
algebra package for high-performance computers. Separate instructions are provided for
the Unix and non-Unix versions of the test package. Further details are also given on the
design of the test and timing programs.

1This work was supported by NSF Grant No. ASC-8715728.
2Current address: Cray Research Inc., 655F Lone Oak Drive, Eagan, MN 55121

Contents

=W N

Introduction
Revisions Since the First Public Release
File Format
Overview of Tape Contents
4.1 LAPACK Routines
4.2 Level 1,2,and 3BLAS
4.3 LAPACK Test Routines
44 LAPACK Timing Routines
45 makefiles
Installing LAPACK on a Unix System
5.1 Read the Tape or UntartheFile
5.2 Test and Install the Machine-Dependent Routines.
5.2.1 Installing LSAME
5.2.2 Installing SLAMCH and DLAMCH
5.2.3 Installing SECOND and DSECND
5.3 Create the BLAS Library
5.4 Run the BLAS Test Programs
5.5 Create the LAPACK Library
5.6 Create the Test Matrix Generator Library
5.7 Run the LAPACK Test Programs
5.7.1 Testing the Linear Equations Routines
5.7.2 Testing the Eigensystem Routines
5.8 Run the LAPACK Timing Programs
5.8.1 Timing the Linear Equations Routines
5.8.2 Timing the BLAS
5.8.3 Timing the Eigensystem Routines
5.9 Send the Results to Tennessee
More About Testing e
6.1 The Linear Equation Test Program
6.1.1 Tests for General and Symmetric Matrices
6.1.2 Tests for Triangular Matrices
6.1.3 Tests for the Orthogonal Factorization Routines
6.1.4 Tests for the Least Squares Driver Routines
6.1.5 Tests for the Equilibration Routines
6.1.6 Input File for Testing the Linear Equation Routines

6.2

6.3

6.4

6.5
6.6

6.7

6.8

Testing the Eigenproblem Balancing and Backward Transformation

ROULIMES . & v v v o v e e e e e e e e e e e e e e 36
Testing the Nonsymmetric Eigenvalue Routines 36
6.3.1 The Nonsymmetric Eigenvalue Drivers 37
6.3.2 Test Matrices for the Nonsymmetric Eigenvalue Routines . 37
6.3.3 Test Matrices for the Nonsymmetric Eigenvalue Drivers . . 38
6.3.4 Tests Performed on the Nonsymmetric Eigenvalue Routines 39
6.3.5 Tests Performed on the Nonsymmetric Eigenvalue Drivers. 40

6.3.6 Input File for Testing the Nonsymmetric Eigenvalue Routines 41
6.3.7 Input File for Testing the Nonsymmetric Eigenvalue Drivers 42
Testing the Generalized Nonsymmetric Eigenvalue Routines 44
6.4.1 The Generalized Nonsymmetric Eigenvalue Drivers 44
6.4.2 Test Matrices for the Generalized Nonsymmetric Eigenvalue

Routines v v v v v v i i e e e e 44
6.4.3 Test Matrices for the Generalized Nonsymmetric Eigenvalue
DIIVEIS . & v v v e e e e e e e e e e e e e e e e 46
6.4.4 Tests Performed on the Generalized Nonsymmetric Eigen-
value Routines oo 46
6.4.5 Tests Performed on the Generalized Nonsymmetric Eigen-
value Drivers« v v i v i e e 47
6.4.6 Input File for Testing the Generalized Nonsymmetric Eigen-
value Routines and Drivers 48
Testing the Nonsymmetric Eigenvalue Condition Estimation Routines 49
Testing the Symmetric Eigenvalue Routines 49
6.6.1 The Symmetric Eigenvalue Drivers. 50
6.6.2 Test Matrices for the Symmetric Eigenvalue Routines . . . 50
6.6.3 Test Matrices for the Symmetric Eigenvalue Drivers 51
6.6.4 Tests Performed on the Symmetric Eigenvalue Routines . . 51
6.6.5 Tests Performed on the Symmetric Eigenvalue Drivers . . . 53
6.6.6 Input File for Testing the Symmetric Eigenvalue Routines
and Drivers ¢ v i v i e e 53
6.6.7 Input File for Testing the Banded Symmetric Eigenvalue
Routines and Driverso 54
Testing the Generalized Symmetric Eigenvalue Routines and Drivers 55
6.7.1 The Generalized Symmetric Eigenvalue Drivers. 55
6.7.2 Test Matrices for the Generalized Symmetric Eigenvalue
Routines and Drivers 56
6.7.3 Tests Performed on the Generalized Symmetric Eigenvalue
Routines and Drivers 0. 56
6.7.4 Input File for Testing the Generalized Symmetric Eigenvalue
Routines and Drivers« oo oo 56
Testing the Singular Value Decomposition Routines 57
6.8.1 The Singular Value Decomposition Driver 57

6.8.2 Test Matrices for the Singular Value Decomposition Routines 57
6.8.3 Test Matrices for the Singular Value Decomposition Driver 58

6.8.4 Tests Performed on the Singular Value Decomposition Rou-

tines, 58
6.8.5 Tests Performed on the Singular Value Decomposition Driver 60
6.8.6 Input File for Testing the Singular Value Decomposition

Routines 61
6.9 Testing the Generalized Singular Value Decomposition Driver 62

6.9.1 Test Matrices for the Generalized Singular Value Decompo-
sition Driver 62

6.9.2 Tests Performed on the Generalized Singular Value Decom-
position Drivero L. 62

6.9.3 Input File for Testing the Generalized Singular Value De-
composition Driver 63
6.10 Testing the Generalized QR and RQ Factorization Routines 64

6.10.1 Test Matrices for the Generalized QR and RQ Factorization
Routines 64

6.10.2 Tests Performed on the Generalized QR and RQ Factoriza-
tionRoutines 64

6.10.3 Input File for Testing the Generalized QR and RQ Factor-
ization Routines 0 L. 66
6.11 Testing the Generalized Linear Regression Model Driver 66

6.11.1 Test Matrices for the Generalized Linear Regression Model
Driver e 67

6.11.2 Tests Performed on the Generalized Linear Regression Model
Driver i e e e e e 67

6.11.3 Input File for Testing the Generalized Linear Regression
Model Driver 67
6.12 Testing the Constrained Linear Least Squares Driver 68
6.12.1 Test Matrices for the Constrained Linear Least Squares Driver 69

6.12.2 Tests Performed on the Constrained Linear Least Squares
Driver o e e 69

6.12.3 Input File for Testing the Constrained Linear Least Squares
Driver e e 69
More About Timing i i e 71
7.1 The Linear Equation Timing Program 71
7.2 Timing the Level2and 3 BLAS 75
7.3 Timing the Nonsymmetric Eigenproblem 76
7.4 Timing the Generalized Nonsymmetric Eigenproblem 78

7.4.1 Input File for Timing the Generalized Nonsymmetric Eigen-
problem L. e 80
7.5 Timing the Symmetric and Generalized Symmetric Eigenproblem . . 81
7.6 Timing the Singular Value Decomposition 84
7.7 Timing the Generalized Singular Value Decomposition 87
7.8 Timing the Generalized QR and RQ Factorizations 87
7.9 Timing the Generalized Linear Regression Model Problem 87
7.10 Timing the Constrained Linear Least Squares Problem 87

A LAPACK Routines 88

B LAPACK Auxiliary Routines 93
C Operation Counts for the BLAS and LAPACK 97
D Caveats 103
E Installation Guide for Non-Unix Systems 106
E.l1 Installing LAPACK on a non-Unix Systemocvvvee oo e 112
E.1.1 Read the Tapeor Tarthe File 113

E.1.2 Test and Install the Machine-Dependent Routines. 113

E.1.2.1 Installing LSAME 113

E.1.2.2 Installing SLAMCH and DLAMCH 114

E.1.2.3 Installing SECOND and DSECND 115

E.1.3 Create the BLAS Libraryo 115

E.1.4 Run the BLAS Test Programso 116

E.1.5 Createthe LAPACK Library« oo v v oo oo v o 116

E.1.6 Create the Test Matrix Generator Library 117

E.1.7 Run the LAPACK Test Programs oo v 117

E.1.7.1 Testing the Linear Equation Routines 117

E.1.7.2 Testing the Eigensystem Routines 117

E.1.8 Run the LAPACK Timing Programs 118

E.1.8.1 Timing the Linear Equations Routines 119

E.1.8.2 Timing the BLAS 120

E.1.8.3 Timing the Eigensystem Routines 120

E.1.9 Send the Results to Tennesseeot v v oo v v 121
Bibliography oot i 122

1 Introduction

LAPACK is a linear algebra library for high-performance computers. The library in-
cludes Fortran 77 subroutines for the analysis and solution of systems of simultaneous linear
algebraic equations, linear least-squares problems, and matrix eigenvalue problems. Our ap-
proach to achieving high efficiency is based on the use of a standard set of Basic Linear
Algebra Subprograms (the BLAS), which can be optimized for each computing environ-
ment. By confining most of the computational work to the BLAS, the subroutines should
be transportable and efficient across a wide range of computers.

This working note describes how to install, test, and time this release of LAPACK.

The instructions for installing, testing, and timing are designed for a person whose
responsibility is the maintenance of a mathematical software library. We assume the installer
has experience in compiling and running Fortran programs and in creating object libraries.
The installation process involves reading the tape or tarring the file, creating a set of
libraries, and compiling and running the test and timing programs.

This guide combines the instructions for the Unix and non-Unix versions of the LAPACK
test package (the non-Unix version is in Appendix E). At this time, the non-Unix version
of LAPACK can only be obtained after first untarring the Unix tar tape and then following
the instructions in Appendix E.

Section 3 describes how the files are organized on the tape or file, and Section 4 gives
a general overview of the parts of the test package. Step-by-step instructions appear in
Section 5 for the Unix version and in the appendix for the non-Unix version.

For users desiring additional information, Sections 6 and 7 give details of the test and
timing programs and their input files. Appendices A and B briefly describe the LAPACK
routines and auxiliary routines provided in this release. Appendix C lists the operation
counts we have computed for the BLAS and for some of the LAPACK routines. Appendix
D, entitled “Caveats”, is a compendium of the known problems from our own experiences,
with suggestions on how to overcome them. It is strongly advised that the user read Appendiz
D before proceeding with the installation process. Appendix E contains the instructions to
install LAPACK on a non-Unix system.

2 Revisions Since the First Public Release

Since its first public release in February, 1992, LAPACK has had three updates — two
minor updates and one major update. Minor updates consist of code and documentation
corrections, whereas major updates introduce new routines as well as corrections. The two
minor updates that occurred were on June 30, 1992 and October 31, 1992, referenced as
version 1.0a and version 1.0b, respectively. The major update was denoted by version 1.1
and occurred on March 31, 1993. All LAPACK routines reflect the current version number
with the date on the routine indicating when it was last modified. For more information on
the revisions detailed below please refer to the LAPACK release_notes file on netlib.

Minor updates will be eliminated as they were only needed to catch the inevitable flux
of bug fixes that accompany any initial release. We plan to have only one or two updates
a year, and provide a PRERELEASE directory on netlib to contain new software that is

PRSI

e

being considered for inclusion. Users can then provide input and experimentation with
these prerelease routines.

At the time of each update, there is a tar file available via xnetlib (see section 3 for more
information on xnetlib) that contains all revisions for the update. You can then simply
tar this file on top of your existing LAPACK directory. The entire package available in
lapack.tar.z will always be the most up-to-date and include all revisions.

Bug Fixes and Code Modifications:

CHEGST, CHSEQR, SSTEBZ (and their double precision equivalents) had errors
corrected;

CLANST — CLANHT name change to avoid notation confusion;
Special version of ILAENV was missing from the TESTING and TIMING directories;

All -EVX drivers and xGESVX had incorrect workspace requirements (WORK for
the real routines, and RWORK in the complex routines) specified in their Argument
sections;

xGTCON also had incorrect workspace requirements specified in its Argument section;

Added functionality has been incorporated into the expert driver routines that involve
equilibration (xGESVX, xGBSVX, xPOSVX, xPPSVX, xPBSVX). The option FACT
= "F’ now permits the user to input a prefactored, pre-equilibrated matrix. The testing
routines in TESTING/LIN that involve these routines have also been modified;

LIN Timing Suite modifications to allow the input of the number of right hand sides,
and timing code added to time the GT and PT routines including comparisons with
LINPACK;,

xGESVD bug fix and added functionality;

comments added to SLAEBZ and SSTEBZ to enforce SCALAR mode in certain loops;
in addition, in front of each such "DO” statement a series of compiler directives has
been added which should enforce SCALAR mode on most popular vector computers;

STIM21, code correction to fix variable ITCNT in COMMON misdeclared as INTE-
GER instead of REAL.

New Routines:

xGEGS and xGEGYV, driver routines for the Generalized Nonsymmetric Eigenvalue
Problem with accompanying computational and auxiliary routines xGGBAK, xGG-
BAL, xGGHRD, xHGEQZ, xTGEVC, and SLAG2;

xGGQRF and xGGRQF, computational routines for the generalized QR and RQ
factorizations;

e xGGSVD, driver routine for the generalized singular value decomposition with accom-
panying computational and auxiliary routines xGGSVP,xTGSJA, xLAGS2, xLAPLL,
and xLAPMT;

¢ xGGGLM, driver routine for the solution of the generalized linear regression model;

e XGGLSE, driver routine for the solution of the constrained linear least squares prob-
lem.

Additional Features:

e On-line manpages (troff files) for LAPACK driver and computational routines, as well
as most of the BLAS routines, available via xnetlib.

3 File Format

The software for LAPACK is distributed in the form of a tape or compressed tar file,
which contains the Fortran source for LAPACK, the Basic Linear Algebra Subprograms
(the Level 1, 2, and 3 BLAS) needed by LAPACK, the testing programs, and the timing
programs. Users who wish to have a non-Unix installation should go to Appendix E,
although the overview in section 4 applies to both the Unix and non-Unix versions. This
section describes the organization of the software for users who have received a Unix tar
tape from NAG (Numerical Algorithms Group, Inc.) or a compressed tar file via xnetlib.

Xnetlib is an X-version of netlib recently developed at the University of Tennessee
and Oak Ridge National Laboratory. Unlike netlib, which uses electronic mail to process
requests for software and other text, xnetlib uses an X Window graphical user interface and
a socket-based connection between the user’s machine and the xnetlib server machine to
process software requests.

To receive a copy of xmetlib send the message "send xnetlib.shar from xnetlib” to
netlib@ornl.gov.

When you receive the shar file, remove the mail header, saveit to a file, type ’sh filename’
and follow the instructions in the README file.

After installing and invoking xnetlib, select the button in the header menu
with your mouse, click your mouse on the word lapack in the listing, and the current
LAPACK index will appear. At this point you can download any files (for example, the
compressed tar file lapack.tar.z) by clicking the mouse on the desired file(s), selecting
the [DOWNLOAD| button from the menu, and finally clicking on the [GET FILES NOW |
button.

The software on the tar tape or tar file is organized in a number of essential directo-
ries as shown in Figure 1. Please note that this figure does not reflect everything that is
contained in the LAPACK directory. Input and instructional files are also located at various
levels. Each of the lowest level directories in the tree structure contains a makefile to create
a library or a set of executable programs for testing and timing. Libraries are created in
the LAPACK directory and executable files are created in one of the directories BLAS,
TESTING, or TIMING. Input files for the test and timing programs are also found in these

LAPACK

INSTALL BLAS SRC TESTING TIMING
Machine depen- LAPACK routines
dent routines & auxiliary routines
SRC TESTING LIN MATGEN EIG LIN EIG
Level 1 BLAS BLAS2 & 3 test Linear eqn. Test matrix Eigensystem Linear eqn. Eigensystem
Level 2 BLAS routines test routines generators test routines timing routines timing routines
Level 3 BLAS

Figure 1: Unix organization of LAPACK

three directories so that testing may be carried out in the directories LAPACK/BLAS,
LAPACK/TESTING, and LAPACK/TIMING. Additionally, makefiles to perform the test-
ing and timing process (except for the BLAS testing and BLAS timing) are located in
LAPACK/TESTING and LAPACK/TIMING.

4 Overview of Tape Contents

Most routines in LAPACK occur in four versions: REAL, DOUBLE PRECISION,
COMPLEX, and COMPLEX*16. The first three versions (REAL, DOUBLE PRECISION,
and COMPLEX) are written in standard Fortran 77 and are completely portable; the
COMPLEX*16 version is provided for those compilers which allow this data type. For
convenience, we often refer to routines by their single precision names; the leading ‘S’ can
be replaced by a ‘D’ for double precision, a ‘C’ for complex, or a ‘Z’ for complex*16. For
LAPACK use and testing you must decide which version(s) of the package you intend to
install at your site (for example, REAL and COMPLEX on a Cray computer or DOUBLE
PRECISION and COMPLEX*16 on an IBM computer).

4.1 LAPACK Routines
There are three classes of LAPACK routines:

e driver routines solve a complete problem, such as solving a system of linear equations
or computing the eigenvalues of a real symmetric matrix. Users are encouraged to use
a driver routine if there is one that meets their requirements. The driver routines are
listed in Appendix A.

¢ computational routines, also called simply LAPACK routines, perform a distinct
computational task, such as computing the LU decomposition of an m-by-n matrix
or finding the eigenvalues and eigenvectors of a symmetric tridiagonal matrix using the
QR algorithm. The LAPACK routines are listed in Appendix A; see also LAPACK
Working Note #5 [3].

¢ auxiliary routines are all the other subroutines called by the driver routines and
computational routines. Among them are subroutines to perform subtasks of block
algorithms, in particular, the unblocked versions of the block algorithms; extensions
to the BLAS, such as matrix-vector operations involving complex symmetric matrices;
‘the special routines LSAME and XERBLA which first appeared with the BLAS; and
a number of routines to perform common low-level computations, such as computing
a matrix norm, generating an elementary Householder transformation, and applying a
sequence of plane rotations. Many of the auxiliary routines may be of use to numerical
analysts or software developers, so we have documented the Fortran source for these
routines with the same level of detail used for the LAPACK routines and driver
routines. The auxiliary routines are listed in Appendix B.

4.2 Level 1, 2, and 3 BLAS

The BLAS are a set of Basic Linear Algebra Subprograms that perform vector-vector,
matrix-vector, and matrix-matrix operations. LAPACK is designed around the Level 1, 2,
and 3 BLAS, and nearly all of the parallelism in the LAPACK routines is contained in the
BLAS. Therefore, the key to getting good performance from LAPACK lies in having an
efficient version of the BLAS optimized for your particular machine. If you have access to
a library containing optimized versions of some or all of the BLAS, you should certainly
use it (but be sure to run the BLAS test programs). If an optimized library of the BLAS is
not available, Fortran source code for the Level 1, 2, and 3 BLAS is provided on the tape.
Users should not expect too much from the Fortran BLAS; these versions were written to
define the basic operations and do not employ the standard tricks for optimizing Fortran
code.

The formal definitions of the Level 1, 2, and 3 BLAS are in [9], [7], and [5]. Copies of
the BLAS Quick Reference card are available from the authors.

4.3 LAPACK Test Routines

This release contains two distinct test programs for LAPACK routines in each data
type. One test program tests the routines for solving linear equations and linear least
squares problems, and the other tests routines for the matrix eigenvalue problem. The
routines for generating test matrices are used by both test programs and are compiled into
a library for use by both test programs.

4.4 LAPACK Timing Routines

This release also contains two distinct timing programs for the LAPACK routines in
each data type. The linear equation timing program gathers performance data in megaflops

10

on the factor, solve, and inverse routines for solving linear systems, the routines to generate
or apply an orthogonal matrix given as a sequence of elementary transformations, and the
reductions to bidiagonal, tridiagonal, or Hessenberg form for eigenvalue computations. The
operation counts used in computing the megaflop rates are computed from a formula; see
Appendix C. The eigenvalue timing program is used with the eigensystem routines and
returns the execution time, number of floating point operations, and megaflop rate for each
of the requested subroutines. In this program, the number of operations is computed while
the code is executing using special instrumented versions of the LAPACK subroutines.

4.5 makefiles

The libraries, test programs, timing programs, and output files are created using the
makefile in each directory. Target names are supplied for each of the four data types and
are called single, double, complex, and complex1i6. To create a library from one of the
files called makefile, you simply type make followed by the data types desired. Here are

some examples:

make single
make double complex16

make single double complex complexi6

Alternatively,
make

without any options creates a library of all four data types. The make command can be
run more than once to add another data type to the library if necessary. Because of the
quantity of software in LAPACK, compiling all four data types into one library may not be
advisable; see Appendix D for alternate suggestions.

Similarly, the makefiles for the test routines create separate test programs for each data
type. These programs can be created one at a time:

make single

make double

or all at once:
make single double complex complex16

where the last command is equivalent to typing make by itself. In the case of the BLAS
test programs, where the makefile has a name other than makefile, the -f option must be
added to specify the file name, as in the following example:

make -f makeblat2 single

11

The makefiles used to create libraries call ranlib after each ar command. Some comput-
ers (for example, CRAY computers running UNICOS, or Hewlett Packard computers run-
ning HP-UX) do not require ranlib to be run after creating a library. On these systems, ref-
erences to ranlib should be commented out or removed from the makefiles in LAPACK/SRC,
LAPACK/BLAS/SRC, LAPACK/TESTING/MATGEN, and LAPACK/TIMING/EIG/EIGSRC.

5 Installing LAPACK on a Unix System

Installing, testing, and timing the Unix version of LAPACK involves the following steps:
1. Read the tape or untar the file.
. Test and install the machine-dependent routines.
. Create the BLAS library, if necessary.
. Run the Level 2 and 3 BLAS test programs.

. Create the library of test matrix generators.

2

3

4

5. Create the LAPACK library.

6

7. Run the LAPACK test programs.
8

. Run the LAPACK timing programs.

Quick Reference Guide for the Installation of LAPACK

If you insist on not reading the instructions, here is an abbreviated set of directions for
installing, testing, and timing LAPACK.
To install, test, and time LAPACK:

1. Read the tape or uncompress and tar the file.

tar xvf /dev/rst0 (cartridge tape), or
tar xvf /dev/rmt8 (9-track tape), or
uncompress file (from a file), and
tar xvf file (from a file)
2. Test and Install the Machine-Dependent Routines
(WARNING: You may need to supply a correct version of second.f and dsecnd.f for
your machine)
cd LAPACK/INSTALL
make
testlsame

testslamch

12

testdlamch
testsecond
testdsecnd

3. Create the BLAS Library, if necessary

(NOTE: For best performance, it is recommended you use t

cp LAPACK/INSTALL/lsame.f LAPACK/BLAS/SRC/
cd LAPACK/BLAS/SRC
make

4. Run the Level 2 and 3 BLAS Test Programs

cd LAPACK/BLAS/TESTING
make -f makeblat2

cd LAPACK/BLAS

xblat2s < sblat2.in
xblat2d < dblat2.in
xblat2c < cblat2.in
xblat2z < zblat2.in
cd LAPACK/BLAS/TESTING
make -f makeblat3

cd LAPACK/BLAS
xblat3s < sblat3.in
xblat3d < dblat3.in
xblat3c < cblat3.in
xblat3z < zblat3.in

5. Create the LAPACK Library

cp LAPACK/INSTALL/lsame.f LAPACK/SRC/

cp LAPACK/INSTALL/slamch.f LAPACK/SRC/
cp LAPACK/INSTALL/dlamch.f LAPACK/SRC/
cp LAPACK/INSTALL/second.f LAPACK/SRC/
cp LAPACK/INSTALL/dsecnd.f LAPACK/SRC/
cd LAPACK/SRC

make

6. Create the Library of Test Matrix Generators

cd LAPACK/TESTING/MATGEN

13

he manufacturers’ BLAS)

make
7. Run the LAPACK Test Programs

cd LAPACK/TESTING
make

8. Run the LAPACK Timing Programs

cd LAPACK/TIMING

make

xlintims < sblasa.in > sblasa.out
xlintims < sblasb.in > sblasb.out
xlintims < sblasc.in > sblasc.out

repeat for c, d, and z

5.1 Read the Tape or Untar the File

If you received a tar tape of LAPACK, type one of the following commands to unload
the tape (the device name may be different at your site):

tar xvf /dev/rstO (cartridge tape), or
tar xvf /dev/rmt8 (9-track tape)

This will create a top-level directory called LAPACK. You will need about 28 Mbytes to
read the complete tape. On a Sun SPARCstation, the libraries used 14 Mbytes and the
LAPACK executable files used 20 Mbytes. In addition, the object files used 18 Mbytes,
but the object files can be deleted after creating the libraries and executable files. Your
actual space requirements will be less if you do not use all four data types. The total space
requirements including the object files is approximately 70 Mbytes for all four data types.

If you received a tar file of LAPACK via xnetlib, enter the following two commands to

untar the file:

uncompress file (where file is the name of the compressed tar file)

tar xvf file (where file is the name of the tar file)

5.2 Test and Install the Machine-Dependent Routines.

There are five machine-dependent functions in the test and timing package, at least
three of which must be installed. They are

LSAME LOGICAL Test if two characters are the same regardless of case
SLAMCH REAL Determine machine-dependent parameters
DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a fixed starting time

DSECND DOUBLE PRECISION Return time in seconds from a fixed starting time

14

If you are working only in single precision, you do mnot need to install DLAMCH and
DSECND, and if you are working only in double precision, you do not need to install

SLAMCH and SECOND.
These five subroutines are provided on the tape in LAPACK/ INSTALL, along with five test

programs and a makefile. To compile the five test programs, go to LAPACK/INSTALL and edit
the makefile. Define FORTRAN and OPTS to refer to the compiler and desired compiler options
for your machine. Then type make to create test programs called testlsame, testslamch,
testdlamch, testsecond, and testdsecnd. The expected results of each test program

are described below.

5.2.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.
if A and B are the same regardless of case, or .FALSE. if they are different. For example,

the expression
LSAME(UPLO, ’U’)

is equivalent to
(UPLO.EQ.’U’).OR.(UPLO.EQ.’u’)

The test program in l1sametst.f tests all combinations of the same character in upper
and lower case for A and B, and two cases where A and B are different characters.

Run the test program by typing testlsame. If LSAME works correctly, the only message
you should see is

ASCII character set
Tests completed

If any modifications were required to LSAME, copy lsame.f to both LAPACK/BLAS/SRC/
and LAPACK/SRC/. The function LSAME is needed by both the BLAS and LAPACK, so it
is safer to have it in both libraries as long as this does not cause trouble in the link phase

when both libraries are used.

5.2.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that
indicates the machine parameter to be returned. The test program in slamchtst.f simply
prints out the different values computed by SLAMCH, so you need to know something about
what the values should be. For example, the output of the test program for SLAMCH on
a Sun SPARCstation is

Epsilon = 5.96046E-08
Safe minimum = 1.17549E-38
Base = 2.00000
Precision = 1.19209E-07
Number of digits in mantissa = 24.0000

15

roa-'-"

1t 1

Rounding mode 1.00000

Minimum exponent = -125.000
Underflow threshold = 1.17549E-38
Largest exponent = 128.000

3.40282E+38
8.50706E+37

Overflow threshold
Reciprocal of safe minimum

On a Cray machine, the safe minimum underflows its output representation and the overflow
threshold overflows its output representation, so the safe minimum is printed as 0.00000
and overflow is printed as R. This is normal. If you would prefer to print a representable
number, you can modify the test program to print SFMIN*100. and RMAX/100. for the
safe minimum and overflow thresholds.

Run the test program by typing testslamch. If any modifications were made to
SLAMCH, copy slamch.f to LAPACK/SRC/. Do the same for DLAMCH and the test pro-
gram testdlamch. If both tests were successful, go to Section 4.2.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own
version of this function. The following options are used in LAPACK and must be set:

‘B’: Base of the machine

‘E’: Epsilon (relative machine precision)

‘O’: Overflow threshold

‘P’: Precision = Epsilon*Base

‘S’: Safe minimum (often same as underflow threshold)

‘U’: Underflow threshold

Some people may be familiar with RIMACH (D1MACH), a primitive routine for set-
ting machine parameters in which the user must comment out the appropriate assignment
statements for the target machine. If a version of RIMACH is on hand, the assignments in
SLAMCH can be made to refer to RIMACH using the correspondence

SLAMCH(‘U’) = RIMACH(1)
SLAMCH(‘O’) = RIMACH(2)
SLAMCH(‘E’) = RIMACH(3)
SLAMCH(‘B’) = RIMACH(5)

The safe minimum returned by SLAMCH(’S’) is initially set to the underflow value, but
if 1/(overflow) > (underflow) it is recomputed as (1/(overflow)) * (1 + ¢), where ¢ is the

machine precision.
BE AWARE that the initial call to SLAMCH or DLAMCH is expensive. We suggest
that installers run it once, save the results, and hard-code the constants in the version they

put in their library.

16

5.2.3 Installing SECOND and DSECND

Both the timing routines and the test routines call SECOND (DSECND), a real function
with no arguments that returns the time in seconds from some fixed starting time. Our
version of this routine returns only “user time”, and not “user time + system time”. The
version of SECOND in second.f calls ETIME, a Fortran library routine available on some
computer systems. If ETIME is not available or a better local timing function exists, you
will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in secondtst.f performs a million operations using 5000 iterations of
the SAXPY operation y := y + az on a vector of length 100. The total time and megaflops
for this test is reported, then the operation is repeated including a call to SECOND on
each of the 5000 iterations to determine the overhead due to calling SECOND. Run the
test program by typing testsecond (or testdsecnd). There is no single right answer, but
the times in seconds should be positive and the megaflop ratios should be appropriate for
your machine. If you modify SECOND or DSECND, copy second.£ and/or dsecnd.f to
LAPACK/SRC/ for inclusion in the LAPACK library.

5.3 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.
In this case you can go directly to Section 5.4 to make the BLAS test programs. You
may already have a library containing some of the BLAS, but not all (Level 1 and 2, but
not Level 3, for example). If so, you should use your local version of the BLAS wherever
possible.

a) Go to LAPACK/BLAS/SRC and edit the makefile. Define FORTRAN and OPTS to refer to
the compiler and desired compiler options for your machine. If you already have some
of the BLAS, comment out the lines defining the BLAS you have.

b) Type make followed by the data types desired, as in the examples of Section 4.5. The
make command can be run more than once to add another data type to the library if
necessary.

The BLAS library is created in LAPACK/blas.a and not in the current directory.

5.4 Run the BLAS Test Programs

Test programs for the Level 2 and 3 BLAS are in the directory LAPACK/BLAS/TESTING.
A test program for the Level 1 BLAS is not included, in part because only a subset of the
original set of Level 1 BLAS is actually used in LAPACK, and the old test program was
designed to test the full set of Level 1 BLAS. The original Level 1 BLAS test program is
available from netlib as TOMS algorithm 539.

a) To make the Level 2 BLAS test programs, go to LAPACK/BLAS/TESTING and edit
the makefile called makeblat2. Define FORTRAN and OPTS to refer to the compiler
and desired compiler options for your machine, and define LOADER and LOADOPTS to
refer to the loader and desired load options for your machine. If you are not using

17

the Fortran BLAS, define BLAS to point to your system’s BLAS library, instead of
../../blas.a.

b) Type make -f makeblat2 followed by the data types desired, as in the examples of
Section 4.5. The executable files are called xblat2s, xblat2d, xblat2c, and xblat2z
and are created in LAPACK/BLAS.

c) Go to LAPACK/BLAS and run the Level 2 BLAS tests. For the REAL version, the
command is

xblat2s < sblat2.in

Similar commands should be used for the other test programs, with the leading ‘s’ in
the input file name replaced by ‘d’, ‘c’, or ‘z’. The name of the output file is indicated
on the first line of the input file and is currently defined to be SBLAT2.SUMM for the
REAL version, with similar names for the other data types.

d) To compile and run the Level 3 BLAS test programs, repeat steps a—c using the
makefile makeblat3. For step c, the executable program in the REAL version is
xblat3s, the input file is sblat3.in, and output is to the file SBLAT3.SUMM, with
similar names for the other data types.

If the tests using the supplied data files were completed successfully, consider whether
the tests were sufficiently thorough. For example, on a machine with vector registers, at
least one value of N greater than the length of the vector registers should be used; otherwise,
important parts of the compiled code may not be exercised by the tests. If the tests were
not successful, either because the program did not finish or the test ratios did not pass
the threshold, you will probably have to find and correct the problem before continuing. If
you have been testing a system-specific BLAS library, try using the Fortran BLAS for the
routines that did not pass the tests. For more details on the BLAS test programs, see [§]
and [6].

5.5 Create the LAPACK Library

a) Go to the directory LAPACK/SRC and edit the makefile. Define FORTRAN and OPTS to-
refer to the compiler and desired compiler options for your machine.

b) Type make followed by the data types desired, as in the examples of Section 4.5. The
make command can be run more than once to add another data type to the library if
necessary.

The LAPACK library is created in LAPACK/lapack.a.

5.6 Create the Test Matrix Generator Library

a) Go to the directory LAPACK/TESTING/MATGEN and edit the makefile. Define FORTRAN
and OPTS to refer to the compiler and desired compiler options for your machine.

18

b) Type make followed by the data types desired, as in the examples of Section 4.5. The
make command can be run more than once to add another data type to the library if
necessary.

The test matrix generator library is created in LAPACK/tmglib.a.

5.7 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equation routines and one for the eigensystem routines. In each data type, there
is one input file for testing the linear equation routines and fourteen input files for testing
the eigenvalue routines. The input files reside in LAPACK/TESTING. For more information
on the test programs and how to modify the input files, see Section 6.

If you do not wish to run each of the tests individually, you can go to LAPACK/TESTING
and type make followed by the data types desired. This will compile and run the tests as
described in sections 5.7.1 and 5.7.2. The makefile in LAPACK/TESTING uses the makefiles in
LAPACK/TESTING/LIN and LAPACK/TESTING/EIG to create the executables, and then runs
the tests. Thus, the user must define the appropriate FORTRAN and OPTS for the make-
files in LAPACK/TESTING/LIN and LAPACK/TESTING/EIG before executing the makefile in
LAPACK/TESTING.

5.7.1 Testing the Linear Equations Routines

a) Go to LAPACK/TESTING/LIN and edit the makefile. Define FORTRAN and OPTS to refer
to the compiler and desired compiler options for your machine, and define LOADER
and LOADOPTS to refer to the loader and desired load options for your machine. If you
are not using the Fortran BLAS, define BLAS to point to your system’s BLAS library,
instead of ../../blas.a.

b) Type make followed by the data types desired, as in the examples of Section 4.5.
The executable files are called xlintsts, xlintstc, xlintstd, or xlintstz and
are created in LAPACK/TESTING.

c¢) Go to LAPACK/TESTING and run the tests for each data type. For the REAL version,
the command is

xlintsts < stest.in > stest.out

The tests using xlintstd, xlintstc, and x1intstz are similar with the leading ‘s’
in the input and output file names replaced by ‘d’, ‘c’, or ‘z’.

If you encountered failures in this phase of the testing process, please consult our re-
lease_notes file on netlib (send email to netlib@ornl.gov and in the message type "send
release_notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have had
similar difficulties on that machine. If there is not an entry for your machine or the sugges-
tions do not fix your problem, please feel free to contact the authors as directed in Section
5.9. Tell us the type of machine on which the tests were run, the version of the operating

19

system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs.

We would like to keep our release_notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

5.7.2 Testing the Eigensystem Routines

a)

b)

Go to LAPACK/TESTING/EIG and edit the makefile. Define FORTRAN and OPTS to refer
to the compiler and desired compiler options for your machine, and define LOADER
and LOADOPTS to refer to the loader and desired load options for your machine. If you
are not using the Fortran BLAS, define BLAS to point to your system’s BLAS library,
instead of ../../blas.a.

Type make followed by the data types desired, as in the examples of Section 4.5. The
executable files are called xeigtsts, xeigtstc, xeigtstd, and xeigtstz and are
created in LAPACK/TESTING.

Go to LAPACK/TESTING and run the tests for each data type. The tests for the eigensys-
tem routines use fourteen separate input files for testing the nonsymmetric eigenvalue
problem, the symmetric eigenvalue problem, the banded symmetric eigenvalue prob-
lem, the generalized symmetric eigenvalue problem, the generalized nonsymmetric
eigenvalue problem, the singular value decomposition, the generalized singular value
decomposition, the generalized QR and RQ factorizations, the generalized linear re-
gression model, and the constrained linear least squares problem. The tests for the
REAL version are as follows:

xeigtsts < nep.in > snep.out

xeigtsts < sep.in > ssep.out

xeigtsts < svd.in > ssvd.out

xeigtsts

xeigtsts < sed.in > sed.out

xeigtsts sgg.out

<

<

<

<

<

< sgg.in
xeigtsts < ssg.in

<

<

<

<

<

<

<

>
>
>
sec.in > sec.out
>
>
> ssg.out
>

xeigtsts < ssb.in > ssb.out

xeigtsts sbal.in > sbal.out
xeigtsts < sbak.in > sbak.out
xeigtsts < glm.in > sglm.out
xeigtsts < gqr.in > sgqr.out
xeigtsts < gsv.in > sgsv.out

xeigtsts < lse.in > slse.out

20

[PS—

The tests using xeigtstc, xeigtstd, and xeigtstz also use the input files nep.in,
sep.in, svd.in, glm.in, gqr.in, gsv.in, and 1se.in, but the leading ‘s’ in the other
input file names must be changed to ‘e, ‘d’, or ‘z’.

If you encountered failures in this phase of the testing process, please consult our re-
Jease_notes file on netlib (send email to netlib@ornl.gov and in the message type "send
release_notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have had
similar difficulties on that machine. If there is not an entry for your machine or the sugges-
tions do not fix your problem, please feel free to contact the authors as directed in Section
5.9. Tell us the type of machine on which the tests were run, the version of the operating
system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs.

We would like to keep our release_notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

5.8 Run the LAPACK Timing Programs

There are two distinct timing programs for LAPACK routines in each data type, one
for the linear equation routines and one for the eigensystem routines. The timing program
for the linear equation routines is also used to time the BLAS. We encourage you to con-
duct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION and
COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input files are provided, a small set and a large set. The small data sets are
appropriate for a standard workstation or other non-vector machine. The large data sets
are appropriate for supercomputers, vector computers, and high-performance workstations.
We are mainly interested in results from the large data sets, and it is not necessary to run
both the large and small sets. The values of N in the large data sets are about five times
larger than those in the small data set, and the large data sets use additional values for
parameters such as the block size NB and the leading array dimension LDA. Small data
sets are indicated by lower case names, such as stime.in, and large data sets are indicated
by upper case names, such as STIME.in. Except as noted, the leading ‘s’ (or ‘S’) in the
input file name must be replaced by ‘d’, ‘c’, or ‘2’ (‘D?, ‘C’, or ‘2’) for the other data types.

We encourage you to obtain timing results with the large data sets, as this allows us to
compare different machines. If this would take too much time, suggestions for paring back
the large data sets are given in the instructions below. We also encourage you to experiment
with these timing programs and send us any interesting results, such as results for larger
problems or for a wider range of block sizes. The main programs are dimensioned for the
large data sets, so the parameters in the main program may have to be reduced in order
to run the small data sets on a small machine, or increased to run experiments with larger
problems.

The minimum time each subroutine will be timed is set to 0.0 in the large data files
and to 0.05 in the small data files, and on many machines this value should be increased.
If the timing interval is not long enough, the time for the subroutine after subtracting the
overhead may be very small or zero, resulting in megaflop rates that are very large or zero.

21

(To avoid division by zero, the megaflop rate is set to zero if the time is less than or equal to
zero.) The minimum time that should be used depends on the machine and the resolution
of the clock.

For more information on the timing programs and how to modify the input files, see
Section 7.

If you do not wish to run each of the timings individually, you can go to LAPACK/TIMING
and type make followed by the data types desired. This will compile and run the timings for
the linear equation routines and the eigensystem routines (see Sections 5.8.1 and 5.8.3). The
makefile in LAPACK/TIMING uses the makefiles in LAPACK/TIMING/LIN, LAPACK/TIMING/EIG,
and LAPACK/TIMING/EIG/EIGSRC to create the executables, and then runs the timings.
Thus, the user must define the appropriate FORTRAN and OPTS for the makefiles in LAPACK/
TIMING/LIN, LAPACK/TIMING/EIG, and LAPACK/TIMING/EIG/EIGSRC, before executing the
makefile in LAPACK/TIMING.

If you encounter failures in any phase of the timing process, please feel free to contact
the authors as directed in Section 5.9. Tell us the type of machine on which the tests were
run, the version of the operating system, the compiler and compiler options that were used,
and details of the BLAS library or libraries that you used. You should also include a copy
of the output file in which the failure occurs.

Please note that the BLAS timing runs will still need to be run as instructed in 5.8.2.

5.8.1 Timing the Linear Equations Routines

The linear equation timing program is found in LAPACK/TIMING/LIN and the input files
are in LAPACK/TIMING. Three input files are provided in each data type for timing the
linear equation routines, one for square matrices, one for band matrices, and one for rect-
angular matrices. The small data sets for the REAL version are stime.in, sband.in, and
stime2.in, respectively, and the large data sets are STIME. in, SBAND. in, and STIME2. in.

a) To make the linear equation timing programs, go to LAPACK/TIMING/LIN and edit
the makefile. Define FORTRAN and OPTS to refer to the compiler and desired compiler
options for your machine, and define LOADER and LOADOPTS to refer to the loader and
desired load options for your machine. If you are not using the Fortran BLAS, define
BLAS to point to your system’s BLAS library, instead of ../../blas.a.

b) Type make followed by the data types desired, as in the examples of Section 4.5.
The executable files are called x1intims, x1intimc, x1intimd, and x1intimz and are
created in LAPACK/TIMING.

c) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value, or to
restrict the size of the tests if you are using a computer with performance in between
that of a workstation and that of a supercomputer. The computational requirements
can be cut in half by using only one value of LDA. If it is necessary to also reduce the
matrix sizes or the values of the blocksize, corresponding changes should be made to
the BLAS input files (see Section 5.8.2).

22

d) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xlintims < stime.in > stime.out
xlintims < sband.in > sband.out

xlintims < stime2.in > stime2.out

or the commands for the large data sets are

xlintims < STIME.in > STIME.out
xlintims < SBAND.in > SBAND.out
xlintims < STIME2.in > STIME2.out

Similar commands should be used for the other data types.

5.8.2 Timing the BLAS

‘The linear equation timing program is also used to time the BLAS. Three input files
are provided in each data type for timing the Level 2 and 3 BLAS. These input files time
the BLAS using the matrix shapes encountered in the LAPACK routines, and we will use
the results to analyze the performance of the LAPACK routines. For the REAL version,
the small data files are sblasa.in, sblasb.in, and sblasc.in and the large data files
are SBLASA.in, SBLASB.in, and SBLASC.in. There are three sets of inputs because there
are three parameters in the Level 3 BLAS, M, N, and K, and in most applications one of
these parameters is small (on the order of the blocksize) while the other two are large (on
the order of the matrix size). In sblasa.in, M and N are large but K is small, while in
sblasb.in the small parameter is M, and in sblasc.in the small parameter is N. The
Level 2 BLAS are timed only in the first data set, where K is also used as the bandwidth
for the banded routines.

a) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value. If
you modified the values of N or NB in Section 5.8.1, set M, N, and K accordingly. The
large parameters among M, N, and K should be the same as the matrix sizes used in
timing the linear equation routines, and the small parameter should be the same as
the blocksizes used in timing the linear equation routines. If necessary, the large data
set can be simplified by using only one value of LDA.

b) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xlintims < sblasa.in > sblasa.out
xlintims < sblasb.in > sblasb.out

xlintims < sblasc.in > sblasc.out

or the commands for the large data sets are

23

xlintims < SBLASA.in > SBLASA.out
xlintims < SBLASB.in > SBLASB.out
xlintims < SBLASC.in > SBLASC.out

Similar commands should be used for the other data types.

5.8.3 Timing the Eigensystem Routines

The eigensystem timing program is found in LAPACK/TIMING/EIG and the input files are
in LAPACK/TIMING. Four input files are provided in each data type for timing the eigensys-
tem routines, one for the generalized nonsymmetric eigenvalue problem, one for the non-
symmetric eigenvalue problem, one for the symmetric and generalized symmetric eigenvalue
problem, and one for the singular value decomposition. For the REAL version, the small
data sets are called sgeptim.in, sneptim.in, sseptim.in, and ssvdtim. in, respectively.
and the large data sets are called SGEPTIM.in, SNEPTIM. in, SSEPTIM. in, and SSVDTIM. in.
Each of the four input files reads a different set of parameters, and the format of the input
is indicated by a 3-character code on the first line.

The timing program for eigenvalue/singular value routines accumulates the operation
count as the routines are executing using special instrumented versions of the LAPACK
routines. The first step in compiling the timing program is therefore to make a library of
the instrumented routines.

a) To make a library of the instrumented LAPACK routines, first go to
LAPACK/TIMING/EIG/EIGSRC and edit the makefile. Define FORTRAN and OPTS to refer
to the compiler and desired compiler options for your machine, and define LOADER
and LOADOPTS to refer to the loader and desired load options for your machine. Then
type make followed by the data types desired, as in the examples of Section 3.5. The
library of instrumented code is created in LAPACK/TIMING/EIG/eigsrc.a.

b) To make the eigensystem timing programs, go to LAPACK/TIMING/EIG and edit the
makefile. Define FORTRAN and OPTS to refer to the compiler and desired compiler
options for your machine, and define LOADER and LOADOPTS to refer to the loader and
desired load options for your machine. If you are not using the Fortran BLAS, define
BLAS to point to your system’s BLAS library, instead of ../../blas.a.

¢) Type make followed by the data types desired, as in the examples of Section 4.5.
The executable files are called xeigtims, xeigtimc, xeigtimd, and xeigtimz and are
created in LAPACK/TIMING.

d) Go to LAPACK/TIMING and make any necessary modifications to the input files. You
may need to set the minimum time a subroutine will be timed to a positive value,
or to restrict the number of tests if you are using a computer with performance in
between that of a workstation and that of a supercomputer. Instead of decreasing
the matrix dimensions to reduce the time, it would be better to reduce the number of
matrix types to be timed, since the performance varies more with the matrix size than
with the type. For example, for the nonsymmetric eigenvalue routines, you could use

24

e 1 o

only one matrix of type 4 instead of four matrices of types 1, 3, 4, and 6. See Section
7 for further details.

e) Run the programs for each data type you are using. For the REAL version, the
commands for the small data sets are

xeigtims < sgeptim.in > sgeptim.out
xeigtims < sneptim.in > sneptim.out

xeigtims < sseptim.in > sseptim.out

xeigtims < ssvdtim.in > ssvdtim.out

or the commands for the large data sets are

xeigtims < SGEPTIM.in > SGEPTIM.out
xeigtims < SNEPTIM.in > SNEPTIM.out
xeigtims < SSEPTIM.in > SSEPTIM.out
xeigtims < SSVDTIM.in > SSVDTIM.out

Similar commands should be used for the other data types.

5.9 Send the Results to Tennessee

Congratulations! You have now finished installing, testing, and timing LAPACK. Your
participation is greatly appreciated. Test failures and comments should be sent by electronic
mail to ’

lapack@cs.utk.edu.

We encourage you to make the LAPACK library available to your users and provide
us with feedback from their experiences. This release of LAPACK is not guaranteed to be
compatible with any previous test release.

25

6 More About Testing

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equation routines and one for the eigensystem routines. Each program has its
own style of input, and the eigensystem test program accepts 17 different sets of input,
although four of these may be concatenated into one data set, for a total of 14 input files.
The following sections describe the different input formats and testing styles.

The main test procedure for the REAL linear equation routines is
in LAPACK/TESTING/LIN/schkaa.f in the Unix version and is the first program unit in
SLINTSTF in the non-Unix version. The main test procedure for the REAL eigenvalue
routines is in LAPACK/TESTING/EIG/schkee.£ in the Unix version and is the first program
unit in SEIGTSTF in the non-Unix version.

6.1 The Linear Equation Test Program

The test program for the linear equation routines is driven by a data file from which the
following parameters may be varied:

e M, the matrix row dimension

¢ N, the matrix column dimension

e NRHS, the number of right hand sides

e NB, the blocksize for the blocked routines

e NX, the crossover point, the point in a block algorithm at which we switch to an
unblocked algorithm

For symmetric or Hermitian matrices, the values of N are used for the matrix dimension.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main test programs. For the linear
equation test program, these are:

Parameter Description Value
NMAX Maximum value of M or N for rectangular matrices 132
MAXIN Maximum number of values of M, N, NB, or NX 12
MAXRHS Maximum value of NRHS 10

The input file also specifies a set of LAPACK path names and the test matrix types to
be used in testing the routines in each path. Path names are 3 characters long; the first
character indicates the data type, and the next two characters identify a matrix type or
problem type. The test paths for the linear equation test program are as follows:

{S,C,D,Z} GE General matrices (LU factorization)

{S,C,D,Z} GB General band matrices

{S,C,D,Z} GT General tridiagonal

{§,C,D,Z} PO Positive definite matrices (Cholesky factorization)

26

{s,C,D,Z} PP Positive definite packed

{s,C,D,Z} PB Positive definite band

{S,C,D,Z} PT Positive definite tridiagonal

{C, Z} HE Hermitian indefinite matrices

{C, 7} HP Hermitian indefinite packed
{s,C,D,Z} SY Symmetric indefinite matrices

{s,C, D, Z} SP Symmetric indefinite packed
{$,C,D,Z} TR Triangular matrices

{S,C,D,Z} TP Triangular packed

{S,C,D,Z} TB Triangular band

{S,C,D,Z} QR QR decomposition

{S,C,D,Z} RQ RQ decomposition

{S,C,D, Z} LQ LQ decomposition

{S,C,D,Z} QL QL decomposition

{S,C,D,Z} QP QR decomposition with column pivoting
{S,C,D,Z} TZ Trapezoidal matrix (RQ factorization)
{S,C,D,Z} LS Least Squares driver routines

{S,C,D,Z} EQ Equilibration routines

The xQR, xRQ, xLQ, and xQL test paths also test the routines for generating or multiplying
by an orthogonal or unitary matrix expressed as a sequence of elmentary Householder
transformations.

6.1.1 Tests for General and Symmetric Matrices

For each LAPACK test path specified in the input file, the test program generates test
matrices, calls the LAPACK routines in that path, and computes a number of test ratios to
verify that each operation has performed correctly. The test matrices used in the test paths
for general and symmetric matrices are shown in Table 1. Both the computational routines
and the driver routines are tested with the same set of matrix types. In this context, ¢ is
the machine epsilon and is the condition number of the matrix A. Matrix types with one
or more columns set to zero (or rows and columns, if the matrix is symmetric) are used to
test the error return codes. For band matrices, all combinations of the values 0, 1, n — 1,
(3n — 1)/4, and (n — 1)/4 are used for KL and KU in the GB path, and for KD in the PB
path. For the tridiagonal test paths xGT and xPT, types 1-6 use matrices of predetermined
condition number, while types 7-12 use random tridiagonal matrices.

For the LAPACK test paths shown in Table 1, each test matrix is subjected to the
following tests:

e Factor the matrix using xxxTRF, and compute the ratio
IILU — Al|/(n]|Alle)

This form is for the paths xGE, xGB, and xGT. For the paths xPO, xPP, or xPB,
replace LU by LLT or UTU; for xPT, replace LU by LDLT or UTDU, where D is
diagonal; and for the paths xSY, xSP, xHE, or xHP, replace LU by LDLT or UDUT,
where D is diagonal with 1-by-1 and 2-by-2 diagonal blocks.

27

Test matrix type GE |GB| GT | PO,PP|PB| PT [SY,SP, HE, HP
Diagonal 1 1 1 1 1
Upper triangular 2

Lower triangular 3

Random, k = 2 4 1 2 2 1 2 2
Random, k = \/0.1/¢ 8 5 3 6 5 3 7
Random, x = 0.1/¢ 9 6 4 7 6 4 8
First column zero 5 2 8 3 2 8 3
Last column zero 6 3 9 4 3 9 4
Middle column zero 5 4 10 5
Last n/2 columns zero || 7 4 10 6
Scaled near underflow 10 7 | 5,11 8 7 |5,11 9
Scaled near overflow 11 8 |6,12 9 8 |6,12 10
Random, unspecified 7 7

Block diagonal 11t

- complex symmetric test paths only

Table 1: Test matrices for general and symmetric linear systems

¢ Invert the matrix A using xxxTRI, and compute the ratio
Il = AA=H|/(nl| Al | A=Yle)

For tridiagonal and banded matrices, inversion routines are not available because the
inverse would be dense.

e Solve the system Az = b using xxxTRS, and compute the ratios

16— Az||/(I|All ll=]le)
llz = z*[|/(||z*|xe)

where z* is the exact solution and x is the condition number of A.

o Use iterative refinement (xxxRFS) to improve the solution, and compute the ratios

llz = 2|1/ (ll="]l=e)
(backward error) /e
|lz = 2*|1/(ll=*|| (error bound))

o Compute the reciprocal condition number RCOND using xxxCON, and compare to
the value RCONDC which was computed as 1/(ANORM * AINVNM) where AIN-
VNM is the explicitly computed norm of A=1. The larger of the ratios

RCOND/RCONDC and RCONDC/RCOND

is returned. Since the same value of ANORM is used in both cases, this test measures
the accuracy of the estimate computed for A1,

28

The solve and iterative refinement steps are also tested with A replaced by AT or A# where
applicable. The test ratios computed for the general and symmetric test paths are listed in
Table 2. Here we use ||LU — A|| to describe the difference in the recomputed matrix, even
though it is actually || LLT — A|| or some other form for other paths.

GE, PO, PP, SY, SP | GB, GT, PB, PT
Test ratio routines drivers routines | drivers
ILT — All/(n]|Alle) 1 1 1 1
1T — AA~|I/(nll Al A7Hle) 2
|15 — A=||/(||Alll|=]le) 3 2 2 2
llz = ==1/(l|="||xe) 4 3
||z — z*||/(]|z*||se), refined 5 3 4 3
(backward error)/e 6 4 5 4
[lz = z*||/(]]=*||(error bound)) 7 5 6 5
RCOND * & 8 6 7 6

Table 2: Tests performed for general and symmetric linear systems

6.1.2 Tests for Triangular Matrices

The triangular test paths, xTR, xTP, and xTB, include a number of pathological test
matrices for testing the auxiliary routines xXLATRS, xLATPS, and xLATBS, which are
robust triangular solves used in condition estimation. The triangular test matrices are
summarized in Table 3. To generate unit triangular matrices of predetermined condition
number, we choose a special unit triangular matrix and use plane rotations to fill in the
zeros without destroying the ones on the diagonal. For the xXTB path, all combinations of
the values 0, 1, n — 1, (3n — 1)/4, and (n — 1)/4 are used for the number of offdiagonals
KD, so the diagonal type is not necessary.

Types 11-18 for the xTR and xTP paths, and types 10-17 for xTB, are used only to test
the scaling options in XLATRS, xLATPS, and xLATBS. These subroutines solve a scaled
triangular system Az = sb or ATz = sb, where s is allowed to underflow to 0 in order to
prevent overflow in z. A growth factor is computed using the norms of the columns of A,
and if the solution can not overflow, the Level 2 BLAS routine is called. Types 11 and 18
test the scaling of b when b is initially large, types 12-13 and 15-16 test scaling when the
diagonal of A is small or zero, and type 17 tests the scaling if overflow occurs when adding
multiples of the columns to the right hand side. In type 14, no scaling is done, but the
growth factor is too large to call the equivalent BLAS routine.

The tests performed for the triangular routines are similar to those for the general and
symmetric routines, including tests of the inverse, solve, iterative refinement, and condition
estimation routines. One additional test ratio is computed for the robust triangular solves:

llsb — Az|l/ (|14l]|z]| €)

Table 4 shows the test ratios computed for the triangular test paths.

29

Test matrix type TR, TP | TB
Diagonal 1
Random, x = 2 2 1
Random, & = /0.1/¢ 3 2
Random, k = 0.1/¢ 4 3
Scaled near underflow 5 4
Scaled near overflow 6 5
Identity 7 6
Unit triangular, K = 2 8 7
Unit triangular, k = 1/0.1/¢ 9 8
Unit triangular, K = 0.1 /¢ 10 9
Matrix elements are O(1), large right hand side 11 10
First diagonal causes overflow, offdiagonal column norms < 1 12 11
First diagonal causes overflow, offdiagonal column norms > 1 13 12
Growth factor underflows, solution does not overflow 14 13
Small diagonal causes gradual overflow 15 14
One zero diagonal element 16 15
Large offdiagonals cause overflow when adding a column 17 16
Unit triangular with large right hand side 18 17

Table 3: Test matrices for triangular linear systems

Test ratio TR, TP | TB
1T = AA=Y||/(n]| Al [|A~Y]|e) 1

|1b— Az||/(I|All [Iz]le) 2 1
|z = z*||/(||z*||xe) 3 2
llz = z*||/(l|z*||&€), refined 4 3
(backward error)/e 5 4
||z — z*||/(]|z*||(error bound)) 6 5
RCOND % & 7 6
llsb — Aa||/I|All llzll <) s |7

Table 4: Tests performed for triangular linear systems

30

6.1.3 Tests for the Orthogonal Factorization Routines

The orthogonal factorization routines are contained in the test paths xQR, xRQ, xLQ,
xQL, xQP, and xTZ. The first four of these test the QR, RQ, LQ, and QL factorizations
without pivoting. The subroutines to generate or multiply by the orthogonal matrix from
the factorization are also tested in these paths. There is not a separate test path for the
orthogonal transformation routines, since the important thing when generating an orthog-
onal matrix is not whether or not it is, in fact, orthogonal, but whether or not it is the
orthogonal matrix we wanted. The xQP test path is used for QR with pivoting, and xTZ
tests the reduction of a trapezoidal matrix by an RQ factorization.

The test paths xQR, xRQ, xLQ, and xQL all use the same set of test matrices and
compute similar test ratios, so we will only describe the xQR path. Also, we will refer
to the subroutines by their single precision real names, SGEQRF, SGEQRS, SORGQR,
and SORMQR. In the complex case, the orthogonal matrices are unitary, so the names
beginning with SOR- are changed to CUN-. Each of the orthogonal factorizations can
operate on m-by-n matrices, where m > n, m = n, or m < n.

Eight test matrices are used for SQR and the other orthogonal factorization test paths.
All are generated with a predetermined condition number (by default, k = 2.).

1. Diagonal 5. Random, k = /0.1/¢
2. Upper triangular 6. Random, k = 0.1/¢
3. Lower triangular 7. Scaled near underflow
4. Random, kK = 2. 8. Scaled near overflow

The tests for the SQR path are as follows:

o Compute the QR factorization using SGEQRF, generate the orthogonal matrix Q
from the Householder vectors using SORGQR, and compute the ratio

1. [|A - QRIl/(m]|Alle)
e Test the orthogonality of the computed matrix @ by computing the ratio
2. ||[I - QHQIl/(me)

e Generate a random matrix C and multiply it by @ or QH using SORMQR with
UPLO = ‘L’, and compare the result to the product of C and Q (or QH) using the
explicit matrix @ generated by SORGQR. The different options for SORMQR are
tested by computing the 4 ratios

3. [1QC - QClI/(mlIClle)
4. ||lcQ - CQll/(mlIClle)
5. [IQFC - QHCII/(mlIClle)
6. [|ICQH — CQH|l/(ml|C]le)

where the first product is computed using SORMQR and the second using the explicit
matrix Q.

31

o Compute the least-squares solution to a system of equations Az = b using SGEQRS,
and compute the ratio

7. [6 - Az{|/ (1| All l=]le)

In the SQP test path, we test the QR factorization with column pivoting (SGEQPF),

- which decomposes a matrix A into a product of a permutation matrix P, an orthogonal

matrix @, and an upper triangular matrix R such that AP = QR. We generate three types
of matrices A with singular values s as follows:

e all singular values are zero,

o all singular values are 1, except for ouin(m,n) = 1/€, and

e the singular values are 1,7,72,...,rmin(mn)=1 = 1 /¢,
The following tests are performed:

o Compute the QR factorization with column pivoting using SGEQPF, compute the
singular values § of R using SGEBD2 and SBDSQR, and compute the ratio

115 = sll/(mlls]le)

¢ Generate the orthogonal matrix @ from the Householder vectors using SORMQR, and
compute the ratio

||AP — QR||/(m]||All€)
o Test the orthogonality of the computed matrix @ by computing the ratio
I - Q¥ Q|l/(me)

In the STZ path, we test the trapezoidal reduction (STZRQF), which decomposes an
m-by-n (m < n) upper trapezoidal matrix R (i.e. r;; = 0if ¢ > j) into a product of a strictly
upper triangular matrix T (i.e. t;; = 0if ¢ > j or j > m) and an orthogonal matrix Z such
that R = TZ. We generate matrices with the following three singular value distributions s:

o all singular values are zero,
¢ all singular values are 1, except for oyin(m,n) = 1/€, and
o the singular values are 1,7,72,...,rmin(mn)=1 =] /¢,

To obtain an upper trapezoidal matrix with the specified singular value distribution, we gen-
erate a dense matrix using SLATMS and reduce it to upper triangular form using SGEQR2.
The following tests are performed:

e Compute the trapezoidal reduction STZRQF, compute the singular values § of T using
SGEBD2 and SBDSQR, and compute the ratio

|18 = sll/(mllslle)

32

e Apply the orthogonal matrix Z to T from the right using SLATZM, and compute the
ratio

IR = TZ||/(ml|Rll¢)
e Form ZT Z using SLATZM, and compute the ratio

M = 27 Z)1/(me)

6.1.4 Tests for the Least Squares Driver Routines

In the SLS path, driver routines are tested for computing solutions to over- and under-
determined, possibly rank-deficient systems of linear equations AX = B (A is m-by-n). For
each test matrix type, we generate three matrices: One which is scaled near underflow, a
matrix with moderate norm, and one which is scaled near overflow.

The SGELS driver computes the least-squares solutions (when m > n) and the minimum-
norm solution (when m < n) for an m-by-n matrix A of full rank. To test SGELS, we
generate a diagonally dominant matrix A4, and for C = A and C = AH we

e generate a consistent right-hand side B such that X is in the range space of C, compute
a matrix X using SGELS, and compute the ratio

lAX — B||/(max(m, n)|[Al[[| X l¢)

e If C has more rows than columns (i.e. we are solving a least-squares problem), form
R = AX - B, and check whether R is orthogonal to the column space of A by
computing

||REC||/(max(m, n, nrhs)||All|| Bl|€)

e If C has more columns than rows (i.e. we are solving an overdetermined system), check
whether the solution X is in the row space of C by scaling both X and C to have
norm one, and forming the QR factorization of D = [4, X]if C = AH, and the LQ
factorization of D = [AH, X]H if C = A. Letting E = D(n : n+nrhs,n+1,n+nrhs)
in the first case, and E = D(m + 1 : m + nrhs,m + 1 : m + nrhs) in the latter, we
compute

max |d;;|/(max(m, n, nrhs)e)

The SGELSX and SGELSS drivers solve a possibly rank-deficient system AX = B using
a complete orthogonal factorization (SGELSX) or singular value decomposition (SGELSS),
respectively. We generate matrices A that haverank r = min(m, n) or rank 7 = 3 min(m, n)/4
and are scaled to be near underflow, of moderate norm, or near overflow. We also generate
the null matrix (which has rank 7 = 0). Given such a matrix, we then generate a right-hand
side B which is in the range space of A.

In the process of determining X, SGELSX computes a complete orthogonal factor-
ization AP = QTZ, whereas SGELSS computes the singular value decomposition A =
Udiag(o)VT.

33

If s are the true singular values of A, and § are the singular values of T', we compute

Ils — 3l1/(Ilslle)

for SGELSX, and
|ls = all/(llslle)
for SGELSS.

Compute the ratio
I|AX — Bl|/(max(m, n)||Al||| X]||€)

If m > r,form R = AX — B, and check whether R is orthogonal to the column space
of A by computing

IR All/(max(m, n, nrhs)||All|| Bl l€)

o If n > 7, check if X is in the row space of A by forming the LQ factorization of
D =[AH X)H. Letting E = D(m+1: m + nrhs,m + 1 : m + nrhs), we return

max |d;;|/(max(m, n, nrhs)e)

6.1.5 Tests for the Equilibration Routines
The equilibration routines are xGEEQU, xGBEQU, xPOEQU, xPPEQU and xPBEQU.

These routines perform diagonal scaling on various kinds of matrices to reduce their condi-
tion number prior to linear equation solving. All of them attempt to somehow equalize the
norms of the rows and/or columns of the input matrix by diagonal scaling. This is tested
by generating a few matrices for which the answer is known exactly, and comparing the
output with the correct answer. There are no testing parameters for the user to set.

Equilibration is also an option to the driver routines for the test paths xGE, xGB, xPO,
xPP, and xPB, so it is tested in context there.

6.1.6 Input File for Testing the Linear Equation Routines

From the test program’s input file, one can control the size of the test matrices, the
block size and crossover point for the blocked routines, the paths to be tested, and the
matrix types used in testing. We have set the options in the input files to run through all of
the test paths. An annotated example of an input file for the REAL test program is shown
below.

Data file for testing REAL LAPACK linear eqn. routines

7 Number of values of M

01235 10 16 Values of M (row dimension)

7 Number of values of N

01235 10 16 Values of N (column dimension)

1 Number of values of NRHS

2 Values of NRHS (number of right hand sides)
) Number of values of NB

34

-
o w
(¢, B V]

20.0
T

T

T
SGE
SGB
SGT
SPO
SPP
SPB
SPT
SsY
SSP
STR
STP
STB
SQR
SRQ
SLQ
SQL
SQpP
STZ
SLS
SEQ

The first 11 lines of the input file are read using list-directed input and are used to
specify the values of M, N, NB, and THRESH (the threshold value). Lines 12-14 specify if
the LAPACK routines, the driver routines, or the error exits are to be tested. The remaining
lines occur in sets of 1 or 2 and allow the user to specify the matrix types. Each line contains
a 3-character path name in columns 1-3, followed by the number of test matrix types. If
the number of matrix types is omitted, as in the above example for SEQ, or if a character
is encountered before an integer, all the possible matrix types are tested. If the number of
matrix types is at least 1 but is less than the maximum number of possible types, a second
line will be read to get the numbers of the matrix types to be used. For example, the input

line

SGE

0 W

11

12

w0

12
10
10
18
18
17

N W o 0 0 0 ™

11

- N

Values of NB (the blocksize)
Values of NX (crossover point)

Threshold value of test ratio

Put T to test
Put T to test
Put T to test

List
List
List
List
List
List
List
List
List
List
List
List
List
List
List
List
List
List
List

types
types
types
types
types
types
types
types
types
types
types
types
types
types
types
types
types
types
types

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

the LAPACK routines
the driver routines

the error exits

next
next
next
next
next
next
next
next
next
next
next
next
next
next
next
next
next
next
next

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

requests all of the matrix types for path SGE, while

SGE
456

3

requests only matrices of type 4, 5, and 6.

35

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

OO0 0000000000000 O0OO0OOo0OOo

A A AAAAAANAANAANAANANANAANAANANAN

NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES
NTYPES

A AAAAANAAAANANANANAANANAANAANAANN

11

12

0

12
10
10
18
18
17

O W o o o o

When the tests are run, each test ratio that is greater than or equal to the threshold
value causes a line of information to be printed to the output file. The first such line is
preceded by a header that lists the matrix types used and the tests performed for the current
path. A sample line for a test from the SGE path that did not pass when the threshold was
set to 1.0 is

M= 4, N = 4, NB = 1, type 2, test(13) = 1.14270

To get this information for every test, set the threshold to zero. After all the unsuccessful
tests have been listed, a summary line is printed of the form

SGE: 11 out of 1960 tests failed to pass the threshold
If all the tests pass the threshold, only one line is printed for each path:

All tests for SGE passed the threshold (1960 tests run)

6.2 Testing the Eigenproblem Balancing and Backward Transformation
Routines

The balancing routine, xGEBAL, is tested. xGEBAL balances a matrix and isolates
some of its eigenvalues. The backward transformation routine to be tested is xGEBAK.
xGEBAK back transforms the computed right or left eigenvectors if the original matrix was
preprocessed by balance subroutine xGEBAL.

No parameters can be varied for either of the routines tested; the data files contain
precomputed test problems along with their precomputed solutions. The reason for this
approach is threefold. First, there is no simple residual test ratio which can test correctness
of a condition estimator. Second, no comparable code in another library exists to compare
solutions. Third, the condition numbers we compute can themselves be quite ill-conditioned,
so that we need the precomputed solution to verify that the computed result is within
acceptable bounds.

The test program xeigtsts reads in the data from the data files sbal.in and sbak.in
respectively (for the REAL code). If there are no errors, a single message saying that all
the routines pass the tests will be printed. If any routine fails its tests, an error message is
printed with the name of the failed routine along with the number of failures, the number
of the example with the worst failure, and the test ratio of the worst failure.

6.3 Testing the Nonsymmetric Eigenvalue Routines

The test routine for the LAPACK nonsymmetric eigenvalue routines has the following
parameters which may be varied:

e the order N of the test matrix A
o the type of the test matrix A

o three numerical parameters: the blocksize NB, the number of shifts NS for the mul-
tishift QR method, and the (sub)matrix size MAXB below or equal to which an
unblocked, EISPACK-style method will be used

36

The test program thus consists of a triply-nested loop, the outer one over triples
(NB,NS,MAXB), the next over N, and the inner one over matrix types. On each iteration
of the innermost loop, a matrix A is generated and used to test the eigenvalue routines.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main test program:

Parameter Description Value
NMAX Maximum value for N, NB, NS, and MAXB 132
MAXIN Maximum number of values of the parameters 20

For the nonsymmetric eigenvalue input file, MAXIN is both the maximum number of values
of N and the maximum number of 3-tuples (NB, NS, MAXB). Similar restrictions exist for
the other input files for the eigenvalue test program.

6.3.1 The Nonsymmetric Eigenvalue Drivers

The driver routines for the nonsymmetric eigenvalue problem are
xGEEV eigenvalue/eigenvector driver,

xGEEVX expert version of xGEEV (includes condition estimation),
xGEES Schur form driver, and

xGEESX expert version of xGEES (includes condition estimation).

For these subroutines, some tests are done by generating random matrices of a dimen-
sion and type chosen by the user, and computing error bounds similar to those used for
the nonsymmetric eigenvalue computational routines. Other tests use a file of precom-
puted matrices and condition numbers, identical to that used for testing the nonsymmetric
eigenvalue/vector condition estimation routines.

The parameters that can be varied in the random matrix tests are:

e the order N of the matrix A

o the type of test matrix A

e five numerical parameters: NB (the block size), NBMIN (minimum block size), NX
(minimum dimension for blocking), NS (number of shifts in xHSEQR), and NBCOL
(minimum column dimension for blocking).

6.3.2 Test Matrices for the Nonsymmetric Eigenvalue Routines

Twenty-one different types of test matrices may be generated for the nonsymmetric
eigenvalue routines. Table 5 shows the types available, along with the numbers used to
refer to the matrix types. Except as noted, all matrices have O(1) entries.

Matrix types identified as “Zero”, “Identity”, “Diagonal”, and “Random entries” should
be self-explanatory. The other matrix types have the following meanings:

37

Eigenvalue Distribution
Type Arithmetic | Geometric | Clustered | Random Other
Zero 1
Identity 2
(Jordan Block)? 3
Diagonal 4,77, 8t 5 6
UTU-! 9 10 11 12
XTX1 13 14 15 16, 177, 18¢
Random entries 19, 207, 21%

{- matrix entries are O(voverflow)
}- matrix entries are O(v/underflow)

Table 5: Test matrices for the nonsymmetric eigenvalue problem

(Jordan Block)T: Matrix with ones on the diagonal and the first subdiagonal, and zeros
elsewhere

UTU-!: Schur-form matrix T with O(1) entries conjugated by a unitary (or real orthogo-
nal) matrix U

XTX~1: Schur-form matrix T with O(1) entries conjugated by an ill-conditioned matrix
X

For eigenvalue distributions other than “Other”, the eigenvalues lie between ¢ (the
machine precision) and 1 in absolute value. The eigenvalue distributions have the following
meanings:

Arithmetic: Difference between adjacent eigenvalues is a constant
Geometric: Ratio of adjacent eigenvalues is a constant
Clustered: One eigenvalue is 1 and the rest are € in absolute value

Random: Eigenvalues are logarithmically distributed

6.3.3 Test Matrices for the Nonsymmetric Eigenvalue Drivers

All four drivers are tested with up to 21 types of random matrices. These are nearly
the same as the types of matrices used to test the nonsymmetric eigenvalue computational
routines, and are given in Table 3. The only differences are that matrix types 7 and 17 are
scaled by a number close to the underflow threshold (rather than its square root), types
8 and 18 are scaled by a number close to the overflow threshold, and types 20 and 21
have certain rows and columns zeroed out. The reason for these changes is to activate the
automatic scaling features in the driver, and to test the balancing routine.

In addition, the condition estimation features of the expert drivers xGEEVX and xGEESX
are tested by the same precomputed sets of test problems used to test their constituent pieces
xTRSNA and xTRSEN.

38

e e

6.3.4 Tests Performed on the Nonsymmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a nonsymmetric matrix A is done in the
following stages:

1. Ais decomposed as UHU*, where U is unitary, H is upper Hessenberg, and U* is the
conjugate transpose of U.

2. H is decomposed as ZT Z*, where Z is unitary and T is in Schur form; this also gives
the eigenvalues);, which may be considered to form a diagonal matrix A.

3. The left and right eigenvector matrices L and R of the Schur matrix T are computed.

4. Inverse iteration is used to obtain the left and right eigenvector matrices Y and X of
the matrix H.

To check these calculations, the following test ratios are computed:

lA-UHU"| I -uu=|
= — rq = ——
ne ||A|| ne
|\H - ZTZ"|| - 2zz||
T3 = T4 =
ne ||H|| ne
L la-worwzyl | _ M- (UZ)UZ)|
5= Te =
ne || A|| ne
_ 1Ty - Toll _ 1A - Ao
= ——— 1‘8 = ———
e||IT]| e||All
ITR - RA|| |ILT — AL||
T9 = T T10 = — =TT
el IR el|TN L
IHX — XAl I[YH - AY]|
™= e T12 =
ne || H|| | X]] ne | H|| Y]l

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at the
same time, and 0 that they were computed in separate steps. (All norms are |.||;.) The
scalings in the test ratios assure that the ratios will be O(1), independent of ||A|| and &,
and nearly independent of n.

When the test program is run, these test ratios will be compared with a user-specified
threshold THRESH, and for each test ratio that exceeds THRESH, a message is printed
specifying the test matrix, the ratio that failed, and its value. A sample message is

Matrix order= 25, type=11, seed=2548,1429,1713,1411, result 8 is 11.33

In this example, the test matrix was of order n = 25 and of type 11 from Table 5, “seed” is
the initial 4-integer seed of the random number generator used to generate A, and “result”
specifies that test ratio rg failed to pass the threshold, and its value was 11.33.

39

6.3.5 Tests Performed on the Nonsymmetric Eigenvalue Drivers

The four drivers have slightly different tests applied to them.

xGEEYV takes the input matrix A and computes a matrix of its right eigenvectors V R,
a matrix of its left eigenvectors V'L, and a (block) diagonal matrix W of eigenvalues. If W
is real it may have 2 by 2 diagonal blocks corresponding to complex conjugate eigenvalues.
The test ratios computed are:

o= A-VR-VR.W o = A'"VL-VL-W
1= nellA 2= ne|lA
T3 = lIVRi||-1 Ty = VL[|-1

Ts = (W(efull-) = W(partial)) r¢= (VRC(full) = V R(partial))
r7 = (VL(full) = V L(partial))

s, T¢ and 77 check whether W or VR or VL is computed identically independent of
whether other quantities are computed or not. r3 and 74 also check that the component of
VR or VL of largest absolute value is real.

These test ratios are compared to the input parameter THRESH. If a ratio exceeds
THRESH, a message is printed specifying the test matrix, the ratio that failed and its
value, just like the tests performed on the nonsymmetric eigenvalue problem computational
routines.

In addition to the above tests, xGEEVX is tested by computing the test ratios rg through
T11. T tests whether the output quantities SCALE, ILO, IHI, and ABNRM are identical
independent of which other output quantities are computed. rg tests whether the output
quantity RCONDV is independent of the other outputs. r1o and r;; are only applied to the
matrices in the precomputed examples:

rio = max BEONDUACOUIN 1, _ 1o ICONDE DY
RCONDV (RCONDE) is the array of output reciprocal condition numbers of eigenvec-
tors (eigenvalues), RCDVIN (RCDEIN) is the array of precomputed reciprocal condition
numbers, and cond(RCONDV) (cond(RCONDE)) is the condition number of RCONDV
(RCONDE).
xGEES takes the input matrix A and computes its Schur decomposition A = V§-T-V S’
where V'S is orthogonal and T is (quasi) upper triangular, optionally sorts the eigenvalues
on the diagonal of T, and computes a vector of eigenvalues W. The following test ratios
are computed without sorting eigenvalues in T, and compared to THRESH:

r1 = (T in Schur form?) Ty = LIA_—:?S"%@
T3 = uzv_s’u rq4 = (W agrees with diagonal of T')
rs = (T(partial) = T(full)) re¢ = (W(partial) = W(full))

r7 through 7,5 are the same test ratios but with sorting the eigenvalues . r13 indicates
whether the sorting was done successfully.

In addition to the above tests, xGEESX is tested via ratios ry4 through r17. 714 (715)
tests if RCONDE (RCONDV) is the same no matter what other quantities are computed.
716 and 17 are only applied to the matrices in the precomputed examples:

40

- RCONDE-RCDEIN - RCONDV-RCDVIN
T1e = max L—T—Hcond RCONDE T17 = max I—m_d—ﬁvcond CONDV) Y

RCONDV (RCONDE) is the output reciprocal condition number of the selected invari-
ant subspace (eigenvalue cluster), RCDVIN (RCDEIN) is the precomputed reciprocal condi-

tion number, and cond(RCONDV) (cond(RCONDE)) is the condition number of RCONDV
(RCONDE).

6.3.6 Input File for Testing the Nonsymmetric Eigenvalue Routines

An annotated example of an input file for testing the nonsymmetric eigenvalue routines
is shown below.

NEP: Data file for testing Nonsymmetric Eigenvalue Problem routines

7 Number of values of N

01235 10 16 Values of N (dimension)

5 Number of values of NB, NS, and MAXB
1 3 3 3 20 Values of NB (blocksize)

2 2 2 2 2 Values of NBMIN (minimum blocksize)
1 05 9 1 Values of NX (crossover point)

2 4 2 4 6 Values of NS (no. of shifts)

20 20 6 10 10 Values of MAXB (min. blocksize)
20.0 Threshold value

T Put T to test the error exits

1 Code to interpret the seed

NEP 21

The first line of the input file must contain the characters NEP in columns 1-3. Lines
2-11 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX, NS, and MAXB
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The values of NS, the number of shifts
line 9: The values of MAXB, the minimum blocksize
line 10: The threshold value for the test ratios
line 11: An integer code to interpret the random number seed
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 12: If line 9 was 2, four integer values for the random number seed

41

The remaining lines occur in sets of 1 or 2 and allow the user to specify the matrix types.
Each line contains a 3-character identification in columns 1-3, which must be either NEP
or SHS (CHS in complex, DHS in double precision, and ZHS in complex*16), and the number
of matrix types must be the first nonblank item in columns 4-80. If the number of matrix
types is at least 1 but is less than the maximum number of possible types, a second line
will be read to get the numbers of the matrix types to be used. For example,

NEP 21
requests all of the matrix types for the nonsymmetric eigenvalue problem, while

NEP 4
9 10 11 12

requests only matrices of type 9, 10, 11, and 12.

6.3.7 Input File for Testing the Nonsymmetric Eigenvalue Drivers

There is a single input file to test all four drivers. The input data for each path (test-
ing xGEEV, xGEES, xGEEVX and xGEESX) is preceded by a single line identifying the
path (SEV, SES, SVX and SSX, respectively, when x=S, and CEV, CES, CVX and CSX,
respectively, when x=C). We discuss each set of input data in turn.

An annotated example of input data for testing SGEEV is shown below (testing CGEEV
is identical except CEV replaces SEV):

SEV Data file for the Real Nonsymmetric Eigenvalue Driver
6 Number of matrix dimensions

0123510 Matrix dimensions

33141 Parameters NB, NBMIN, NX, NS, NBCOL

20.0 Threshold for test ratios

T Put T to test the error exits

2 Read another line with random number generator seed
2518 3899 995 397 Seed for random number generator

SEV 21 Use all matrix types

The first line must contain the characters SEV in columns 1-3. The remaining lines are
read using list-directed input and specify the following values:

42

line 2: The number of values of matrix dimension N

line 3: The values of N, the matrix dimension

line 4: The values of the parameters NB, NBMIN, NX, NS and NBCOL

line 5: The threshold value THRESH for the test ratios

line 6: T to test the error exits

line 7: An integer code to interpret the random number seed

 =0: Set the seed to a default value before each run

=1: Initialize the seed to a default value only before the first run
=2: Like 1, but use the seed values on the next line

line 8: If line 7 was 2, four integer values for the random number seed

line 9: Contains ‘SEV’ in columns 1-3, followed by the number of matrix types
(an integer from 0 to 21)

line 9: (and following) if the number of matrix types is at least one and less than
21, a list of integers between 1 and 21 indicating which matrix types are to
be tested.

The input data for testing xGEES has the same format as for xGEEV, except SES
replaces SEV when testing SGEES, and CES replaces CEV when testing CGEES.

The input data for testing xGEEVX consists of two parts. The first part is identical to
that for xGEEV (using SVX instead of SEV and CVX instead of CEV). The second consists
of precomputed data for testing the eigenvalue/vector condition estimation routines. Each
matrix is stored on 142*N lines, where N is its dimension (1+N+N**2 lines for complex
data). The first line contains the dimension, a single integer (for complex data, a second
integer ISRT indicating how the data is sorted is also provided). The next N lines contain
the matrix, one row per line (N**2 lines for complex data, one item per row). The last N
lines correspond to each eigenvalue. Each of these last N lines contains 4 real values: the
real part of the eigenvalues, the imaginary part of the eigenvalue, the reciprocal condition
number of the eigenvalues, and the reciprocal condition number of the vector eigenvector.
The end of data is indicated by dimension N=0. Even if no data is to be tested, there must
be at least one line containing N=0.

The input data for testing xGEESX also consists of two parts. The first part is identical
to that for xGEES (using SSX instead of SES and CSX instead of CES). The second consists
of precomputed data for testing the eigenvalue/vector condition estimation routines. Each
matrix is stored on 3+N lines, where N is its dimension (3+N**2 lines for complex data).
The first line contains the dimension N and the dimension M of an invariant subspace (for
complex data, a third integer ISRT indicating how the data is sorted is also provided). The
second line contains M integers, identifying the eigenvalues in the invariant subspace (by
their position in a list of eigenvalues ordered by increasing real part (or imaginary part,
depending on ISRT for complex data)). The next N lines contains the matrix (N**2 lines
for complex data). The last line contains the reciprocal condition number for the average
of the selected eigenvalues, and the reciprocal condition number for the corresponding right
invariant subspace. The end of data is indicated by a line containing N=0 and M=0. Even
if no data is to be tested, there must be at least one line containing N=0 and M=0.

43

6.4 Testing the Generalized Nonsymmetric Eigenvalue Routines

The test routine for the LAPACK generalized nonsymmetric eigenvalue routines has the
following parameters which may be varied:

o the order N of the pair of test matrices A, B
o the type of the pair of test matrices A, B

The test program thus consists of a doubly-nested loop, the outer one over N and the inner
one over matrix types. On each iteration of the innermost loop, a pair of matrices A, B is
generated and used to test the eigenvalue routines.

6.4.1 The Generalized Nonsymmetric Eigenvalue Drivers

The driver routines for the generalized nonsymmetric eigenvalue problem are

xGEGS factors A and B into generalized Schur form and computes the generalized eigen-
values

xGEGYV computes the generalized eigenvalues and the left and right generalized eigenvec-
tors

6.4.2 Test Matrices for the Generalized Nonsymmetric Eigenvalue Routines

Twenty-six different types of test matrix pairs may be generated for the generalized
nonsymmetric eigenvalue routines. Tables 6 and 7 show the types available, along with the
numbers used to refer to the matrix types. Except as noted, all matrices have O(1) entries.

Matrix B:
0 I Jt {,10(D, D3
Matrix A: x1| xw| x
0 1
I 2| 4 8
IXw 12
Ixl 11

X1 X w X

€
€=

Dl X w 14 10
D1 X % 9 13
D, 15

Table 6: Sparse test matrices for the generalized nonsymmetric eigenvalue problem

The following symbols and abbreviations are used:

44

Magnitude of A, B
Distribation of | AT~ L [TAT= 3, | TAT = w, | 4= £, [T4l ~ =,
Eigenvalues IBl=1| |Bll~w | IBll~w | |Bl~L|lIBl=2
All Ones 16
(Same as type 15) 17
Arithmetic 19 22 24 25 23
Geometric 20 ‘
Clustered 18
Random 21
Random Entries 26

Table 7: Dense test matrices for the generalized nonsymmetric eigenvalue problem

0: The zero matrix.
I: The identity matrix.

w: Generally, the underflow threshhold times the order of the matrix divided by the machine
precision. In other words, this is a very small number, useful for testing the sensitivity
to underflow and division by small numbers. Its reciprocal tests for overflow problems.

Jt: Transposed Jordan block, i.e., matrix with ones on the first subdiagonal and zeros
elsewhere. (Note that the diagonal is zero.)

K: A (k+1) x (k + 1) transposed Jordan block which is a diagonal block within a (2k +
1) X (2k + 1) matrix. Thus, (’g (I)) has all zero entries except for the last k diagonal
entries and the first k entries on the first subdiagonal. (Note that the matrices (Ig (I))
and ((I) IO() have odd order; if an even order matrix is needed, a zero row and column
are added at the end.)

D;: A diagonal matrix with the entries 0, 1, 2, ..., n — 1 on the diagonal, where n is the
order of the matrix.

Dj: A diagonal matrix with the entries 0, 0,1, 2, ..., » — 3, 0 on the diagonal, where n is
the order of the matrix.

D3: A diagonal matrix with the entries 0,n —3,n—4,...,1,0, 0 on the diagonal, where
n is the order of the matrix.

Except for matrices with random entries, all the matrix pairs include at least one infinite,
one zero, and one singular eigenvalue. For arithmetic, geometric, and clustered eigenvalue
distributions, the eigenvalues lie between ¢ (the machine precision) and 1 in absolute value.
The eigenvalue distributions have the following meanings:

Arithmetic: Difference between adjacent eigenvalues is a constant.

Geometric: Ratio of adjacent eigenvalues is a constant.

45

Clustered: One eigenvalue is 1 and the rest are € in absolute value.
Random: Eigenvalues are logarithmically distributed.

Random entries: Matrix entries are uniformly distributed random numbers.

6.4.3 Test Matrices for the Generalized Nonsymmetric Eigenvalue Drivers

The same twenty-six different types of test matrix pairs may be generated for the gen-
eralized nonsymmetric eigenvalue drivers. Tables 6 and 7 show the types available, along
with the numbers used to refer to the matrix types. Except as noted, all matrices have
O(1) entries.

6.4.4 Tests Performed on the Generalized Nonsymmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a pair of nonsymmetric matrices A, B is
done in the following stages:

1. A is decomposed as UHV™* and B as UTV*, where U and V are unitary, H is upper
Hessenberg, T is upper triangular, and U* is the conjugate transpose of U.

2. H is decomposed as QSZ* and T as QPZ*, where @ and Z are unitary, P is upper
triangular with non-negative real diagonal entries and S is in Schur form; this also gives
the generalized eigenvalues A;, which are expressed as pairs (;, §;), where A; = a;/f;.

3. The left and right generalized eigenvectors /; and r; for the pair S, P are computed,
and from them the back-transformed eigenvectors i; and #; for the matrix pair H,T.
The eigenvectors are normalized so that their largest element has absolute value 13.
(Note that eigenvectors corresponding to singular eigenvalues, i.e., eigenvalues for
which @ = # = 0, are not well defined, these are not tested in the eigenvector tests
described below.)

3For the purpose of normalization, the “absolute value” of a complex number z = z + iy is computed as

lz| + |yl

46

To check these calculations, the following test ratios are computed:

T = "—‘4:-£{I—Kmﬂ Ty = w
ne [|A]| ne [|B]]
ry = UV re < J=VVI
ne ne
_1H-Q577| re = IT = QPZ"]
ne [H|| ne |||
-0 M =-2zz*
7= rg = —————
ne ne
_ |8i - @i P71 . |(8: = eiT)TE
Tg = 1IN T = 1
o = M tmax (GBS, lesP) 7 i emax(|B:H|, laT))
(1(8:S — a; P)ri (I(B:H — aT)i|
T = max T = max
n e emax (B:ST e P) 2 ¢ emax([BiH]], [T

All norms are ||.||;- The scalings in the test ratios assure that the ratios will be O(1),
independent of ||A|| and ¢, and nearly independent of n.

When the test program is run, these test ratios will be compared with a user-specified
threshold THRESH, and for each test ratio that exceeds THRESH, a message is printed
specifying the test matrix, the ratio that failed, and its value. A sample message is

Matrix order= 25, type=18, seed=2548,1429,1713,1411, result 8 is 11.33

In this example, the test matrix was of order n = 25 and of type 18 from Table 7, “seed” is
the initial 4-integer seed of the random number generator used to generate A and B, and
“result” specifies that test ratio rg failed to pass the threshold, and its value was 11.33.

The normalization of the eigenvectors will also be checked. If the absolute value of the
largest entry in an eigenvector is not within ¢ x THRESH of 1, then a message is printed
specifying the error. A sample message is

SCHKS1: Right Eigenvectors from STGEVC(JOB=B) incorrectly normalized.
Error/precision=0.103E+05, n= 25, type= 18, seed=2548,1429,1713,1411.
6.4.5 Tests Performed on the Generalized Nonsymmetric Eigenvalue Drivers

The two driver routines have slightly different tests applied to them. For SGEGS the
following tests are computed:

A- QSZT" |B - QTZT”
ST Alee T [Blne

I- QQT" I- zzT||
e T

47

l(5) =S (4,9)] B() =T (j,j : N
Ts = max D(]) - { max(]aﬁjgl,JS(j,jn + max(IBOIT G if a(]) is real
3 e

sS—w

zmax(s|[S][,|w 5w if a(j) is complex,

where S and T are the 2 x 2 diagonal blocks of § and T corresponding to the 5t eigenvalue.
For SGEGYV the following tests are computed:

|(BA — aB)T]|
Te = max
left eigenvalue/-vector pairs (8/a,l) €max(|34|,|aB|)
S |84 - aB)r|

max
right eigenvalue/-vector pairs (8/a,r) €max(|BA4|,|aB|)

6.4.6 Input File for Testing the Generalized Nonsymmetric Eigenvalue Rou-
tines and Drivers

An annotated example of an input file for testing the generalized nonsymmetric eigen-
value routines is shown below.

SGG: Data file for testing Nonsymmetric Eigenvalue Problem routines

7 Number of values of N

01235 10 16 Values of N (dimension)

20.0 Threshold value

T Put T to test the LAPACK routines
T Put T to test the driver routines
T Put T to test the error exits

1 Code to interpret the seed

SGG 26

The first line of the input file must contain the characters SGG in columns 1-3. Lines
2-14 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The threshold value for the test ratios
line 5: TSTCHK, flag to test LAPACK routines
line 6: TSTDRV, flag to test driver routines
line 7: TSTERR, flag to test error exits from LAPACK and driver routines
line 8: An integer code to interpret the random number seed
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 9: If line 14 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in

the nonsymmetric case. The valid 3-character codes are SGG (CGG in complex, DGG in double
precision, and ZGG in complex*16).

48

6.5 Testing the Nonsymmetric Eigenvalue Condition Estimation Rou-
tines

The main routines tested are XTREXC, xTRSYL, xTRSNA and xTRSEN. xTREXC
reorders eigenvalues on the diagonal of a matrix in Schur form, xTRSYL solves the Sylvester
equation AX +X B = C for X given A, B and C, xXTRSNA computes condition numbers for
individual eigenvalues and right eigenvectors, and xXTRSEN computes condition numbers
for the average of a cluster of eigenvalues, as well as their corresponding right invariant
subspace. Several auxiliary routines xLAEQU, xLAEXC, xLALN2, xLAQTR, and xLASY?2
are also tested; these are only used with real (x=S or x=D) data.

No parameters can be varied; the data files contain precomputed test problems along
with their precomputed solutions. The reason for this approach is threefold. First, there is
no simple residual test ratio which can test correctness of a condition estimator. Second, no
comparable code in another library exists to compare solutions. Third, the condition num-
bers we compute can themselves be quite ill-conditioned, so that we need the precomputed
solution to verify that the computed result is within acceptable bounds.

The test program xeigtsts reads in the data from the data file sec.in (for the REAL
code). If there are no errors, a single message saying that all the routines pass the tests will
be printed. If any routine fails its tests, an error message is printed with the name of the
failed routine along with the number of failures, the number of the example with the worst
failure, and the test ratio of the worst failure.

For more details on eigencondition estimation, see LAPACK Working Note 13 [4].

6.6 Testing the Symmetric Eigenvalue Routines

The test routine for the LAPACK symmetric eigenvalue routines has the following pa-
rameters which may be varied:

e the order N of the test matrix A
e the type of the test matrix A
e the blocksize NB

The testing program thus consists of a triply-nested loop, the outer one over NB, the next
over N, and the inner one over matrix types. On each iteration of the innermost loop, a
matrix A is generated and used to test the eigenvalue routines.

However, there is one exception. The test routine for the LAPACK banded symmet-
ric eigenvalue routines has the following parameters which may be varied:

e the order N of the test matrix A
o the type of the test matrix A

The testing program thus consists of a doubly-nested loop, the outer one over N, and
the inner one over matrix types. On each iteration of the innermost loop, a matrix A is
generated and used to test the eigenvalue routines.

49

6.6.1 The Symmetric Eigenvalue Drivers

The driver routines for the symmetric eigenvalue problem are

xSTEV eigenvalue/eigenvector driver for symmetric tridiagonal matrix,

xSTEVX selected eigenvalue/eigenvectors for symmetric tridiagonal matrix,

xSYEV eigenvalue/eigenvector driver for symmetrix matrix,

xSYEVX selected eigenvalue/eigenvectors for symmetric matrix,

xSPEV eigenvalue/eigenvector driver for symmetric matrix in packed storage,

xSPEVX selected eigenvalue/eigenvectors for symmetric matrix in packed storage,

xSBEV eigenvalue/eigenvector driver for symmetric band matrix,

xSBEVX selected eigenvalue/eigenvectors for symmetric band matrix.

6.6.2 Test Matrices for the Symmetric Eigenvalue Routines

Except for the banded matrices, twenty-one different types of test matrices may be
generated for the symmetric eigenvalue routines. Table 8 shows the types available, along
with the numbers used to refer to the matrix types. Except as noted, all matrices have
O(1) entries. The expression UDU~! means a real diagonal matrix D with O(1) entries
conjugated by a unitary (or real orthogonal) matrix U. The eigenvalue distributions have

the same meanings as in the nonsymmetric case (see Section 5.2.1).

For banded matrices, fifteen different types of test matrices may be generated. These

fifteen test matrices are the same as the first fifteen test matrices in Table 8.

Eigenvalue Distribution

Type Arithmetic | Geometric | Clustered Other
Zero 1
Identity 2
Diagonal 3 4, 67, 7+ 5
UDU-! 8, 117, 124 9,17* 10, 18*

16*, 19*, 20°
Symmetric w/Random entries ' 13, 147, 15¢

Diag. Dominant

{— matrix entries are O(voverflow)
{- matrix entries are O(vunderflow)

* — diagonal entries are positive

* — matrix entries are O(voverflow) and diagonal entries are positive
e — matrix entries are O(vunderflow) and diagonal entries are positive

Table 8: Test matrices for the symmetric eigenvalue problem

50

et e dpo o

6.6.3 Test Matrices for the Symmetric Eigenvalue Drivers

Eighteen different types of test matrices may be generated for the symmetric eigenvalue
drivers. The first 15 test matrices are the same as the types of matrices used to test the
symmetric eigenvalue computational routines, and are given in Table 8. Table 9 shows the
types available, along with the numbers used to refer to the matrix types. Except as noted,
all matrices have O(1) entries. The expression UDU~! means a real diagonal matrix D
with O(1) entries conjugated by a unitary (or real orthogonal) matrix U. The eigenvalue

distributions have the same meanings as in the nonsymmetric case (see Section 5.2.1).

Eigenvalue Distribution
Type Arithmetic | Geometric | Clustered Other
Zero 1
Identity 2
Diagonal 3 4,67, 7% 5
UDpU-! 8, 117, 124 9 10
Symmetric w/Random entries 13, 147, 15
Band | | 16, 171, 18+

{— matrix entries are O(Voverflow)
{— matrix entries are O(vunderflow)

Table 9: Test matrices for the symmetric eigenvalue drivers

6.6.4 Tests Performed on the Symmetric Eigenvalue Routines

Finding the eigenvalues and eigenvectors of a symmetric matrix A is done in the following

stages:

1. A is decomposed as USU*, where U is unitary, S is real symmetric tridiagonal, and
U* is the conjugate transpose of U. U is represented as a product of Householder
transformations, whose vectors are stored in the first n-1 columns of V, and whose

scale factors are in TAU.

2. S is decomposed as ZD1Z*, where Z is real orthogonal and D1 is a real diagonal
matrix of eigenvalues. D2 is the matrix of eigenvalues computed when Z is not

computed.

3. The “PWK” method is used to compute D3, the matrix of eigenvalues, using a square-

root-free method which does not compute Z.

4. S is decomposed as Z4 D4 Z4*, for a symmetric positive definite tridiagonal matrix.

Dj is the matrix of eigenvalues computed when Z is not computed.

5. Selected eigenvalues (W A1, W A2, and W A3) are computed and denote eigenvalues
computed to high absolute accuracy, with different range options. WR will denote

eigenvalues computed to high relative accuracy.

6. Given the eigenvalues, the eigenvectors of S are computed in Y.

51

—1

-

To check these calculations, the following test ratios are computed (where banded ma-
trices only compute test ratios 1-4):

JA-VSV*|

ne || Al
computed by SSYTRD(UPLO ='U') or SSBTRD(UPLO ='U")
- UV

ne

test of SORGTR(UPLO ='U’)
|A=VSV*|

ne || Al
computed by SSYTRD(UPLO =' L') or SSBTRD(UPLO =' L')
- v~

ne

test of SORGTR(UPLO =' L")

r =

Ty =

Ty =

Tests 5-8 are the same as tests 1-4 but for SSPTRD and SOPGTR.

. IS - zD12*|
= ls-zmze

ne [15]
1‘10 = .I.I;I.LZ”

ne

|1D1 - D2||
ril = 1D1]

|1D1 — D3||
ni2 =11

3 = 0 if eigenvalues of S are within THRESH of those in D1.
= 2xTHRESH otherwise

For S positive definite,

. _ 15— 24Daze
T ne [|S]]
I - Z4z4*|)
Tis = ——
ne
. _ lp4-Dsj
7 "100¢ || D4||

When S is also diagonally dominant by a factor v < 1,

ID4() — WRG)|
TETTIDae

T17

52

148 %42
where w = 2(2n — 1)e——mM—
() (1-7)*
. lwai- D3|
Y VO E]]
. maxi(min;(|[WA2() - WA3())) + maxi(min; (|W A3(3) - w A205)1)))
19 e[| D3]]
. IS - YWALY*||
2 ne ||S||
| -YY*|
ne

T21 =

where the subscript 1 indicates that the eigenvalues and eigenvectors were computed at
the same time, and 0 that they were computed in separate steps. (All norms are ||.||;.) The
scalings in the test ratios assure that the ratios will be O(1) (typically less than 10 or 100),
independent of ||A|| and ¢, and nearly independent of n.

As in the nonsymmetric case, the test ratios for each test matrix are compared to a
user-specified threshold THRESH, and a message is printed for each test that exceeds this

threshold.

6.6.5 Tests Performed on the Symmetric Eigenvalue Drivers

For each driver routine, the following tests will be performed:

|A-zDz*|
ne [|A]
[
ne
|1D1 - D2
e|ID1

T1

Ty =

T3

where Z is the matrix of eigenvectors returned when the eigenvector option is given and
D1 and D2 are the eigenvalues returned with and without the eigenvector option.

6.6.6 Input File for Testing the Symmetric Eigenvalue Routines and Drivers

An annotated example of an input file for testing the symmetric eigenvalue routines and
drivers is shown below.

SEP: Data file for testing Symmetric Eigenvalue Problem routines

7 Number of values of N

01235 10 16 Values of N (dimension)

) Number of values of NB, NBMIN, and NX
13 3 32 Values of NB (blocksize)

53

22 2 2 2 Values of NBMIN (minimum blocksize)
10 5 9 1 Values of NX (crossover point)

20.0 Threshold value

T Put T to test the LAPACK routines
T Put T to test the driver routines
T Put T to test the error exits

1 Code to interpret the seed

SEP 15

The first line of the input file must contain the characters SEP in columns 1-3. Lines
2-12 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The threshold value for the test ratios
line 9: TSTCHK, flag to test LAPACK routines
line 10: TSTDRV, flag to test driver routines
line 11: TSTERR, flag to test error exits from LAPACK and driver routines
line 12: An integer code to interpret the random number seed
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 13: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in
the nonsymmetric case. The valid 3-character codes are SEP or SST (CST in complex, DST
in double precision, and ZST in complex*16).

6.6.7 Input File for Testing the Banded Symmetric Eigenvalue Routines and
Drivers

An annotated example of an input file for testing the symmetric eigenvalue routines and
drivers is shown below.

SSB: Data file for testing Symmetric Eigenvalue Problem routines

2 Number of values of N

5 20 Values of N (dimension)

5 Number of values of K
0125 16 Values of K (band width)

20.0 Threshold value

T Put T to test the error exits
1 Code to interpret the seed

54

SSB 15

The first line of the input file must contain the characters SEP in columns 1-3. Lines
2-12 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of K
line 5: The values of K
line 6: The threshold value for the test ratios
line 72 TSTERR, flag to test error exits from LAPACK and driver routines
line 8: An integer code to interpret the random number seed
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 9: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests.
The valid 3-character code is SSB (CSB in complex, DSB in double precision, and ZSB in
complex*16).

6.7 Testing the Generalized Symmétric Eigenvalue Routines and Drivers

The test routine for the LAPACK generalized symmetric eigenvalue routines and drivers
has the following parameters which may be varied:

e the order N of the test matrix A
e the type of the test matrix A
o the blocksize NB

The testing program thus consists of a triply-nested loop, the outer one over NB, the next
over N, and the inner one over matrix types. On each iteration of the innermost loop, a
matrix A is generated and used to test the eigenvalue routines.

6.7.1 The Generalized Symmetric Eigenvalue Drivers

The driver routines for the generalized symmetric eigenvalue problem are

SSYGYV eigenvalue/vector driver for symmetric matrices A and B, where B is also positive
definite, eigenproblem,

CHEGYV eigenvalue/vector driver for hermitian matrices A and B, where B is also positive
definite, eigenproblem,

SSPGYV eigenvalue/vector driver for symmetric packed matrices A and B, where B is also
positive definite, eigenproblem,

55

CHPGYV eigenvalue/vector driver for hermitian packed matrices A and B, where B is also
positive definite.

6.7.2 Test Matrices for the Generalized Symmetric Eigenvalue Routines and
Drivers

Twenty-one different types of test matrices may be generated for generalized symmetric
eigenvalue routines. These test matrices are the same as the test matrices in Table 8 for
testing the symmetric eigenvalue routines.

6.7.3 Tests Performed on the Generalized Symmetric Eigenvalue Routines and
Drivers

Finding the eigenvalues and eigenvectors of symmetric matrices A and B, where B is also
positive definite, follows the same stages as the symmetric eigenvalue problem except that
the problem is first reduced from generalized to standard form using xSYGST.

To check these calculations, the following test ratio is computed:

|4 - BVSV*|
ne || Al

™

6.7.4 Input File for Testing the Generalized Symmetric Eigenvalue Routines
and Drivers

An annotated example of an input file for testing the generalized symmetric eigenvalue
routines and drivers is shown below.

SEP: Data file for testing Symmetric Eigenvalue Problem routines

7 Number of values of N
0123510 16 Values of N (dimension)

3 Number of values of NB, NBMIN, NX
1320 Values of NB (blocksize)

22 2 Values of NBMIN (minimum blocksize)
11 1 Values of NX (crossover point)
20.0 Threshold value

T Put T to test the LAPACK routines
T Put T to test the driver routines
T Put T to test the error exits

1 Code to interpret the seed

SSG 15

The first line of the input file must contain the characters SEP in columns 1-3. Lines
2-12 are read using list-directed input and specify the following values:

56

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NBMIN, NX
line 5: The values of NB, the blocksize
line 6: The values of NBMIN, the minimum blocksize
line 7: The values of NX, the crossover point
line 8: The threshold value for the test ratios
line 9: TSTCHK, flag to test LAPACK routines
line 10: TSTDRYV, flag to test driver routines
line 11: TSTERR, flag to test error exits from LAPACK and driver routines
line 12: An integer code to interpret the random number seed
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 13: If line 12 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as
in the symmetric case. The valid 3-character code is SSG (CSG in complex, DSG in double
precision, and ZSG in complex*16).

6.8 Testing the Singular Value Decomposition Routines

The test routine for the LAPACK singular value decomposition (SVD) routines has the
following parameters which may be varied:

e the number of rows M and columns N of the test matrix A
e the type of the test matrix A
o the blocksize NB

The test program thus consists of a triply-nested loop, the outer one over NB, the next over
pairs (M, N), and the inner one over matrix types. On each iteration of the innermost loop,
a matrix A is generated and used to test the SVD routines.

6.8.1 The Singular Value Decomposition Driver

The driver routine for the singular value decomposition is

xGESVD singular value decomposition of A

6.8.2 Test Matrices for the Singular Value Decomposition Routines

Sixteen different types of test matrices may be generated for the singular value decom-
position routines. Table 10 shows the types available, along with the numbers used to refer
to the matrix types. Except as noted, all matrix types other than the random bidiagonal
matrices have O(1) entries.

57

Singular Value Distribution
Type Arithmetic | Geometric | Clustered Other
Zero 1
Identity 2
Diagonal 3,67, 7% 4 5
UDV 8, 117, 12+ 9 10
Random entries 13, 141, 15%
Random bidiagonal 16

{— matrix entries are O(voverflow)
}- matrix entries are O(vunderflow)

Table 10: Test matrices for the singular value decomposition

Matrix types identified as “Zero”, “Diagonal”, and “Random entries” should be self-
explanatory. The other matrix types have the following meanings:

Identity: A min(M, N)-by-min(M, N) identity matrix with zero rows or columns added to
the bottom or right to make it M-by-N

UDV: Real M-by-N diagonal matrix D with O(1) entries multiplied by unitary (or real
orthogonal) matrices on the left and right

Random bidiagonal: Upper bidiagonal matrix whose entries are randomly chosen from a
logarithmic distribution on [e2,e72]

The QR algorithm used in xBDSQR should compute all singular values, even small ones, to
good relative accuracy, even of matrices with entries varying over many orders of magnitude,
and the random bidiagonal matrix is intended to test this. Thus, unlike the other matrix
types, the random bidiagonal matrix is neither O(1), nor an O(1) matrix scaled to some
other magnitude.

The singular value distributions are analogous to the eigenvalue distributions in the
nonsymmetric eigenvalue problem (see Section 6.2.1).

6.8.3 Test Matrices for the Singular Value Decomposition Driver

Five different types of test matrices may be generated for the singular value decomposition
driver. Table 11 shows the types available, along with the numbers used to refer to the
matrix types. Except as noted, all matrices have O(1) entries.

6.8.4 Tests Performed on the Singular Value Decomposition Routines

Finding the singular values and singular vectors of a dense, m-by-n matrix A is done in
the following stages:

1. A is decomposed as Q BP*, where @ and P are unitary and B is real bidiagonal.

2. B is decomposed as ULV, where U and V are real orthogonal and I is a positive real
diagonal matrix of singular values. This is done three times to compute

58

Eigenvalue Distribution

Type Arithmetic | Geometric | Clustered | Random | Other
Zero 1
Identity 2
UDV 3,41, 5% | |
{— matrix entries are multiplied by the underflow-threshold/e
- matrix entries are multiplied by the overflow-threshold * ¢

Table 11: Test matrices for the singular value decomposition driver

(a) B = UZ,V*, where I, is the diagonal matrix of singular values and the columns
of the matrices U and V are the left and right singular vectors, respectively, of
B.

(b) Same as above, but the singular values are stored in £; and the singular vectors
are not computed.

(c) A= (UQ)S(VP)*, the SVD of the original matrix A.

For each pair of matrix dimensions (m,n) and each selected matrix type, an m-by-n
matrix A and an m-by-nrhs matrix X are generated. The problem dimensions are as follows

m-by-n
m-by-f (but m-bym if nrhs > 0)
fi-by-n
fi-by-n
v fi-by-i
, 52 diagonal, order 7@
m-by-nrhs

-

M SO

where 72 = min(m, n).
To check these calculations, the following test ratios are computed:

o l4-0BP _II-@-q|

ne ||Al| me
o lr=ppy B USVY
ne 7€ || B|
Yy - vz .
= here Y = Q*X and Z = U*Y.
Ts max(r VT where Q*X an Y
_l-vey _-vv
6= ———— T7 = —————
ne ne

59

0 if S1 contains # nonnegative values in decreasing order.
T8 = 9

otherwise

ﬁ
™ | -

0 if eigenvalues of B are within THRESH of those in S1.

Tg =

k 2xTHRESH otherwise

oo 15152 = 1A= QUE(PV)|
0T s " fie Al
oo IX-@unzl = QU (QU)]
127 hax(m, ke [X]] me

o< M= (VP)VP)

14 — ne

where the subscript 1 indicates that U and V were computed at the same time as X, and
0 that they were not. (All norms are ||.||;.) The scalings in the test ratios assure that the
ratios will be O(1) (typically less than 10 or 100), independent of ||A|| and ¢, and nearly
independent of m or n.

6.8.5 Tests Performed on the Singular Value Decomposition Driver

For the driver routine, the following tests are computed:

|4 — Udiag(S)VT|

" T ATmax(M, Ne
I- UTU||
= T Me
I-vI(vT)T|
s = Ne
I 0 if S contains MNMIN nonnegative values in decreasing order.
4 - 1 otherwise
s = HUA_I—:I””, where U, is a partially computed U.
Te = “ﬁ_}:\',_;‘ip”’ where VT, is a partially computed VT.
T7 15 = Sl where S, is the vector of singular values from the partial SVD

MNMINe |3’

60

6.8.6 Input File for Testing the Singular Value Decomposition Routines

An annotated example of an input file for testing the singular value decomposition
routines and driver routine is shown below.

SVD: Data file for testing Singular Value Decomposition routines

0001
1230

3
2
5
2

N O N W

SVD 16

1
1

20

N =N

11
23

Number of values of M
2222333310 10 16 16 Values of M
0123012310 16 10 16 Values of N

Number of parameter values

Values of NB (blocksize)

Values of NBMIN (minimum blocksize)

Values of NX (crossover point)

Values of NRHS

Threshold value

Put T to test the LAPACK routines

Put T to test the driver routines

Put T to test the error exits

Code to interpret the seed

The first line of the input file must contain the characters SVD in columns 1-3. Lines
2-14 are read using list-directed input and specify the following values:

line 2:
line 3:
line 4:
line 5:
line 6:
line 7:
line 8:
line 9:
line 10:
line 11:
line 12:
line 13:
line 14:

line 15:

The number of values of M and N

The values of M, the matrix row dimension

The values of N, the matrix column dimension

The number of values of the parameters NB, NBMIN, NX, NRHS
The values of NB, the blocksize

The values of NBMIN, the minimum blocksize

The values of NX, the crossover point

The values of NRHS, the number of right hand sides

The threshold value for the test ratios

TSTCHK, the flag to test LAPACK routines

TSTDRV, the flag to test driver routines

TSTERR, the flag to test error exits from the LAPACK and driver routines
An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

If line 14 was 2, four integer values for the random number seed

The remaining lines are used to specify the matrix types for one or more sets of tests, as in
the nonsymmetric case. The valid 3-character codes are SVD or SBD (CBD in complex, DBD
in double precision, and ZBD in complex*16).

61

6.9 Testing the Generalized Singular Value Decomposition Driver

The driver routine for the generalized singular value decomposition is
xGGSVD computes the generalized singular value decomposition of matrices A and B
The test routine for this driver has the following parameters which may be varied:
¢ the number of rows M of the test matrix A
¢ the number of rows P of the test matrix B
e the number of columns N of the test matrices A and B
e the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M,P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GSVD routines.

Please note that the block size NB is not an input parameter since at the present time
no blocked version of GSVD exists.

6.9.1 Test Matrices for the Generalized Singular Value Decomposition Driver

Eight different test matrix combinations are used for the GSV test paths. All are
generated with a predetermined condition number. The following test matrices are used:

NTYPES | Matrix A Matrix B [|All | 1|BI| k(A) k(B)
1 Diagonal Upper triangular 10 | 1000 100 10
2 Upper triangular | Upper triangular 10 | 1000 100 10
3 Lower triangular | Upper triangular 10 | 1000 100 10
4 Random dense Random dense 10 | 1000 100 10
5 Random dense Random dense 10 | 1000 | \/0.1/¢ | \/0.1/¢
6 Random dense Random dense 10 | 1000 | 0.1/e 0.1/¢
7 Random dense Random dense 10 | 1000 | \/0.1/¢ 0.1/¢
8 Random dense Random dense 10 | 1000 0.1/¢ | \/0.1/¢

6.9.2 Tests Performed on the Generalized Singular Value Decomposition Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an m-by-n
matrix A and a p-by-n matrix B are generated. The problem dimensions are as follows:

A m-by-n
B p-by-n
Q@ n-by-n
U m-by-m
V. p-by-p

The tests for the GSV path are as follows:

62

o Compute the Generalized Singular Value Decomposition using xGGSVD, and compute
the test ratios

1. ||UH AQ — D1R||/(maz(m,n)||A|| ulp)
2. |[VHBQ — D2R||/(maz(p,n)||B|| ulp)
3. |II - UHU||/(m ulp)
4. |[I - VHV||/(pulp)
5. |11 - QHQl|/(nulp)

where D1 and D2 are “diagonal” matrices, and form the generalized singular pairs of the
matrices A and B, and ulp represents xXLAMCH(’P’).

6.9.3 Input File for Testing the Generalized Singular Value Decomposition
Driver

An annotated example of an input file for testing the generalized singular value decom-
position driver routine is shown below.

GSV: Data file for testing Generalized SVD routines
8 Number of values of M, P, N
0 5 9 10 20 12 12 40 Values of M (row dimension)
4 0 12 14 10 10 20 15 Values of P (row dimension)
3 10 15 12 8 20 8 20 Values of N (column dimension)

40.0 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

GSV 8 List matrix types on next line if 0 < NTYPES < 8

The first line of the input file must contain the characters GSV in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

line 2: The number of values M, P, and N
line 3: Values of M (row dimension)
line 4: Values of P (row dimension)
line 5: Values of N (column dimension)
line 6: THRESH, the threshold value for the test ratios
line 7: TSTERR, flag to test the error exits
line 8: An integer code to interpret the random number seed.
= 0: Set the seed to a default value before each run
= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line
line 9 : If line 8 was 2, four integer values for the random number seed
Otherwise, the path GSV followed by the number of matrix types NTYPES
line 10: If NTYPES < 8, then specifies matrix types to be tested.

63

6.10 Testing the Generalized QR and RQ Factorization Routines

The test routine for the GQR and GRQ factorization routines has the following param-
eters which may be varied:

o the values of M of the test matrix A
e the values of P of the test matrix B
o the number of columns or rows N of the test matrices A and B

o the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M, P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GQR and GRQ routines.

Please note that the block size NB is not an input test parameter since the GQR and
GRQ factorizations are implemented by calling the QR and RQ factorizations which have
been tested for the parameter block size NB.

6.10.1 Test Matrices for the Generalized QR and RQ Factorization Routines

Eight different test matrix combinations are used for the GQR and GRQ test paths. All
are generated with a predetermined condition number. For the GQR path, the following
test matrices are used:

NTYPES | Matrix A Matrix B [|All | 1Bl k(A) k(B)
1 Diagonal Lower triangular 10 | 1000 100 10
2 Lower triangular | Diagonal 10 | 1000 100 10
3 Lower triangular | Upper triangular 10 | 1000 100 10
4 Random dense Random dense 10 | 1000 100 10
5 Random dense | Random dense 10 | 1000 | 1/0.1/¢ | 1/0.1/¢
6 Random dense Random dense 10 | 1000 0.1/¢ 0.1/¢
7 Random dense | Random dense t vt O0d/e| 0.1/e
8 Random dense Random dense t t 0.1/¢ | /0.1/e
1— near underflow threshold

t- near overflow threshold

For the GRQ path, the following test matrices are used:

6.10.2 Tests Performed on the Generalized QR and RQ Factorization Routines

For the GQR test path, and each set of matrix dimensions (M, N, P) and each selected
matrix type, an n-by-m matrix A and an n-by-p matrix B are generated. The problem
dimensions are as follows:

A n-by-m
B n-by-p
@ n-by-n
Z pby-p

64

NTYPES | Matrix A Matrix B [14]] | I Bl k(A) k(B)
1 Diagonal Upper triangular 10 | 1000 100 10
2 Upper triangular | Upper triangular 10 | 1000 100 10
3 Lower triangular | Upper triangular 10 | 1000 100 10
4 Random dense Random dense 10 | 1000 100 10
5 Random dense Random dense 10 | 1000 | 1/0.1/e | \/0.1/¢
6 Random dense Random dense 10 | 1000 | 0.1/e| 0.1/¢
7 Random dense Random dense t v 03] 0.1/¢
8 Random dense Random dense t t 0.1/¢ | /0.1/e

1- near underflow threshold
{— near overflow threshold

The tests for the GQR path are as follows:

o Compute the Generalized QR factorization using xGGQRF, generate the orthogonal
matrix @ from the Householder vectors using xORGQR, generate the matrix Z using

xORGRQ, and compute the test ratios

W N =

N

- [IR = Q¥ All/(maz(m,n)||A|| ulp)
- ITZ - Q¥ B||/(maz(p,n) || B|| ulp)
- 1T - Q¥ Ql|/(m ulp)
-\ = 2% 2||/(p uip)

where ulp represents xXLAMCH(’P’).

For the GRQ test path, and each set of matrix dimensions (M, N, P) and each selected
matrix type, an m-by-n matrix A and a p-by-n matrix B are generated. The problem

dimensions are as follows:

m-by-n
p-by-n
n-by-n
p-by-p

NO

The tests for the GRQ path are as follows:

e Compute the Generalized RQ factorization using xGGRQF, generate the orthogonal
matrix @ from the Householder vectors using xORGRQ, generate the matrix Z from

the Householder vectors using XORGQR, and compute the test ratios

1. ||R — AQ¥||/(maz(m,n)||Al| ulp)

W N

ZHZ\|/(p ulp)

- ITQ - Z¥ B||/(maz(p, n) ||A|| ulp)
- I = QHQIl/(n ulp)
- -

where ulp represents xXLAMCH(’P’).

65

1 —

6.10.3 Input File for Testing the Generalized QR and RQ Factorization Rou-
tines

An annotated example of an input file for testing the generalized QR and RQ factoriza-
tion routines is shown below.

GQR: Data file for testing Generalized QR and RQ routines

GQR 8

Number of values of M, P and N

Values of M

Values of P

Values of N

Threshold value of test ratio.

Put T to test the error exits

Code to interpret the seed

List matrix types on next line if O < NTYPES < 8

The first line of the input file must contain the characters GQR or GRQ in columns 1-3.
Lines 2-9 are read using list-directed input and specify the following values:

line 2:
line 3:
line 4:
line 5:
line 6:
line 7:
line 8:

line 9 :

line 10:

The number of values of M, P and N

The values of M

The values of P

The values of N

The threshold value for the test ratios

TSTERR, flag to test the error exits

An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

If line 8 was 2, four integer values for the random number seed
Otherwise, the path GQR or GRQ followed by the number of matrix types NTYPES
If NTYPES < 8, then specifies matrix types to be tested.

6.11 Testing the Generalized Linear Regression Model Driver

The driver routine for the generalized linear regression model is

xGGGLM solves generalized linear regression model problem using the generalized QR
factorization

The test routine for this driver has the following parameters which may be varied:

the number of rows M of the test matrix A
the number of rows P of the test matrix B
the number of columns N of the test matrices A and B

the number of matrix types to be tested

66

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M, P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the GLM driver routine.

Please note that the block size NB is not an input test parameter since the GLM problem
is solved by calling GQR factorization. The GQR is implemented by calling the QR and
RQ factorizations which have been tested for the parameter block size NB.

6.11.1 Test Matrices for the Generalized Linear Regression Model Driver

Eight different test matrix combinations are used for the GLM test path. All are gen-
erated with a predetermined condition number. The following test matrices are used:

NTYPES | Matrix A Matrix B [|All | [|B]] | &(A) | x(B)
1 Diagonal Lower triangular 10 | 1000 | 100 10
2 Lower triangular | Diagonal 10 | 1000 { 100 10
3 Lower triangular | Upper triangular 10 | 1000 | 100 10
4 Random dense Random dense 10 | 1000 | 100 10
5 Random dense Random dense 10 | 1000 | 100 10
6 Random dense Random dense 10 | 1000 | 100 10
7 Random dense Random dense 10 | 1000 (| 100 10
8 Random dense Random dense 10 | 1000 | 100 10

Please note that the current version of the GLM driver only addresses well-conditioned
problems (like xGELS does). Therefore, we do not test the code with ill-conditioned ma-

trices.

6.11.2 Tests Performed on the Generalized Linear Regression Model Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an n-by-m

matrix A and an n-by-p matrix B are generated.
The test for the GLM path is as follows:

¢ Solve the Generalized Linear Regression Model problem using xGGGLM, and compute
the test ratio

1. |ld — Az — Bu||/((||All + || B]) (l|=]] + [lu]]) €)
where d is the left hand side vector of length =, u is the solution vector of length p, and z
is the solution vector of length m.
6.11.3 Input File for Testing the Generalized Linear Regression Model Driver

An annotated example of an input file for testing the generalized linear regression model
driver is shown below.

GLM: Data file for testing Generalized Linear Regression Model routines

6 Number of values of NN
0O 5 8 15 20 40 Values of M (row dimension),
67

9 0 15 12 15 30 Values of P (row dimension),

5 5 10 25 30 50 Values of N (column dimension) M \leq N \leq M+P
20.10 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

GLM 8 List matrix types on next line if O < NTYPES < 8

The first line of the input file must contain the characters GLM in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

line 2:
line 3:
line 4:
line 5:
line 6:
line 7:
line 8:

line 9 :

line 10:

The number of values M, P, and N

Values of M (row dimension)

Values of P (row dimension)

Values of N (column dimension), note M < N < M+P

THRESH, the threshold value for the test ratios

TSTERR, flag to test the error exits

An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

If line 8 was 2, four integer values for the random number seed
Otherwise, the path GLM followed by the number of matrix types NTYPES
If NTYPES < 8, then specifies matrix types to be tested.

6.12 Testing the Constrained Linear Least Squares Driver

The driver routine for the constrained linear least squares problem is

xGGLSE solves the constrained linear least squares problem using the generalized RQ
factorization

The test routine for this driver has the following parameters which may be varied:

e the number of rows M of the test matrix A

e the number of rows P of the test matrix B

e the number of columns N of the test matrices A and B

e the number of matrix types to be tested

The test program thus consists of a doubly-nested loop, the outer one over ordered triples
(M, P,N), and the inner one over matrix types. On each iteration of the innermost loop,
matrices A and B are generated and used to test the LSE driver routine.

Please note that the block size NB is not an input test parameter since the LSE problem
is solved by calling GRQ factorization. The GQR is implemented by calling the QR and
RQ factorizations which have been tested for the parameter block size NB.

68

6.12.1 Test Matrices for the Constrained Linear Least Squares Driver

Eight different test matrix combinations are used for the LSE test path. All are gener-
ated with a predetermined condition number. The following test matrices are used:

NTYPES | Matrix A Matrix B Al | [IBll | «(A) | x(B)
1 Diagonal Upper triangular 10 | 1000 | 100 10
2 Upper triangular | Upper triangular 10 | 1000 | 100 10
3 Lower triangular | Upper triangular 10 | 1000 | 100 10
4 Random dense Random dense 10 | 1000 | 100 10
5 Random dense Random dense 10 | 1000 | 100 10
6 Random dense Random dense 10 | 1000 | 100 10
7 Random dense Random dense 10 | 1000 | 100 10
8 Random dense Random dense 10 | 1000 | 100 10

Please note that the current version of the LSE driver only addresses well-conditioned
problems (like xGELS does). Therefore, we do not test the code with ill-conditioned ma-
trices.

6.12.2 Tests Performed on the Constrained Linear Least Squares Driver

For each set of matrix dimensions (M, N, P) and each selected matrix type, an m-by-n
matrix A and an p-by-n matrix B are generated.
The tests for the LSE path are as follows:

e Solve the Constrained Linear Least Squares problem using xGGLSE, and compute
the test ratio
L. ||Az — <]|/(llAllll=]l€)
2. ||Bz —d||/(1|Bl[l=l| €)
where z is the solution vector of length n, c is the right hand side vector of the least squares
part of length m, and d is the right hand side vector for the constrained equation of length
.

6.12.3 Input File for Testing the Constrained Linear Least Squares Driver

An annotated example of an input file for testing the constrained linear least squares
driver is shown below.

LSE: Data file for testing Constrained Linear Least Squares routines
6 Number of values of NN

6 0 5 8 10 30 Values of M

0 5§ 5§ 5 8 20 Values of P

5 5 6 8 12 45 Values of N, note P \leq N \leq P+M

20.1 Threshold value of test ratio.

T Put T to test the error exits

1 Code to interpret the seed

LSE 8 List matrix types on next line if O < NTYPES < 8

69

The first line of the input file must contain the characters LSE in columns 1-3. Lines
2-9 are read using list-directed input and specify the following values:

line 2:
line 3:
line 4:
line 5:
line 6:
line 7:
line 8:

line 9 :

line 10:

The number of values M, P, and N

Values of M

Values of P

Values of N, note P < N < P+M

THRESH, the threshold value for the test ratios

TSTERR, flag to test the error exits

An integer code to interpret the random number seed.

= 0: Set the seed to a default value before each run

= 1: Initialize the seed to a default value only before the first run
= 2: Like 1, but use the seed values on the next line

If line 8 was 2, four integer values for the random number seed
Otherwise, the path LSE followed by the number of matrix types NTYPES
If NTYPES < 8, then specifies matrix types to be tested.

e L .

70

7 More About Timing

There are two distinct timing programs for LAPACK routines in each data type, one for the
linear equations routines and one for the eigensystem routines. The linear equation timing
program also times the Level 2 and 3 BLAS, and the reductions to bidiagonal, tridiagonal,
or Hessenberg form for eigenvalue computations. Results from the linear equation timing
program are given in megaflops, and the operation counts are computed from a formula
(see Appendix C). Results from the eigensystem timing program are given in execution
times, operation counts, and megaflops, where the operation counts are calculated during
execution using special versions of the LAPACK routines which have been instrumented to
count operations. Each program has its own style of input, and the eigensystem timing pro-
gram accepts four different sets of parameters, for the generalized nonsymmetric eigenvalue
problem, the nonsymmetric eigenvalue problem, the symmetric and generalized symmetric
eigenvalue problem, and the singular value decomposition. The following sections describe
the different input formats and timing parameters.

Both timing programs, but the linear equation timing program in particular, are in-
tended to be used to collect data to determine optimal values for the block routines. All of
the block factorization, inversion, reduction, and orthogonal transformation routines in LA-
PACK are included in the linear equation timing program. Currently, the block parameters
NB and NX, as well as others, are passed to the block routines by the environment inquiry
function ILAENV, which in turn receives these values through a common block set in the
timing program. Future implementations of ILAENV may be tuned to a specific machine
so that users of LAPACK will not have to set the block size. For a brief introduction to
ILAENV and guidelines on setting some of the parameters, see the LAPACK Users’ Guide
(1]

The main timing procedure for the REAL linear equation routines is found in
LAPACK/TIMING/LIN/stimaa.f in the Unix version and is the first program unit in SLIN-
TIMF in the non-Unix version. The main timing procedure for the REAL eigenvalue rou-
tines is found in LAPACK/TIMING/EIG/stimee.f in the Unix version and is the first program
unit in SEIGTIMF in the non-Unix version.

7.1 The Linear Equation Timing Program

The timing program for the linear equation routines is driven by a data file from which
the following parameters may be varied:

e M, the matrix row dimension
¢ N, the matrix column dimension, or the half-bandwidth for the band routines

e K, the number of right-hand sides for the linear solvers, or the third dimension for
the Level 3 BLAS

o NB, the block size for the blocked routines, or INCX for the Level 2 BLAS

e NX, the crossover point, the point in a block algorithm at which we switch to an
unblocked algorithm

71

e LDA, the leading dimension of the dense and banded matrices.

For banded matrices, the values of M are used for the matrix row and column dimensions,
and for symmetric or Hermitian matrices that are not banded, the values of N are used for
the matrix dimension.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value
NMAX Maximum value of M, N, K, and NB for dense matrices 512
LDAMAX Maximum value of LDA 532
NMAXB Maximum value of M for banded matrices 5000
MAXIN Maximum number of values of M, N, K, or NB 12
MXNLDA Maximum number of values of LDA 4

The parameter LDAMAX should be at least NMAX. For the xGB path, we must have
(LDA + K)M < 3(LDAMAX)(NMAX), where LDA > 3K + 1, which restricts the value of
K. These limits allow K to be as big as 200 for M = 1000. For the xPB and xTB paths,
the condition is (2K + 1)M < 3(NMAX)(LDAMAX).

The input file also specifies a set of LAPACK routine names or LAPACK path names
to be timed. The path names are similar to those used for the test program, and include
the following standard paths:

{S,C,D,Z} GE General matrices (LU factorization)

{S,C,D,Z} GB General banded matrices

{S,C,D,Z} PO Positive definite matrices (Cholesky factorization)
{Ss,C,D,Z} PP Positive definite packed

{S,C,D,Z} PB Positive definite banded

{S,C,D,Z} SY Symmetric indefinite matrices (Bunch-Kaufman factorization)
{s,C,D, Z} SP Symmetric indefinite packed

{C, 7} HE Hermitian indefinite matrices (Bunch-Kaufman factorization)
{C, Z} HP Hermitian indefinite packed

{S,C,D,Z} TR Triangular matrices

{S§,C,D,Z} TP Triangular packed matrices

{S,C,D,Z} TB Triangular band

{S,C,D,Z} QR QR decomposition

{S,C,D,Z} RQ RQ decomposition

{S,C,D, Z} LQ LQ decomposition

{S,C, D, Z} QL QL decomposition

{S,C,D,Z} QP QR decomposition with column pivoting
{S,C,D,Z} HR Reduction to Hessenberg form

{S,C,D,Z} TD Reduction to real tridiagonal form

{s, C,D,Z} BR Reduction to bidiagonal form

For timing the Level 2 and 3 BLAS, two extra paths are provided:
{S,C,D,Z} B2 Level 2 BLAS

{S,C,D,Z} B3 Level 3 BLAS

72

The paths xGT, xPT, xHR and xTD include timing of the equivalent LINPACK solvers or
EISPACK reductions for comparison.

The timing programs have their own matrix generator that supplies random Toeplitz
matrices (constant along a diagonal) for many of the timing paths. Toeplitz matrices are
used because they can be generated more quickly than dense matrices, and the call to the
matrix generator is inside the timing loop. The LAPACK test matrix generator is used to
generate matrices of known condition for the xQR, xRQ, xLQ, xQL, xQP, xHR, xTD, and
xBR paths.

The user specifies a minimum time for which each routine should run and the computa-
tion is repeated if necessary until this time is used. In order to prevent inflated performance
due to a matrix remaining in the cache from one iteration to the next, the paths that use
random Toeplitz matrices regenerate the matrix before each call to the LAPACK routine
in the timing loop. The time for generating the matrix at each iteration is subtracted from
the total time.

An annotated example of an input file for timing the REAL linear equation routines
that operate on dense square matrices is shown below. The first line of input is printed as
the first line of output and can be used to identify different sets of results.

LAPACK timing, REAL square matrices

5 Number of values of M

10 20 40 60 80 Values of M (row dimension)

5 Number of values of N

10 20 40 60 80 Values of N (column dimension)
2 Number of values of K

20 80 Values of K

2 Number of values of NB

1 8 Values of NB (blocksize)

0o 8 Values of NX (crossover point)
1 Number of values of LDA

81 Values of LDA (leading dimension)
0.05 Minimum time in seconds

SGE TTT

SPO TTT

SPP TTT

SSY TTT

SSP TTT

STR TT

STP TT

SQR TTT

SLQ TTT

SQL TTT

SRQ TTT

SQP T

SHR TTTT

STD TTTT

SBR TTT

73

The first 13 lines of the input file are read using list-directed input and are used to specify
the values of M, N, K, NB, NX, LDA, and TIMMIN (the minimum time). By default,
xGEMV and xGEMM are called to sample the BLAS performance on square matrices of
order N, but this option can be controlled by entering one of the following on line 14:

BAND Time xGBMYV (instead of xGEMV) using matrices of order M and
bandwidth K, and time xGEMM using matrices of order K.

NONE Do not do the sample timing of xGEMV and xGEMM.

The timing paths or routine names which follow may be specified in any order.

When timing the band routines it is more interesting to use one large value of the matrix
size and vary the bandwidth. An annotated example of an input file for timing the REAL
linear equation routines that operate on banded matrices is shown below.

LAPACK timing, REAL band matrices

1 Number of values of M

200 Values of M (row dimension)

5 Number of values of K

10 20 30 40 50 Values of K (bandwidth)

4 Number of values of NRHS

1 2 16 100 Values of NRHS (the number of right-hand sides)
2 Number of values of NB

1 8 Values of NB (blocksize)

0 8 Values of NX (crossover point)

1 Number of values of LDA

152 Values of LDA (leading dimension)
0.05 Minimum time in seconds

BAND Time sample banded BLAS

SGB

SPB

STB

Here M specifies the matrix size and K specifies the bandwidth for the test paths SGB,
SPB, and STB. Note that we request timing of the sample BLAS for banded matrices by
specifying “BAND” on line 13.

We also provide a separate input file for timing the orthogonal factorization and reduc-
tion routines that operate on rectangular matrices. For these routines, the values of M and
N are specified in ordered pairs (M, N). An annotated example of an input file for timing
the REAL linear equation routines that operate on dense rectangular matrices is shown
below. The input file is read in the same way as the one for dense square matrices.

LAPACK timing, REAL rectangular matrices

7 Number of values of M
20 40 20 40 80 40 80 Values of M (row dimension)
7 Number of values of N

74

20 20 40 40 40 80 80 Values of N (column dimension)
4 Number of values of K

1 2 16 100 Values of K

2 Number of values of NB

1 8 Values of NB (blocksize)

o 8 Values of NX (crossover point)
1 Number of values of LDA

81 Values of LDA (leading dimension)
0.05 Minimum time in seconds

none

SQR TTT

SLQ TTT

SQL TTT

SRQ TTT

SQP T

SBR TTF

7.2 Timing the Level 2 and 3 BLAS

Timing of the Level 2 and 3 BLAS routines may be requested from one of the linear
equation input files, or by using a special BLAS format provided for compatibility with
previous releases of LAPACK. The BLAS input format is the same as the linear equation
input format, except that values of NX are not read in. The BLAS input format is requested
by specifying ‘BLAS’ on the first line of the file.

Three input files are provided for timing the BLAS with the matrix shapes encountered
in the LAPACK routines. In each of these files, one of the parameters M, N, and K for the
Level 3 BLAS is on the order of the blocksize while the other two are on the order of the
matrix size. The first of these input files also times the Level 2 BLAS, and we include the
single precision real version of this data file here for reference:

BLAS timing, REAL data, K small

) Number of values of M
10 20 40 60 80 Values of M
) Number of values of N
10 20 40 60 80 Values of N
2 Number of values of K
2 16 Values of K
i Number of values of INCX
1 Values of INCX
1 Number of values of LDA
81 Values of LDA
0.05 Minimum time in seconds
none Do not time the sample BLAS
SB2
SB3
75

1 -4 -1

Since the Fortran BLAS do not contain any sub-blocking, the block size NB is not required
and its value is replaced by that of INCX, the increment between successive elements of
a vector in the Level 2 BLAS. Note that we have specified “none” on line 13 to suppress
timing of the sample BLAS, which are redundant in this case.

7.3 Timing the Nonsymmetric Eigenproblem

A separate input file drives the timing codes for the nonsymmetric eigenproblem. The
input file specifies

e N, the matrix size

o four-tuples of parameter values (NB, NS, MAXB, LDA) specifying the block size NB,
the number of shifts NS, the matrix size MAXB less than which an unblocked routine
is used, and the leading dimension LDA

the test matrix types

the routines or sequences of routines from LAPACK or EISPACK to be timed

The parameters NS and MAXB apply only to the QR iteration routine xHSEQR, and NB
is used only by the block algorithms. A goal of this timing code is to determine the values
of NB, NS and MAXB which maximize the speed of the codes.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value
MAXN Maximum value for N, NB, NS, or MAXB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of values of N 12
MAXPRM Maximum number of parameter sets 10

(NB, NS, MAXB, LDA)
The computations that may be timed for the REAL version are
1. SGEHRD (LAPACK reduction to upper Hessenberg form)
SHSEQR(E) (LAPACK computation of eigenvalues only of a Hessenberg matrix)
SHSEQR(S) (LAPACK computation of the Schur form of a Hessenberg matrix)

ol o

SHSEQR(V) (LAPACK computation of the Schur form and Schur vectors of a Hes-
senberg matrix)

5. STREVC(L) (LAPACK computation of the the left eigenvectors of a matrix in Schur
form)

6. STREVC(R) (LAPACK computation of the the right eigenvectors of a matrix in Schur
form)

76

* four-tuples of Parameter valyeg (NB, NS, MAXB, LDA) Specifying the block size NB, -
the number of shifts N S, the matrix size MAXB Jess than which ap unblocked routine

* the routines Or sequences of routines from LAPACK or EISPACK to be timed

The Parameters NS a4 MAXB apply only to the QR iteration routine xHSEQR, ang NB
e is to determine the valyes

is used only by the block algorithms, A goal of thijs timing cod

of NB, NS

and MAXB which maximize the speed of the codes. -
The number and size of the input valyeg are limited by certain Program maximymg

which are defined in PARAMETER statements in the main timing Program:

Parameter Description Value :
MAXN Maximum value for N » NB, NS or MAXB 400 ,
LDAMAX Maximum value for LD A 420 —

MAXIN Maximum number of vajyeg of N 12
MAXPRM Maximum number of Parameter sets 10 ’
(NB, Ns, MAXB, LDA) -

3 SHSEQR(S) (LAPACK computation of the Schyy form of 5 Hessenberg matrix) -
4 SHSEQR(V) (LAPACK Computation of the Schur form ang Schur vectors of a Hes-

senberg matrix) -
5. STREVC(L) (LAPACK computation of the the left eigenvectors of a matrix jp Schur

form)

6. STREVC(R) (LAPACK computation of the the right eigenvectors of a matrix ip Schur
form)

76

7. SHSEIN(L) (LAPACK computation of the the left eigenvectors of an upper Hessen-
berg matrix using inverse iteration)

8. SHSEIN(R) (LAPACK computation of the the right eigenvectors of an upper Hessen-
berg matrix using inverse iteration)

9. ORTHES (EISPACK reduction to upper Hessenberg form, to be compared to SGEHRD)

10. HQR (EISPACK computation of eigenvalues only of a Hessenberg matrix, to be com-
pared to SHSEQR(E))

11. HQR2 (EISPACK computation of eigenvalues and eigenvectors of a Hessenberg ma-
trix, to be compared to SHSEQR(V) plus STREVC(R))

12. INVIT (EISPACK computation of the right eigenvectors of an upper Heésenberg ma-
trix using inverse iteration, to be compared to SHSEIN(R)).

Eight different matrix types are provided for timing the nonsymmetric eigenvalue rou-
tines. A variety of matrix types is allowed because the number of iterations to compute the
eigenvalues, and hence the timing, can depend on the type of matrix whose eigendecompo-
sition is desired. The matrices used for timing are of the form XTX~! where X is either
orthogonal (for types 1-4) or random with condition number 1/,/¢ (for types 5-8), where ¢
is the machine roundoff error. The matrix T is upper triangular with random O(1) entries
in the strict upper triangle and has on its diagonal

e evenly spaced entries from 1 down to € with random signs (matrix types 1 and 5)

e geometrically spaced entries from 1 down to £ with random signs (matrix types 2 and
6)

e “clustered” entries 1,¢,...,¢ with random signs (matrix types 3 and 7), or

e real or complex conjugate paired eigenvalues randomly chosen from the interval (¢,1)
(matrix types 4 or 8).

An annotated example of an input file for timing the REAL nonsymmetric eigenproblem
routines is shown below.

NEP: Data file for timing Nonsymmetric Eigenvalue Problem routines

4 Number of values of N

10 20 30 40 Values of N (dimension)

4 Number of values of parameters

1 1 1 1 Values of NB (blocksize)

2 4 6 2 Values of NS (number of shifts)

12 12 12 50 Values of MAXB (multishift crossover pt)
81 81 81 81 Values of LDA (leading dimension)

0.05 Minimum time in seconds

4 Number of matrix types

1346

SHS TTTTTTTTTTTT

77

The first line of the input file must contain the characters NEP in columns 1-3. Lines
2-10 are read using list-directed input and specify the following values:

line 2: The number of values of N
line 3: The values of N, the matrix dimension
line 4: The number of values of the parameters NB, NS, MAXB, and LDA
line 5: The values of NB, the blocksize
line 6: The values of NS, the number of shifts
line 7: The values of MAXB, the maximum blocksize
line 8: The values of LDA, the leading dimension
line 9: The minimum time in seconds that a routine will be timed
line 10: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 8, then line 11 specifies NTYPES integer values which are the
numbers of the matrix types to be used. The remaining lines specify a path name and
the specific computations to be timed. For the nonsymmetric eigenvalue problem, the path
names for the four data types are SHS, DHS, CHS, and ZHS. A line to request all the routines

in the REAL path has the form
SIS TTTTTTTTTTTT

where the first 3 characters specify the path name, and up to 12 nonblank characters may
appear in columns 4-80. If the k** such character is “T’ or ‘t’, the k* routine will be timed.
If at least one but fewer than 12 nonblank characters are specified, the remaining routines
will not be timed. If columns 4-80 are blank, all the routines will be timed, so the input
line

SHS

is equivalent to the line above.

The output is in the form of a table which shows the absolute times in seconds, floating
point operation counts, and megaflop rates for each routine over all relevant input parame-
ters. For the blocked routines, the table has one line for each different value of NB, and for
the SHSEQR routine, one line for each different combination of NS and MAXB as well.

7.4 Timing the Generalized Nonsymmetric Eigenproblem

A separate input file drives the timing codes for the generalized nonsymmetric eigen-
problem. The input file specifies

e N, the matrix size,
e LDA, the leading dimension,
o the test matrix types,

e the routines or sequences of routines from LAPACK or EISPACK to be timed.

78

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value

MAXN Maximum value for N 400

LDAMAX Maximum value for LDA 420

MAXIN Maximum number of values of N 12

MAXPRM Maximum number of values of LDA 10
LDA

The computations that may be timed for the REAL version are

1.

10.

11.

SGGHRD(N) (LAPACK reduction to generalized upper Hessenberg form, without
computing U or V, including a call to SGEQRF and SORMQR to reduce B to upper
triangular form.)

. SGGHRD(Q) (LAPACK reduction to generalized upper Hessenberg form, computing

U but not V, including a call to SGEQRF, SORGQR, and SORMQR to reduce B to
upper triangular form.)

SGGHRD(Z) (LAPACK reduction to generalized upper Hessenberg form, computing
V but not U, including a call to SGEQRF and SORMQR to reduce B to upper
triangular form.)

. SGGHRD(Q,Z) (LAPACK reduction to generalized upper Hessenberg form, comput-

ing U and V, including a call to SGEQRF, SORGQR, and SORMQR to reduce B to
upper triangular form.)

SHGEQZ(E) (LAPACK computation of generalized eigenvalues only of a pair of ma-
trices in generalized Hessenberg form)

. SHGEQZ(S) (LAPACK computation of generalized Schur form of a pair of matrices

in generalized Hessenberg form)

. SHGEQZ(Q) (LAPACK computation of generalized Schur form of a pair of matrices

in generalized Hessenberg form and Q)

. SHGEQZ(Z) (LAPACK computation of generalized Schur form of a pair of matrices

in generalized Hessenberg form and Z)

. SHGEQZ(Q,Z) (LAPACK computation of generalized Schur form of a pair of matrices

in generalized Hessenberg form and Q and Z)

STGEVC(A,L) (LAPACK computation of the the left generalized eigenvectors of a
matrix pair in generalized Schur form)

STGEVC(B,L) (LAPACK computation of the the left generalized eigenvectors of a
matrix pair in generalized Schur form, back transformed by Q)

79

12. STGEVC(A,R) (LAPACK computation of the the right generalized eigenvectors of a
matrix pair in generalized Schur form)

13. STGEVC(B,R) (LAPACK computation of the the right generalized eigenvectors of a
matrix pair in generalized Schur form, back transformed by Z)

14. QZHES(F) (EISPACK reduction to generalized upper Hessenberg form, with MATZ
=.FALSE., so V is not computed.)

15. QZHES(T) (EISPACK reduction to generalized upper Hessenberg form, with MATZ
=.TRUE., so V is computed.)

16. QZIT(F) (QZIT followed by QZVAL with MATZ=.FALSE.: EISPACK computation
of generalized eigenvalues only of a pair of matrices in generalized Hessenberg form)

17. QZIT(T) (QZIT followed by QZVAL with MATZ=.TRUE.: EISPACK computation
of generalized Schur form of a pair of matrices in generalized Hessenberg form and Z)

18. QZVEC (EISPACK computation of the the right generalized eigenvectors of a matrix
pair in generalized Schur form, back transformed by Z)

Note that SGGHRD is timed along with the QR routines that reduce B to upper-triangular
form; this is to allow a fair comparison with the EISPACK routine QZHES.

Four different matrix types are provided for timing the generalized nonsymmetric eigen-
value routines. A variety of matrix types is allowed because the number of iterations to
compute the eigenvalues, and hence the timing, can depend on the type of matrix whose
eigendecomposition is desired. The matrices used for timing have at least one zero, one
infinite, and one singular (@ = 8 = 0) generalized eigenvalue. The remaining eigenvalues
are sometimes real and sometimes complex, distributed in magnitude as follows:

e “clustered” entries 1,¢,...,€ with random signs;
e evenly spaced entries from 1 down to € with random signs;
e geometrically spaced entries from 1 down to ¢ with random signs;

o eigenvalues randomly chosen from the interval (g,1).

7.4.1 Input File for Timing the Generalized Nonsymmetric Eigenproblem

An annotated example of an input file for timing the REAL generalized nonsymmetric
eigenproblem routines is shown below.

GEP: Data file for timing Generalized Nonsymmetric Eigenvalue Problem

4 Number of values of N

50 100 150 200 Values of N (dimension)

4 Number of parameter values

i 10 1 10 Values of NB (blocksize -- used by SGEQRF, etc.)
201 201 200 200 Values of LDA (leading dimension)

80

—A

0.0 Minimum time in seconds
5 Number of matrix types
S8 ¢ TTTTTTTTTTTTTTTTTT

The first line of the input file must contain the characters GEP in columns 1-3. Lines
2-12 are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: Number of values of the parameters

line 5: The values for NB, the blocksize

line 6: The values for the leading dimension LDA

line 7: The minimum time (in seconds) that a subroutine will be
timed. If TIMMIN is zero, each routine should be timed only
once.

line 8: NTYPES, the number of matrix types to be used

If NTYPES >= 4, all the types are used. If 0 < NTYPES < 4, then line 9 specifies NTYPES
integer values, which are the numbers of the matrix types to be used. The remaining lines
specify a path name and the specific routines to be timed. For the generalized nonsymmetric
eigenvalue problem, the path names for the four data types are SHG, CHG, DHG, and ZHG. A
line to request all the routines in the REAL path has the form

S8&¢ TTTTTTTTTTTTTTTTTT

where the first 3 characters specify the path name, and up to MAXTYP nonblank characters
may appear in columns 4-80. If the k** such character is "T’ or ’t’, the ktk routine will be
timed. If at least one but fewer than 18 nonblank characters are specified, the remaining
routines will not be timed. If columns 4-80 are blank, all the routines will be timed, so the
input line

SHG

is equivalent to the line above.

The output is in the form of a table which shows the absolute times in seconds, floating
point operation counts, and megaflop rates for each routine ovér all relevant input parame-
ters. For the timings of SGGHRD plus appropriate QR routines, the table has one line for
each different combination of LDA and NB. For other routines, the table has one line for
each distinct value of LDA.

7.5 Timing the Symmetric and Generalized Symmetric Eigenproblem

A separate input file drives the timing codes for the symmetric eigenproblem. The input
file specifies

e N, the matrix size
e pairs of parameter values (NB, LDA) specifying the block size NB and the leading
dimension LDA

81

o the test matrix types

e the routines or sequences of routines from LAPACK or EISPACK to be timed.

A goal of this timing code is to determine the values of NB which maximize the speed of
the block algorithms.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value
MAXN Maximum value for N or NB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of values of N 12

MAXPRM Maximum number of pairs of values (NB, LDA) 10

The computations that may be timed depend on whether the data is real or complex.
For the REAL version the possible computations are

1.
2.

10.

11.

SSYTRD (LAPACK reduction to symmetric tridiagonal form)

SSTEQR(N) (LAPACK computation of eigenvalues only of a symmetric tridiagonal
matrix)

SSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix)

SSTERF (LAPACK computation of the eigenvalues only of a symmetric tridiagonal
matrix using a square-root free algorithm)

SPTEQR(COMPZ="N’) (LAPACK computation of the eigenvalues of a symmetric
positive definite tridiagonal matrix)

SPTEQR(COMPZ="V") (LAPACK computation of the eigenvalues and eigenvectors
of a symmetric positive definite tridiagonal matrix)

. SSTEBZ(RANGE="T") (LAPACK computation of the eigenvalues in a specified inter-

val for a symmetric tridiagonal matrix)

SSTEBZ(RANGE="V’) (LAPACK computation of the eigenvalues in a half-open in-
terval for a symmetric tridiagonal matrix)

. SSTEIN (LAPACK computation of the eigenvectors of a symmetric tridiagonal matrix

corresponding to specified eigenvalues using inverse iteration)

TRED1 (EISPACK reduction to symmetric tridiagonal form, to be compared to
SSYTRD)

IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-
trix, to be compared to SSTEQR(N))

82

12.

13.

14.

15.

16.

IMTQL2 (EISPACK computation of eigenvalues and eigenvectors of a symmetric tridi-
agonal matrix, to be compared to SSTEQR(V))

TQLRAT (EISPACK computation of eigenvalues only of a symmetric tridiagonal
matrix, to be compared to SSTERF).

TRIDIB (EISPACK computation of the eigenvalues of)(compare with SSTEBZ -
RANGE="T)

BISECT (EISPACK computation of the eigenvalues of)(compare with SSTEBZ -
RANGE="V’)

TINVIT (EISPACK computation of the eigenvectors of a triangular matrix using
inverse iteration) (compare with SSTEIN)

For complex matrices the possible computations are

1.

CHETRD (LAPACK reduction of a complex Hermitian matrix to real symmetric
tridiagonal form)

CSTEQR(N) (LAPACK computation of eigenvalues only of a symmetric tridiagonal
matrix)

CUNGTR+CSTEQR(V) (LAPACK computation of the eigenvalues and eigenvectors
of a symmetric diagonal matrix)

CPTEQR(VECT="N’) (LAPACK computation of the eigenvalues only of a symmetric
positive definite tridiagonal matrix)

CUNGTR+CPTEQR(VECT="V’) (LAPACK computation of the eigenvalues and
eigenvectors of a symmetric positive definite tridiagonal matrix)

SSTEBZ+CSTEIN+CUNMTR (LAPACK computation of the eigenvalues and eigen-
vectors of a symmetric tridiagonal matrix)

. HTRIDI (EISPACK reduction to symmetric tridiagonal form, to be compared to

CHETRD)

. IMTQL1 (EISPACK computation of eigenvalues only of a symmetric tridiagonal ma-

trix, to be compared to CSTEQR(V))

. IMTQL2+HTRIBK (EISPACK computation of eigenvalues and eigenvectors of a com-

plex Hermitian matrix given the reduction to real symmetric tridiagonal form, to be

compared to CUNGTR+CSTEQR).

Four different matrix types are provided for timing the symmetric eigenvalue routines.
The matrices used for timing are of the form X DX ™!, where X is orthogonal and D is
diagonal with entries

e evenly spaced entries from 1 down to ¢ with random signs (matrix type 1),

83

e geometrically spaced entries from 1 down to ¢ with random signs (matrix type 2),
e “clustered” entries 1,¢,...,e with random signs (matrix type 3), or
e eigenvalues randomly chosen from the interval (g,1) (matrix type 4).

An annotated example of an input file for timing the REAL symmetric eigenproblem
routines is shown below.

SEP: Data file for timing Symmetric Eigenvalue Problem routines

5 Number of values of N

10 20 40 60 80 Values of N (dimension)

2 Number of values of parameters

1 16 Values of NB (blocksize)

81 81 Values of LDA (leading dimension)
0.05 Minimum time in seconds

4 Number of matrix types

SST TTTTTTTT

The first line of the input file must contain the characters SEP in columns 1-3. Lines 2-8
are read using list-directed input and specify the following values:

line 2: The number of values of N

line 3: The values of N, the matrix dimension

line 4: The number of values of the parameters NB and LDA

line 5: The values of NB, the blocksize

line 6: The values of LDA, the leading dimension

line 7: The minimum time in seconds that a routine will be timed
line 8: NTYPES, the number of matrix types to be used

If 0 < NTYPES < 4, then line 9 specifies NTYPES integer values which are the numbers
of the matrix types to be used. The remaining lines specify a path name and the specific
computations to be timed. For the symmetric eigenvalue problem, the path names for the
four data types are SST, DST, CST, and ZST. The (optional) characters after the path name
indicate the computations to be timed, as in the input file for the nonsymmetric eigenvalue
problem.

7.6 Timing the Singular Value Decomposition

A separate input file drives the timing codes for the Singular Value Decomposition
(SVD). The input file specifies

e pairs of parameter values (M, N) specifying the matrix row dimension M and the
matrix column dimension N

e pairs of parameter values (NB, LDA) specifying the block size NB and the leading
dimension LDA

o the test matrix types

84

e the routines or sequences of routines from LAPACK or LINPACK to be timed.

A goal of this timing code is to determine the values of NB which maximize the speed of
the block algorithms.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main timing program:

Parameter Description Value
MAXN Maximum value for M, N, or NB 400
LDAMAX Maximum value for LDA 420
MAXIN Maximum number of pairs of values (M, N) 12

MAXPRM Maximum number of pairs of values (NB, LDA) 10

The computations that may be timed for the REAL version are
1. SGEBRD (LAPACK reduction to bidiagonal form)
2. SBDSQR (LAPACK computation of singular values only of a bidiagonal matrix)

3. SBDSQR(L) (LAPACK computation of the singular values and left singular vectors
of a bidiagonal matrix)

4. SBDSQR(R) (LAPACK computation of the singular values and right singular vectors
of a bidiagonal matrix)

5. SBDSQR(B) (LAPACK computation of the singular values and right and left singular

vectors of a bidiagonal matrix)

6. SBDSQR(V) (LAPACK computation of the singular values and multiply square ma-
trix of dimension min(M,N) by transpose of left singular vectors)

7. LAPSVD (LAPACK singular values only of a dense matrix, using SGEBRD and
SBDSQR)

8. LAPSVD(]l) (LAPACK singular values and min(M,N) left singular vectors of a dense
matrix, using SGEBRD, SORGBR and SBDSQR(L))

9. LAPSVD(L) (LAPACK singular values and M left singular vectors of a dense matrix,
using SGEBRD, SORGBR and SBDSQR(L))

10. LAPSVD(R) (LAPACK singular values and N right singular vectors of a dense matrix,
using SGEBRD, SORGBR and SBDSQR(R))

11. LAPSVD(B) (LAPACK singular values, min(M,N) left singular vectors, and N right
singular vectors of a dense matrix, using SGEBRD, SORGBR and SBDSQR(B))

12. LINSVD (LINPACK singular values only of a dense matrix using SSVDC, to be
compared to LAPSVD)

13. LINSVD(1) (LINPACK singular values and min(M,N) left singular vectors of a dense
matrix using SSVDC, to be compared to LAPSVD(1))

85

14.

15.

16.

LINSVD(L) (LINPACK singular values and M left singular vectors of a dense matrix
using SSVDC, to be compared to LAPSVD(L))

LINSVD(R) (LINPACK singular values and N right singular vectors of a dense matrix
using SSVDC, to be compared to LAPSVD(R))

LINSVD(B) (LINPACK singular values, min(M,N) left singular vectors and N right
singular vectors of a dense matrix using SSVDC, to be compared to LAPSVD(B)).

Five different matrix types are provided for timing the singular value decomposition
routines. Matrix types 1-3 are of the form UDV, where U and V are orthogonal or unitary,
and D is diagonal with entries

e evenly spaced entries from 1 down to € with random signs (matrix type 1),

e geometrically spaced entries from 1 down to ¢ with random signs (matrix type 2), or

e “clustered” entries 1,¢, ..., with random signs (matrix type 3).

Matrix type 4 has in each entry a random number drawn from [—1,1]. Matrix type 5 is
a nearly bidiagonal matrix, where the upper bidiagonal entries are exp(—2rloge) and the
nonbidiagonal entries are re, where r is a uniform random number drawn from [0,1] (a
different r for each entry).

An annotated example of an input file for timing the REAL singular value decomposition
routines is shown below.

Decomposition routines
values of M and N

M (row dimension)

N (column dimension)
values of parameters
NB (blocksize)

LDA (leading dimension)

Minimum time in seconds
Number of matrix types

SVD: Data file for timing Singular Value
7 Number of
10 10 20 20 20 40 40 Values of
10 20 10 20 40 20 40 Values of
1 Number of
1 Values of
81 Values of
0.05

4

1234

SBD TTTTTTTTTTTTTTTT

The first line of the input file must contain the characters SVD in columns 1-3. Lines 2-9
are read using list-directed input and specify the following values:

line 2:
line 3:
line 3:
line 4:
line 5:
line 6:
line 7:
line 8:

The number of values of M and N
The values of M, the matrix row dimension

The values of N, the matrix column dimension

The number of values of the parameters NB and LDA

The values of NB, the blocksize

The values of LDA, the leading dimension
The minimum time in seconds that a routine will be timed
NTYPES, the number of matrix types to be used

86

If 0 < NTYPES < 5, then line 9 specifies NTYPES integer values which are the numbers
of the matrix types to be used. The remaining lines specify a path name and the specific
computations to be timed. For the SVD, the path names for the four data types are SBD,
DBD, CBD, and ZBD. The (optional) characters after the path name indicate the computations
to be timed, as in the input file for the nonsymmetric eigenvalue problem.

7.7 Timing the Generalized Singular Value Decomposition

At the present time, no timing program for GSVD is provided. The main reason for
this omission is because the GSVD subroutine is essentially BLAS 1 sequential code in the

current implementation.

7.8 Timing the Generalized QR and RQ Factorizations

At the present time, no timing program for the GQR and GRQ factorizations is provided.
The main reason for this omission is because these codes rely heavily on the QR and RQ

factorizations which already have existing timing code.

7.9 Timing the Generalized Linear Regression Model Problem

At the present time, no timing program for GLM is provided. The main reason for
this omission is because the major floating point operations of this code is in the GQR
factorization. The GQR factorization relies heavily on the QR and RQ factorizations which

already have existing timing code.

7.10 Timing the Constrained Linear Least Squares Problem

At the present time, no timing program for LSE is provided. The main reason for
this omission is because the major floating point operations of this code is in the GRQ
factorization. The GRQ factorization relies heavily on the QR and RQ factorizations which

already have existing timing code.

Acknowledgments

Zhaojun Bai of the University of Kentucky, Jim Demmel of the University of California-
Berkeley, Sven Hammarling of NAG Ltd., and Alan McKenney of the Courant Institute of
Mathematical Sciences, New York University, also contributed to this report.

87

Appendix A
LAPACK Routines

In this appendix, we review the subroutine naming scheme for LAPACK as proposed in (3]
and indicate by means of a table which subroutines are included in this release. We also
list the driver routines.

Fach subroutine name in LAPACK is a coded specification of the computation done by
the subroutine. All names consist of six characters in the form TXXYYY. The first letter,
T, indicates the matrix data type as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

z COMPLEX*16 (if available)

The next two letters, XX, indicate the type of matrix. Most of these two-letter codes
apply to both real and complex routines; a few apply specifically to one or the other, as
indicated below:

BD bidiagonal

GB general band

GE general (i.e. unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e. a pair of general matrices)

GT general tridiagonal

HB (complex) Hermitian band

HE (complex) Hermitian :

HG upper Hessenberg matrix, generalized problem (i.e., a Hessenberg and a
triangular matrix)

HP (complex) Hermitian, packed storage

HS upper Hessenberg

OP (real) orthogonal, packed storage

OR (real) orthogonal

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PP symmetric or Hermitian positive definite, packed storage
PT symmetric or Hermitian positive definite tridiagonal

88

SB

SP

ST

SY
TB
TG
TP
TR
TZ
UN
UP

(real) symmetric band

symmetric, packed storage

symmetric tridiagonal

symmetric

triangular band

triangular matrices, generalized problem (i.e., a pair of triangular matrices)
triangular, packed storage

triangular (or in some cases quasi-triangular)
trapezoidal

(complex) unitary

(complex) unitary, packed storage

The last three characters, YYY, indicate the computation done by a particular subrou-
tine. Included in this release are subroutines to perform the following computations:

BAK
BAL
BRD
CON
EBZ
EIN

EQR
EQU
EQZ
ERF

EVC
EXC
GBR
GHR
GLQ
GQL
GQR
GRQ
GST
GTR
HRD
LQF
MBR
MHR
MLQ
MQL
MQR
MRQ
MTR

back transformation of eigenvectors after balancing

permute and/or balance to isolate eigenvalues

reduce to bidiagonal form by orthogonal transformations

estimate condition number

compute selected eigenvalues by bisection

compute selected eigenvectors by inverse iteration

compute eigenvalues and/or the Schur form using the QR algorithm
equilibrate a matrix to reduce its condition number

compute generalized eigenvalues and/or generalized Schur form by QZ method
compute eigenvectors using the Pal-Walker-Kahan variant of the QL or QR
algorithm

compute eigenvectors from Schur factorization

swap adjacent diagonal blocks in a quasi-upper triangular matrix

generate the orthogonal/unitary matrix from xGEBRD

generate the orthogonal/unitary matrix from xGEHRD

generate the orthogonal/unitary matrix from xGELQF

generate the orthogonal/unitary matrix from xGEQLF

generate the orthogonal/unitary matrix from xGEQRF

generate the orthogonal/unitary matrix from xGERQF

reduce a symmetric-definite generalized eigenvalue problem to standard form
generate the orthogonal/unitary matrix from xxxTRD

reduce to upper Hessenberg form by orthogonal transformations

compute an LQ factorization without pivoting

multiply by the orthogonal/unitary matrix from xGEBRD

multiply by the orthogonal/unitary matrix from xGEHRD

multiply by the orthogonal/unitary matrix from xGELQF

multiply by the orthogonal/unitary matrix from xGEQLF

multiply by the orthogonal/unitary matrix from xGEQRF

multiply by the orthogonal/unitary matrix from xGERQF

multiply by the orthogonal/unitary matrix from xxxTRD

89

QLF
QPF
QRF
RFS
RQF
SEN

SJA
SNA
SQR
SVP
SYL
TRD
TRF
TRI
TRS

compute a QL factorization without pivoting

compute a QR factorization with column pivoting

compute a QR factorization without pivoting

refine initial solution returned by TRS routines

compute an RQ factorization without pivoting

compute a basis and/or reciprocal condition number (sensitivity) of an
invariant subspace

obtain singular values, and optionally vectors, using Jacobi’s method
estimate reciprocal condition numbers of eigenvalue/-vector pairs
compute singular values and/or singular vectors using the QR algorithm
preprocessing for GSVD

solve the Sylvester matrix equation

reduce a symmetric matrix to real symmetric tridiagonal form
compute a triangular factorization (LU, Cholesky, etc.)

compute inverse (based on triangular factorization)

solve systems of linear equations (based on triangular factorization)

Given these definitions, the following table indicates the LAPACK subroutines for the
solution of systems of linear equations:

HE HP UN
GE GG GB GT PO PP PB PT SY SP TR TP TB OR
TRF e X X X X X X X X
TRS X X X X X X X X X X X X
RFS X X X X X X X X X X X X
TRI X X X X X X X
CON X X X X X X X X X X X X
EQU X X X X X
QPF X
QRFf x «x
GQR! X
MQR! X

- also RQ, QL, and LQ

The following table indicates the LAPACK subroutines for finding eigenvalues and eigen-
vectors or singular values and singular vectors:

90

HE HP HB

GE GG HS HG TR TG SY SP SB ST PT BD
HRD x X
TRD X X X
BRD x
EQR X X X
EQZ X
EIN X X
EVC X X
EBZ X
ERF X
SQR X
SEN X
SJA X
SNA X
SVPp X
SYL X
EXC X
BAL x X
BAK x X
GST X X

Orthogonal/unitary transformation routines have also been provided for the reductions

that

use elementary transformations.

UN UP
OR OP
GHR x
GTR x X
GBR x
MHR x
MTR x X
MBR x

In addition, a number of driver routines are provided with this release. The naming
convention for the driver routines is the same as for the LAPACK routines, but the last
3 characters YYY have the following meanings (note an ‘X’ in the last character position
indicates a more expert driver):

Sv

factor the matrix and solve a system of equations

SVX equilibrate, factor, solve, compute error bounds and do iterative refinement, and

estimate the condition number

GLM solves the generalized linear regression model

LS
LSE
LSX

LSS
EV

solve over- or underdetermined linear system using orthogonal factorizations
solves the constrained linear least squares problem

compute a minimum-norm solution using a complete orthogonal factorization
(using QR with column pivoting)

solve least squares problem using the SVD

compute all eigenvalues and/or eigenvectors

91

EVX compute selected eigenvalues and eigenvectors

ES compute all eigenvalues, Schur form, and/or Schur vectors

ESX compute all eigenvalues, Schur form, and/or Schur vectors and the conditioning
of selected eigenvalues or eigenvectors

GV compute generalized eigenvalues and/or generalized eigenvectors

GS compute generalized eigenvalues, Schur form, and/or Schur vectors

SVD compute the SVD and/or singular vectors

The driver routines provided in LAPACK are indicated by the following table:

HE HP HB
GE GG GB GT PO PP PB PT SY SP SB ST
SV X X X X X X X X X
SvX X X X X X X X X X
GLM X
LS C X
LSE X
LSX X
LSS X
EV X X X X X
EVX X X X X X
ES X
ESX X
GV X X X
GS X
SVD X X

92

Appendix B
LAPACK Auxiliary Routines

This appendix lists all of the auxiliary routines (except for the BLAS) that are called from
the LAPACK routines. These routines are found in the directory LAPACK/SRC. Routines
specified with an underscore as the first character are available in all four data types (S, D,
C, and Z), except those marked (real), for which the first character may be ‘S’ or ‘D’, and
those marked (complex), for which the first character may be ‘C’ or ‘Z’.

Special subroutines:
XERBLA Error handler for the BLAS and LAPACK routines

Special functions:

ILAENV INTEGER Return block size and other parameters

LSAME LOGICAL Return .TRUE. if two characters are the same
regardless of case

LSAMEN LOGICAL Return .TRUE. if two character strings are the
same regardless of case

SLAMCH REAL Return single precision machine parameters

DLAMCH DOUBLE PRECISION Return double precision machine parameters
Functions for computing norms:

-LANGB General band matrix

-LANGE General matrix

-LANGT General tridiagonal matrix
-LANHB (complex) Hermitian band matrix
-LANHE (complex) Hermitian matrix
-LANHP (complex) Hermitian packed matrix
-LANHS Upper Hessenberg matrix

-LANHT (complex) Hermitian tridiagonal matrix
_LANSB Symmetric band matrix

-LANSP Symmetric packed matrix

-LANST (real) Symmetric tridiagonal matrix
_LANSY Symmetric matrix

93

-LANTB
-LANTP
-LANTR

Triangular band matrix
Triangular packed matrix
Trapezoidal matrix

Extensions to the Level 1 and 2 BLAS:

CROT

CSROT
ZDROT
SYMV
SPMV
SYR
SPR
ICMAX1
IZMAX1
SCSUM1
DZSUM1
-RSCL
CSRSCL
ZDRSCL

Apply a plane rotation to a pair of complex vectors, where the cos is real
and the sin is complex

Apply a real plane rotation to a pair of complex vectors
Double precision version of CSROT

(complex) Symmetric matrix times vector

(complex) Symmetric packed matrix times vector

(complex) Symmetric rank-1 update

(complex) Symmetric rank-1 update of a packed matrix

Find the index of element whose real part has max. abs. value
Find the index of element whose real part has max. abs. value
Sum absolute values of a complex vector

Double precision version of SCSUM1

(real) Scale a vector by the reciprocal of a constant

Scale a complex vector by the reciprocal of a real constant
Double precision version of CSRSCL

Level 2 BLAS versions of the block routines:

-GBTF2
-GEBD2
-GEHD2
-GELQ2
-GEQL2
-GEQR2
-GERQ2
-GETF2
-HEGS2

-HETD2
-HETF2
-ORG2L
-ORG2R
-ORGL2
-ORGR2
-ORM2L
-ORM2R
-ORML2
-ORMR2
-PBTF2
-POTF2
SYGS2

compute the LU factorization of a general band matrix

reduce a general matrix to bidiagonal form

reduce a square matrix to upper Hessenberg form

compute an LQ factorization without pivoting

compute a QL factorization without pivoting

compute a QR factorization without pivoting

compute an RQ factorization without pivoting

compute the LU factorization of a general matrix

(complex) reduce a Hermitian-definite generalized eigenvalue problem to
standard form

(complex) reduce a Hermitian matrix to real tridiagonal form
(complex) compute diagonal pivoting factorization of a Hermitian matrix
(real) generate the orthogonal matrix from xGEQLF

(real) generate the orthogonal matrix from xGEQRF

(real) generate the orthogonal matrix from xGEQLF

(real) generate the orthogonal matrix from xGERQF

(real) multiply by the orthogonal matrix from xGEQLF

(real) multiply by the orthogonal matrix from xGEQRF

(real) multiply by the orthogonal matrix from xGELQF

(real) multiply by the orthogonal matrix from xGERQF

compute the Cholesky factorization of a positive definite band matrix
compute the Cholesky factorization of a positive definite matrix
(real) reduce a symmetric-definite generalized eigenvalue problem to -

94

SYTD2
SYTF2
-TRTI2
-UNG2L
-UNG2R
-UNGL2
-UNGR2
-UNM2L
-UNM2R
-UNML2
-UNMR2

standard form

(real) reduce a symmetric matrix to tridiagonal form
compute the diagonal pivoting factorization of a symmetric matrix
compute the inverse of a triangular matrix

(complex) generate the unitary matrix from xGEQLF
(complex) generate the unitary matrix from xGEQRF
(complex) generate the unitary matrix from xGEQLF
(complex) generate the unitary matrix from xGERQF
(complex) multiply by the unitary matrix from xGEQLF
(complex) multiply by the unitary matrix from xGEQRF
(complex) multiply by the unitary matrix from xGELQF
(complex) multiply by the unitary matrix from xGERQF

Other LAPACK auxiliary routines:

-LABAD
-LABRD
-LACGV
-LACRT
-LACON
-LACPY
-LADIV
-LAE2
-LAEBZ

-LAEIN

-LAEQZ
-LAESY

-LAEV2

-LAEXC
-LAG2

-LAGS2
-LAGTF
-LAGTM
-LAGTS
-LAHEF
-LAHQR

-LAHRD
-LAIC1

(real) returns square root of underflow and overflow if exponent range is large
reduce NB rows or columns of a matrix to upper or lower bidiagonal form
(complex) conjugates a complex vector of length n

(complex) applies a plane rotation to two complex vectors

estimate the norm of a matrix for use in condition estimation

copy a matrix to another matrix

perform complex division in real arithmetic

(real) compute eigenvalues of a 2-by-2 real symmetric matrix

compute and use the count of eigenvalues of a symmetric

tridiagonal matrix

Use inverse iteration to find a specified right and/or left eigenvector of an
upper Hessenberg matrix

unblocked single-/double-shift version of QZ method

(complex) Compute eigenvalues and eigenvectors of a complex symmetric
2-by-2 matrix

Compute eigenvalues and eigenvectors of a 2-by-2 real symmetric or complex
Hermitian matrix

swap adjacent diagonal blocks in a quasi-upper triangular matrix
compute the eigenvalues of a 2-by-2 generalized

eigenvalue problem with scaling to avoid over-/underflow

computes 2-by-2 orthogonal matrices

(real) factorizes the matrix (T — A\JI)

matrix-vector product where the matrix is tridiagonal

solves a system of equations (T — AI)z = y where

T is a tridiagonal matrix

(complex) compute part of the diagonal pivoting factorization of a Hermitian
matrix

Find the Schur factorization of a Hessenberg matrix (modified version of
HQR from EISPACK)

reduce NB columns of a general matrix to Hessenberg form

apply one step of incremental condition estimation

95

-LALN?2
-LANV2
-LAPLL
-LAPMT
-LAPY?2
-LAPY3
-LAQGB
-LAQGE
-LAQSB
-LAQSP
-LAQSY
-LAQTR
-LAR2V

-LARF
-LARFB
-LARFG
-LARFT
-LARFX
-LARGV
-LARNV
-LARTG
-LARTV
-LARUV
-LAS2
-LASCL
-LASET

-LASR
-LASSQ
-LASV2

-LASWP
-LASY?2

-LASYF
-LATBS
-LATPS
-LATRD

-LATRS
-LATZM
-LAUU2
-LAUUM
-LAZRO

(real) Solve a 1-by-1 or 2-by-2 linear system

(real) computes the Schur factorization of a real 2-by-2 nonsymmetric matrix

measures linear dependence of two vectors

applies forward or backward permutations to the columns of a matrix
(real) Compute square root of X**2 + Y**2

(real) Compute square root of X**2 + Y**2 + Z**2

equilibrate a general band matrix

equilibrate a general matrix

equilibrate a symmetric band matrix

equilibrate a symmetric packed matrix

equilibrate a symmetric matrix

(real) solve a real quasi-triangular system

apply real plane rotations from both sides to a sequence

of 2-by-2 real symmetric matrices

apply (multiply by) an elementary reflector

apply (multiply by) a block reflector

generate an elementary reflector

form the triangular factor of a block reflector

unrolled version of xXLARF

generate a vector of plane rotations

returns a vector of random numbers from a uniform or normal distribution
generate a plane rotation

apply a vector of plane rotations to a pair of vectors

(real) returns a vector of real random numbers from a uniform distribution
(real) Compute singular values of a 2-by-2 triangular matrix

scale a matrix by CTO/CFROM

initializes a matrix to BETA on the diagonal and ALPHA on

the offdiagonals

Apply a sequence of plane rotations to a rectangular matrix

Compute a scaled sum of squares of the elements of a vector

(real) Compute singular values and singular vectors of a 2-by-2 triangular
matrix

Perform a series of row interchanges

(real) solve for a matrix X that satisfies the equation

TL+X +ISGN*X*TR=SCALE =+ B

compute part of the diagonal pivoting factorization of a symmetric matrix
solve a triangular band system with scaling to prevent overflow

solve a packed triangular system with scaling to prevent overflow
reduce NB rows and columns of a real symmetric or complex Hermitian
matrix to tridiagonal form

solve a triangular system with scaling to prevent overflow

apply a Householder matrix generated by xXTZRQF to a matrix
Unblocked version of .LAUUM

Compute the product U*U’ or L’*L (blocked version)

Initialize a rectangular matrix (usually to zero)

96

Appendix C

Operation Counts for the BLAS
and LAPACK

In this appendix we reproduce in tabular form the formulas we have used to compute
operation counts for the BLAS and LAPACK routines. In single precision, the functions
SOPBL2, SOPBL3, SOPAUX, and SOPLA return the operation counts for the Level 2
BLAS, Level 3 BLAS, LAPACK auxiliary routines, and LAPACK routines, respectively.
All four functions are found in the directory LAPACK/TIMING/LIN.

In the tables below, we give operation counts for the single precision real dense and
banded routines (the counts for the symmetric packed routines are the same as for the dense
routines). Separate counts are given for multiplies (including divisions) and additions, and
the total is the sum of these expressions. For the complex analogues of these routines, each
multiplication would count as 6 operations and each addition as 2 operations, so the total
would be different. For the double precision routines, we use the same operation counts as
for the single precision real or complex routines.

Operation Counts for the Level 2 BLAS

The four parameters used in counting operations for the Level 2 BLAS are the matrix
dimensions m and n and the upper and lower bandwidths k, and k; for the band routines
(k if symmetric or triangular). An exact count also depends slightly on the values of the
scaling factors a and §, since some common special cases (such as @ = 1 and 8 = 0) can

be treated separately.
The count for SGBMYV from the Level 2 BLAS is as follows:

SGBMV multiplications: mn — (m —k;—1)(m — k1)/2 — (n — k, — 1)(n — k,)/2
additions: mn—(m—ki—1)(m-Fk)/2—(n-k,—1)(n—k,)/2
total flops: 2mn — (m—ki—1)(m—ki) — (n —ky, — 1)(n — k)

plus m multiplies if @ # +1 and another m multiplies if 3 # +1 or 0. The other Level 2
BLAS operation counts are shown in Table 1.

97

Operation Counts for the Level 3 BLAS

Three parameters are used to count operations for the Level 3 BLAS: the matrix di-
mensions m, n, and k. In some cases we also must know whether the matrix is multiplied
on the left or right. An exact count depends slightly on the values of the scaling factors a
and f, but in Table 2 we assume these parameters are always 1 or 0, since that is how

they are used in the LAPACK routines.

Operation Counts for the LAPACK Routines

The parameters used in counting operations for the LAPACK routines are the matrix
dimensions m and 7, the upper and lower bandwidths k, and k; for the band routines (k
if symmetric or triangular), and NRHS, the number of right hand sides in the solution
phase. The operation counts for the LAPACK routines not listed here are not computed
by a formula. In particular, the operation counts for the eigenvalue routines are problem-
dependent and are computed during execution of the timing program.

[TLevel 2 BLAS | multiplications | additions [total flops |
SGEMV 1.4 mn mn 2mn
ssYymMv 34 | n? n? 2n?
SSBMV 34 | n(2k+1)—k(k+1) | n(2k+1)—k(k+1) | n(4k+2) - 2k(k + 1)
STRMV 345 | n(n+1)/2 (n—1)n/2 n?
STBMV 345 | n(k + 1) — k(k +1)/2 | nk — k(k+1)/2 n(2k + 1) — k(k + 1)
STRSV ° n(n +1)/2 (n—1)n/2 n?
STBSV 9 n(k +1) — k(k +1)/2 | nk = k(k+1)/2 n(2k + 1) — k(k + 1)
SGER ! mn mn 2mn
SSYR. 3 n(n +1)/2 n(n +1)/2 n(n +1)
SSYR2 3 n(n+1) n? 2n? +n

1 — Plus m multiplies if @ # %1

9 — Plus m multiplies if § # £1 or 0

3 — Plus n multiplies if @ # 1

4 — Plus n multiplies if 8 # 1 or 0

5 — Less n multiplies if matrix is unit triangular

Table 1: Operation counts for the Level 2 BLAS

98

| Level 3 BLAS | multiplications | additions total flops |

SGEMM mkn mkn 2mkn
SSYMM (SIDE ="'L’) | m?n m?n 2m?n
SSYMM (SIDE = 'R’) | mn? mn? 2mn?
SSYRK kn(n +1)/2 kn(n+1)/2 | kn(n + 1)
SSYR2K kn? kn®+n 2kn? +n
STRMM (SIDE ='L’) | nm(m+1)/2 | nm(m —1)/2 [nm?
STRMM (SIDE = 'R’) | mn(n+1)/2 | mn(n—1)/2 | mn?
STRSM (SIDE ='L’) | nm(m+1)/2 | nm(m —1)/2 | nm?
STRSM (SIDE = 'R’) | mn(n+1)/2 | mn(n—1)/2 | mn?

Table 2: Operation counts for the Level 3 BLAS

LAPACK routines:

SGETRF

SGETRI

SGETRS

SPOTRF

SPOTRI

multiplications: 1/2mn? —1/6n3 + 1/2mn — 1/2n% +2/3n
additions: 1/2mn? — 1/6n3 - 1/2mn+ 1/6n
total flops: mn® — 1/3n° — 1/2n% + 5/6n
multiplications: 2/3n3 4+ 1/2n2 + 5/6n

additions: 2/3n3 —3/2n? + 5/6n

total flops: 4/3n° —n®+5/3n
multiplications: NRHS [n?]

additions: NRHS [n? — n]

total flops: NRHS [2n? - n]

multiplications: 1/6n3 + 1/2n% + 1/3n

additions: 1/6n3 — 1/6n

total flops: 1/3n% +1/2n% + 1/6n
multiplications: 1/3n3 4+ n? 4+ 2/3n

additions: 1/3n3 - 1/2n2 + 1/6n

total flops: 2/3n°+1/2n*+ 5/6n

99

R L y——

SPOTRS

SPBTRF

SPBTRS

SSYTRF

SSYTRI

SSYTRS

multiplications: NRHS [n? + n]

additions: NRHS [n2 - n]

total flops: NRHS [2n¢]

multiplications: n(1/2k% + 3/2k + 1) — 1/3k3 — k* — 2/3k
additions: n(1/2k% + 1/2k) — 1/3k% — 1/2k* — 1/6k
total flops: n(k? + 2k + 1) — 2/3k° — 3/2k* — 5/6k
multiplications: NRHS [2nk + 2n — k? — k]

additions: NRHS [2nk — k? — k]

total flops: NRHS [4nk + 2n — 2k* — 2k]
multiplications: 1/6n3 + 1/2n% +10/3n

additions: 1/6n3 —1/6n

total flops: 1/3n% +1/2n* + 19/6n

multiplications: 1/3n3+2/3n

additions: 1/3n3 - 1/3n

total flops: 2/3n° +1/3n

multiplications: NRHS [n? + n]

additions: NRHS [n? — n]

total flops: NRHS [2n?]

SGEQRF or SGEQLF (m > n)

multiplications:

additions:

mn? — 1/3n3 + mn + 1/2n% + 23/6n
mn? — 1/3n3 4+ 1/2n? + 5/6n

total flops:

omn? — 2/3n° + mn + n? +14/3n

SGEQRF or SGEQLF (m < n)

multiplications:

additions:

nm? — 1/3m3 + 2nm — 1/2m? + 23/6m
nm? — 1/3m3 + nm — 1/2m* + 5/6m

total flops:

2nm? — 2/3m> + 3nm — m? + 14/3n

100

SGERQF or SGELQF (m > n)

multiplications: mn? — 1/3n3 + mn + 1/2n2 + 29/6n
additions: mn? — 1/3n3 + mn — 1/2n? 4 5/6n
total flops: 2mn® — 2/3n° + 2mn + 17/3n

SGERQF or SGELQF (m < n)

multiplications: nm? — 1/3m3 + 2nm — 1/2m? + 29/6m
additions: nm? — 1/3m3 + 1/2m2 + 5/6m
total flops: 2nm? — 2/3m3 + 2nm + 17/3n

SORGQR or SORGQL

multiplications:

additions:

2mnk — (m + n)k? + 2/3k3 + 2nk — k* - 5/3k
2mnk — (m + n)k? + 2/3k3 + nk — mk + 1/3k

total flops:

SORGLQ or SORGRQ

multiplications:

additions:

4mnk — 2(m + n)k? + 4/3k> + 3nk — mk — k* — 4/3k

2mnk — (m + n)k? + 2/3k3 + mk + nk — k? —-2/3k
2mnk — (m + n)k? + 2/3k® + mk — nk + 1/3k

total flops:

SGEQRS multiplications:

additions:

4mnk — 2(m + n)k? + 4/3k> + 2mk — k* — 1/3k

NRHS [2mn — 1/2n? + 5/2n]
NRHS [2mn — 1/2n% + 1/2n]

total flops:

NRHS [4mn — n? + 3n]

SORMQR, SORMLQ, SORMQL or SORMRQ (SIDE = 'L’)

multiplications: 2nmk — nk? + 2nk
additions: 2nmk — nk? + nk
total flops: dnmk — 2nk® + 3nk

SORMQR, SORMLQ, SORMQL or SORMRQ (SIDE = 'R’)

multiplications: 2nmk — mk? + mk + nk — 1/2k% + 1/2k
additions: 2nmk — mk? + mk
total flops: dnmk — 2mk? + 2mk + nk — 1/2k* + 1/2k

101

STRTRI multiplications: 1/6n%+1/2n? +1/3n
additions: 1/6n% —1/2n2 +1/3n
total flops: 1/3n° +2/3n

SGEHRD multiplications:

additions:

5/3n3 +1/2n% - 7/6n — 13
5/3n% —n?-2/3n-8

total flops:

SSYTRD multiplications:

additions:

10/3n3 — 1/2n7 — 11/6n — 21

2/3n3 + 5/2n% - 1/6n — 15
2/3n% +n? —8/3n—4

total flops:

SGEBRD (m > n)

multiplications:

additions:

4/3n% + 3n® — 17/6n — 19

2mn? — 2/3n% + 2n? + 20/3n
2mn? — 2/3n% + n? — mn +5/3n

total flops:

SGEBRD (m < n)

dmn? — 4/3n3 + 3n? — mn + 25/3n

exchange m and n in above

102

Appendix D

Caveats

In this appendix we list a few of the machine-specific difficulties we have encountered in
our own experience with LAPACK. A more detailed list of machine-dependent problems,
bugs, and compiler errors encountered in the LAPACK installation process is maintained on
netlib. Send email to netlib@ornl.gov of the form: send release.notes from lapack.

We assume the user has installed the machine-specific routines correctly and that the
Level 2 and 3 BLAS test programs have run successfully, so we do not list any warnings
associated with those routines.

LAPACK is written in Fortran 77. Prospective users with only a Fortran 66 compiler
will not be able to use this package.

We have not included test programs for the Level 1 BLAS. Users should therefore be-
ware of a common problem in machine-specific implementations of xNRM2, the function
to compute the 2-norm of a vector. The Fortran version of xNRM2 avoids underflow or
overflow by scaling intermediate results, but some library versions of xXNRM2 are not so
careful about scaling. If xXNRM2 is implemented without scaling intermediate results, some
of the LAPACK test ratios may be unusually high, or a floating point exception may occur
in the problems scaled near underflow or overflow. The solution to these problems is to link
the Fortran version of xNRM2 with the test program.

As mentioned previously, some archivers do ranlib automatically when creating a li-
brary. So the ranlib commands in the makefiles will need to be commented out or removed.

The testing and timing programs (xCHKAA, xCHKEE, xTIMAA, and xTIMEE) allo-
cate large amounts of local variables. Therefore, it is vitally important that the user know
if his compiler allocates local variables statically or on the stack. It is not uncommon for
those compilers which place local variables on the stack to cause a stack overflow at runtime
in the testing or timing process. The user then has two options: increase your stack size,
or force all local variables to be allocated statically.

In the eigensystem timing program, calls are made to the LINPACK and EISPACK
equivalents of the LAPACK routines to allow a direct comparison of performance measures.
In some cases we have increased the minimum number of iterations in the LINPACK and
EISPACK routines to allow them to converge for our test problems, but even this may not
be enough. One goal of the LAPACK project is to improve the convergence properties of
these routines, so error messages in the output file indicating that a LINPACK or EISPACK
routine did not converge should not be regarded with alarm.

103

In the eigensystem timing program, we have equivalenced some work arrays and then
passed them to a subroutine, where both arrays are modified. This is a violation of the
Fortran 77 standard, which says “if a subprogram reference causes a dummy argument
in the referenced subprogram to become associated with another dummy argument in the
referenced subprogram, neither dummy argument may become defined during execution of
the subprogram.” ! If this causes any difficulties, the equivalence can be commented out
as explained in the comments for the main eigensystem timing programs.

If a large numbers of test failures occur for a specific matrix type or operation, it could
be that there is an optimization problem with your compiler. Thus, the user could try
reducing the level of optimization or eliminating optimization entirely for those routines to
see if the failures disappear when you rerun the tests.

MACHINE-SPECIFIC DIFFICULTIES

Some IBM compilers do not recognize DBLE as a generic function as used in LAPACK.
The software tools we use to convert from single precision to double precision convert
REAL(C) and AIMAG(C), where C is COMPLEX, to DBLE(Z) and DIMAG(Z), where Z
is COMPLEX*16, but IBM compilers use DREAL(Z) and DIMAG(Z) to take the real and
imaginary parts of a double complex number. IBM users can fix this problem by changing
DBLE to DREAL when the argument of DBLE is COMPLEX*16.

IBM compilers do not permit the data type COMPLEX*16 in a FUNCTION subpro-
gram definition. The data type on the first line of the function subprogram must be changed
from COMPLEX*16 to DOUBLE COMPLEX for the following functions:

ZBEG from the Level 2 BLAS test program
ZBEG from the Level 3 BLAS test program
ZLADIV from the LAPACK library

ZLARND from the test matrix generator library
ZLATM2 from the test matrix generator library
ZLATM3 from the test matrix generator library

The functions ZDOTC and ZDOTU from the Level 1 BLAS are already declared DOUBLE
COMPLEX. If that doesn’t work, try the declaration COMPLEX FUNCTION*16.

If compiling on a SUN, you may run out of space in /tmp (especially when compiling in
the LAPACK/SRC directory). Thus, either you will need to have your systems administrator
increase the size of your tmp partition, or change the archive command to ar crl so that
the archive command will only place temporary files in the current working directory rather
than in the default temporary directory /tmp.

Some of our test matrices are scaled near overflow or underflow, but on the Crays, prob-
lems with the arithmetic near overflow and underflow forced us to scale by only the square
root of overflow and underflow. The LAPACK auxiliary routine SLABAD (or DLABAD)
is called to take the square root of underflow and overflow in cases where it could cause
difficulties. We assume we are on a Cray if log,o(overflow) is greater than 2000 and take
the square root of underflow and overflow in this case. The test in SLABAD is as follows:

1ANSI X3.9-1978, sec. 15.9.3.6

104

IF(L0G10(LARGE).GT.2000.) THEN
SMALL = SQRT(SMALL)
LARGE = SQRT(LARGE)

END IF

Users of other machines with similar restrictions on the effective range of usable numbers
may have to modify this test so that the square roots are done on their machine as well.
SLABAD is located in LAPACK/SRC.

For machines which have a narrow exponent range or lack gradual underflow (DEC
VAXes for example), it is not uncommon to experience failures in sec.out and/or dec.out
with SLAQTR/DLAQTR or DTRSYL. The failures in SLAQTR/DLAQTR and DTRSYL
occur with test problems which are very badly scaled when the norm of the solution is very
close to the underflow threshold (or even underflows to zero). We believe that these failures
could probably be avoided by an even greater degree of care in scaling, but we did not want
to delay the release of LAPACK any further. These tests pass successfully on most other
machines. An example failure in dec.out on a MicroVAX II looks like the following:

Tests of the Nonsymmetric eigenproblem condition estimation routines
DLALN2, DLASY2, DLANV2, DLAEXC, DTRSYL, DTREXC, DTRSNA, DTRSEN, DLAQTR

0.277556D-16
0.587747D-38

Relative machine precision (EPS)
Safe minimum (SFMIN)

Routines pass computational tests if test ratio is less than 20.00

DEC routines passed the tests of the error exits (35 tests done)

Error in DTRSYL: RMAX = 0.155D+07
LMAX = 5323 NINFO= 1600 KNT= 27648
Error in DLAQTR: RMAX = 0.344D+04
LMAX = 15792 NINFO= 26720 KNT= 45000

105

Appendix E

Installation Guide for Non-Unix
Systems

The non-Unix version of LAPACK is created in two steps. First, the user must untar the
Unix tar tape or tar file according to the directions in section 4. Second, after the tape
has been read or the file has been tarred, the user must then go to the LAPACK directory
and type latape. The execution of this file creates a directory called ASCII in the user’s
main directory. This ASCII directory contains the grouped files needed for a non-Unix
installation. The layout of the ASCII directory is as described in this appendix.

In the installation instructions, each file will be identified by the name given below.
Files with names ending in ‘F’ contain Fortran source code; those with names ending in ‘D’
contain data for input to the test and timing programs. There are two sets of data for each
timing run; data file 1 for small, non-vector computers, such as workstations, and data file
2 for large computers, particularly Cray-class supercomputers. All file names have at most
eight characters.

The leading one or two characters of the file name generally indicates which of the
different versions of the library or test programs will use it:

A: all four data types

SC: REAL and COMPLEX

DZ: DOUBLE PRECISION and COMPLEX*16
S: REAL

D: DOUBLE PRECISION

C: COMPLEX

Z: COMPLEX*16

Many of the files occur in groups of four, corresponding to the four different Fortran floating-
point data types, and we will frequently refer to these files generically, using ‘x’ in place of
the first letter (for example, xLASRCF).

1. README List of files as in this section

2. ALLAUXF LAPACK auxiliary routines used in all versions

106

Lol

® N> o

19.

20.
21.
22,
23.
24.
25.

26.
27.
28.
29.

30.
31.
32.
33.

34.
35.
36.
37.

38.
39.

SCLAUXF
DZLAUXF

SLASRCF
CLASRCF
DLASRCF
ZLASRCF

LSAMEF

. TLSAMEF
11.
12.
13.
14.
15.
16.
17.
18.

SLAMCHF

TSLAMCHF

DLAMCHF

TDLAMCHF

SECONDF

TSECONDF

DSECNDF

TDSECNDF

ALLBLASF

SBLAS1F
CBLASI1F
DBLAS1F
ZBLAS1F
CB1AUXF
ZB1AUXF

SBLAS2F
CBLAS2F
DBLAS2F
ZBLAS2F

SBLAS3F
CBLAS3F
DBLAS3F
ZBLAS3F

SBLAT2F
CBLAT2F
DBLAT2F
ZBLAT2F

SBLAT2D
CBLAT2D

LAPACK auxiliary routines used in S and C versions
LAPACK auxiliary routines used in D and Z versions

LAPACK routines and auxiliary routines

LSAME: function to compare two characters

Test program for LSAME

SLAMCH: function to determine machine parameters
Test program for SLAMCH

DLAMCH: function to determine machine parameters
Test program for DLAMCH

SECOND: function to return time in seconds

Test program for SECOND

DSECND: function to return time in seconds

Test program for DSECND

Auxiliary routines for the BLAS (and LAPACK)

Level 1 BLAS

Auxiliary routines for Complex Level 1 BLAS
Auxiliary routines for D.P. Complex Level 1 BLAS

Level 2 BLAS

Level 3 BLAS

Test program for Level 2 BLAS

Data file for testing Level 2 BLAS

107

40.
41.

42.
43.
44.
45.

46.
47.
48.
49.

50.
51.

52.
53.
54.
55.

56.

57.
58.
59.
60.

61.
62.

63.
64.
65.
66.

67.
68.
69.
70.

71.
72.
73.
74.

DBLAT2D
ZBLAT2D

SBLAT3F
CBLAT3F
DBLAT3F
ZBLAT3F

SBLAT3D
CBLAT3D
DBLAT3D
ZBLAT3D

SCATGENF
DZATGENF

SMATGENF

CMATGENF
DMATGENF

ZMATGENF

ALINTSTF

SLINTSTF
CLINTSTF
DLINTSTF
ZLINTSTF

SCLNTSTF
DZLNTSTF

SLINTSTD
DLINTSTD
CLINTSTD
ZLINTSTD

SBAKTSTD
DBAKTSTD
CBAKTSTD
ZBAKTSTD

SBALTSTD
DBALTSTD
CBALTSTD
ZBALTSTD

Test program for Level 3 BLAS

Data file for testing Level 3 BLAS

Auxiliary routines for the test matrix generators

Test matrix generators

Auxiliary routines for the linear equation test program

Test program for linear equation routines

Auxiliary routines for linear equation test programs

Data file 1 for linear equation test program

Data file for testing SGEBAK
Data file for testing DGEBAK
Data file for testing CGEBAK
Data file for testing ZGEBAK

Data file for testing SGEBAL
Data file for testing DGEBAL
Data file for testing CGEBAL
Data file for testing ZGEBAL

108

-1

—y

-1 1

75.
76.
7.
78.

79.
80.
81.
82.

83.
84.
85.
86.

87.
88.
89.
90.

91.
92.
93.
94.

95.
96.
97.

98.
99.
100.
101.

102.
103.
104.
105.
106.
107.
108.
109.

110.

SECTSTD
DECTSTD
CECTSTD
ZECTSTD

SEDTSTD
DEDTSTD
CEDTSTD
ZEDTSTD

SSBTSTD
DSBTSTD
CSBTSTD
ZSBTSTD

SGGTSTD
DGGTSTD
CGGTSTD
ZGGTSTD

SSGTSTD
DSGTSTD
CSGTSTD
ZSGTSTD

AEIGTSTF
SCIGTSTF
DZIGTSTF

SEIGTSTF
CEIGTSTF
DEIGTSTF
ZEIGTSTF

NEPTSTD
GEPTSTD
SEPTSTD
SVDTSTD
GLMTSTD
GQRTSTD
GSVTSTD
LSETSTD

ALINTIMF

Data file for testing eigencondition routines

Data file for testing nonsymmetric eigenvalue driver routines

Data file for testing SSBTRD
Data file for testing DSBTRD
Data file for testing CHBTRD
Data file for testing ZHBTRD

Data file for testing nonsymmetric generalized eigenvalue routines

Data file for testing symmetric generalized eigenvalue routines

Auxiliary routines for the eigensystem test program

Test program for eigensystem routines

Data file for testing Nonsymmetric Eigenvalue Problem

Data file for testing Generalized Nonsymmetric Eigenvalue Problem
Data file for testing Symmetric Eigenvalue Problem

Data file for testing Singular Value Decomposition

Data file for testing Generalized Linear Regression Model

Data file for testing Generalized QR and RQ

Data file for testing Generalized Singular Value Decomposition
Data file for testing Constrained Linear Least Squares Problem

Auxiliary routines for the linear system timing program

109

111.
112.

113.
114.
115.
116.

117.
118.
119.
120.

121.
122.
123.
124.

125.
126.
127.
128.

129.
130.
131.
132.

133.
134.
135.
136.

137.
138.
139.
140.

141.
142.
143.
144.

145.
146.

SCINTIMF
DZINTIMF

SLINTIMF
CLINTIMF
DLINTIMF
ZLINTIMF

SLINTIMD
DLINTIMD
CLINTIMD
ZLINTIMD

SRECTIMD
DRECTIMD
CRECTIMD
ZRECTIMD

SBNDTIMD
DBNDTIMD
CBNDTIMD
ZBNDTIMD

SBLTIMAD
DBLTIMAD
CBLTIMAD
ZBLTIMAD

SBLTIMBD
DBLTIMBD
CBLTIMBD
ZBLTIMBD

SBLTIMCD
DBLTIMCD
CBLTIMCD
ZBLTIMCD

SLINTM2D
DLINTM2D
CLINTM2D
ZLINTM2D

SRECTM2D
DRECTM2D

Timing program for linear equations

Data file 1 for timing dense square linear equations

Data file 1 for timing dense rectangular linear equations

Data file 1 for timing banded linear equations

Data file 1-a for timing the BLAS

Data file 1-b for timing the BLAS

Data file 1-c for timing the BLAS

Data file 2 for timing dense square linear equations

Data file 2 for timing dense rectangular linear equations

110

147.
148.

149.
150.
151.
152.

153.
154.
155.
156.

157.
158.
159.
160.

161.
162.
163.
164.

165.
166.
167.

168.
169.
170.
171.

172,
173.
174.
175.

176.
177.

178.
179.
180.
181.

CRECTM2D
ZRECTM2D

SBNDTM2D
DBNDTM2D
CBNDTM2D
ZBNDTM2D

SBLTM2AD
DBLTM2AD
CBLTM2AD
ZBLTM2AD

SBLTM2BD
DBLTM2BD
CBLTM2BD
ZBLTM2BD

SBLTM2CD
DBLTM2CD
CBLTM2CD
ZBLTM2CD

AEIGTIMF
SCIGTIMF
DZIGTIMF

SEIGTIMF
CEIGTIMF
DEIGTIMF
ZEIGTIMF

SEIGSRCF
CEIGSRCF
DEIGSRCF
ZEIGSRCF

SCIGSRCF
DZIGSRCF

SGEPTIMD
SNEPTIMD
SSEPTIMD
SSVDTIMD

Data file 2 for timing banded linear equations

Data file 2-a for timing the BLAS

Data file 2-b for timing the BLAS

Data file 2-c for timing the BLAS

Auxiliary routines for the eigensystem timing program

Timing program for the eigensystem routines

Instrumented LAPACK routines

Instrumented auxiliary routines used in S and C versions
Instrumented auxiliary routines used in D and Z versions

Data file 1 for timing Generalized Nonsymmetric Eige nvalue Problem
Data file 1 for timing Nonsymmetric Eigenvalue Problem

Data file 1 for timing Symmetric Eigenvalue Problem

Data file 1 for timing Singular Value Decomposition

111

182.
183.
184.
185.

186.
187.
188.
189.

190.
191.
192.
193.

194.
195.
196.
197.

198.
199.
200.
201.

202.
203.
204.
205.

206.
207.
208.
209.

CGEPTIMD
CNEPTIMD
CSEPTIMD
CSVDTIMD

DGEPTIMD
DNEPTIMD
DSEPTIMD
DSVDTIMD

ZGEPTIMD
ZNEPTIMD
ZSEPTIMD
ZSVDTIMD

SGEPTM2D
SNEPTM2D
SSEPTM2D
SSVDTM2D

CGEPTM2D
CNEPTM2D
CSEPTM2D
CSVDTM2D

DGEPTM2D
DNEPTM2D
DSEPTM2D
DSVDTM2D

ZGEPTM2D
ZNEPTM2D
ZSEPTM2D
ZSVDTM2D

Data file 2 for timing Generalized Nonsymmetric Eige nvalue Problem
Data file 2 for timing Nonsymmetric Eigenvalue Problem

Data file 2 for timing Symmetric Eigenvalue Problem

Data file 2 for timing Singular Value Decomposition

E.1 Installing LAPACK on a non-Unix System

Installing and testing the non-Unix version of LAPACK involves the following steps:

1. Read the tape or tar the file.

2. Test and install the machine-dependent routines.

3. Create the BLAS library, if necessary.

4. Run the Level 2 and 3 BLAS test programs.

112

5. Create the LAPACK library.

6. Create the library of test matrix generators.
7. Run the LAPACK test programs.

8. Run the LAPACK timing programs.

E.1.1 Read the Tape or Tar the File

Read the tape as instructed in section 4. You will need about 28 megabytes to read in
the complete tape. On a Sun SPARCstation, the libraries used 14 MB and the LAPACK
executable files used 20 MB. In addition, the object files used 18 MB, but the object files can
be deleted after creating the libraries and executable files. Your actual space requirements
will be less if you do not use all four data types. The total space requirements including
the object files is approximately 70 MB for all four data types.

E.1.2 Test and Install the Machine-Dependent Routines.

There are five machine-dependent functions in the test and timing package, at least
three of which must be installed. They are

LSAME LOGICAL Test if two characters are the same regardless of case
SLAMCH REAL Determine machine-dependent parameters
DLAMCH DOUBLE PRECISION Determine machine-dependent parameters

SECOND REAL Return time in seconds from a fixed starting time

DSECND DOUBLE PRECISION Return time in seconds from a fixed starting time

If you are working only in single precision, you do not need to install DLAMCH and
DSECND, and if you are working only in double precision, you do not need to install
SLAMCH and SECOND. These five subroutines and their test programs are provided in
the files LSAMEF and TLSAMEF, SLAMCHF and TSLAMCHF, etc.

E.1.2.1 Installing LSAME

LSAME is a logical function with two character parameters, A and B. It returns .TRUE.
if A and B are the same regardless of case, or .FALSE. if they are different. For example,
the expression

LSAME(UPLO, U’)
is equivalent to
(UPLO.EQ.’U’).O0R.(UPLO.EQ.’u’)

The test program in TLSAMEF tests all combinations of the same character in upper
and lower case for A and B, and two cases where A and B are different characters.
Compile LSAMEF and TLSAMEF and run the test program. If LSAME works correctly,

the only message you should see is

113

ASCII character set
Tests completed

The working version of LSAME should be appended to the file ALLBLASF. This file, which
also contains the error handler XERBLA, will be compiled with either the BLAS library in
Section A.3 or the LAPACK library in Section A.5.

E.1.2.2 Installing SLAMCH and DLAMCH

SLAMCH and DLAMCH are real functions with a single character parameter that
indicates the machine parameter to be returned. The test program in TSLAMCHF simply
prints out the different values computed by SLAMCH, so you need to know something about
what the values should be. For example, the output of the test program for SLAMCH on
a Sun SPARCstation is

Epsilon = 5.96046E-08
Safe minimum = 1.17549E-38
Base = 2.00000
Precision = 1.19209E-07
Number of digits in mantissa = 24.0000
Rounding mode = 1.00000
Minimum exponent = -125.000
Underflow threshold = 1.17549E-38
Largest exponent = 128.000

3.40282E+38
8.50706E+37

Overflow threshold
Reciprocal of safe minimum

On a Cray machine, the safe minimum underflows its output representation and the overflow
threshold overflows its output representation, so the safe minimum is printed as 0.00000
and overflow is printed as R. This is normal. If you would prefer to print a representable
number, you can modify the test program to print SFMIN*100. and RMAX/100. for the
safe minimum and overflow thresholds.

Compile SLAMCHF and TSLAMCHF and run the test program. If the results from
the test program are correct, save SLAMCH for inclusion in the LAPACK library. Repeat
these steps with DLAMCHF and TDLAMCHEF. If both tests were successful, go to Section
A.2.3.

If SLAMCH (or DLAMCH) returns an invalid value, you will have to create your own
version of this function. The following options are used in LAPACK and must be set:

‘B’: Base of the machine

‘E’: Epsilon (relative machine precision)
‘O’: Overflow threshold

‘P’: Precision = Epsilon*Base

‘§’: Safe minimum (often same as underflow threshold)

114

‘U’: Underflow threshold

Some people may be familiar with RIMACH (D1IMACH), a primitive routine for set-
ting machine parameters in which the user must comment out the appropriate assignment
statements for the target machine. If a version of RIMACH is on hand, the assignments in
SLAMCH can be made to refer to RIMACH using the correspondence

SLAMCH(‘U’) = RIMACH(1)
SLAMCH(‘0’) = RIMACH(2)
SLAMCH(‘E’) = RIMACH(3)
SLAMCH(‘B’) = RIMACH(5)

The safe minimum returned by SLAMCH(’S’) is initially set to the underflow value, but
if 1/(overflow) > (underflow) it is recomputed as (1/(overflow)) * (1 + ¢), where ¢ is the
machine precision.

E.1.2.3 Installing SECOND and DSECND

Both the timing routines and the test routines call SECOND (DSECND), a real function
with no arguments that returns the time in seconds from some fixed starting time. Our
version of this routine returns only “user time”, and not “user time + system time”. The
version of second in SECONDF calls ETIME, a Fortran library routine available on some
computer systems. If ETIME is not available or a better local timing function exists, you
will have to provide the correct interface to SECOND and DSECND on your machine.

The test program in TSECONDF performs a million operations using 5000 iterations of
the SAXPY operation y := y + az on a vector of length 100. The total time and megaflops
for this test is reported, then the operation is repeated including a call to SECOND on
each of the 5000 iterations to determine the overhead due to calling SECOND. Compile
SECONDF and TSECONDF and run the test program. There is no single right answer,
but the times in seconds should be positive and the megaflop ratios should be appropriate
for your machine. Repeat this test for DSECNDF and TDSECNDF and save SECOND
and DSECND for inclusion in the LAPACK library in Section A.5.

E.1.3 Create the BLAS Library

Ideally, a highly optimized version of the BLAS library already exists on your machine.
In this case you can go directly to Section A.4 to make the BLAS test programs. Other-
wise, you must create a library using the files xBLAS1F, xBLAS2F, xBLAS3F, CB1AUXF,
ZB1AUXF, and ALLBLASF. You may already have a library containing some of the BLAS,
but not all (Level 1 and 2, but not Level 3, for example). If so, you should use your local
version of the BLAS wherever possible and, if necessary, delete the BLAS you already have
from the provided files. The file ALLBLASF must be included if any part of xBLAS2F or
xBLAS3F is used. Compile these files and create an object library.

115

E.1.4 Run the BLAS Test Programs

Test programs for the Level 2 and 3 BLAS are in the files xBLAT2F and xBLAT3F. A
test program for the Level 1 BLAS is not included, in part because only a subset of the
original set of Level 1 BLAS is actually used in LAPACK, and the old test program was
designed to test the full set of Level 1 BLAS. The original Level 1 BLAS test program is
available from netlib as TOMS algorithm 539.

a) Compile the files xBLAT2F and xBLATS3F and link them to your BLAS library or
libraries. Note that each program includes a special version of the error-handling
routine XERBLA, which tests the error-exits from the Level 2 and 3 BLAS. On most
systems this will take precedence at link time over the standard version of XERBLA
in the BLAS library. If this is not the case (the symptom will be that the program
stops as soon as it tries to test an error-exit), you must temporarily delete XERBLA
from ALLBLASF and recompile the BLAS library.

b) Each BLAS test program has a corresponding data file xBLAT2D or xBLAT3D. As-
sociate this file with Fortran unit number 5.

c) The name of the outpui; file is indicated on the first line of each input file and is
currently defined to be SBLAT2.SUMM for the REAL Level 2 BLAS, with similar
names for the other files. If necessary, edit the name of the output file to ensure that
it is valid on your system.

d) Run the Level 2 and 3 BLAS test programs.

If the tests using the supplied data files were completed successfully, consider whether
the tests were sufficiently thorough. For example, on a machine with vector registers, at
least one value of N greater than the length of the vector registers should be used; otherwise,
important parts of the compiled code may not be exercised by the tests. If the tests were
not successful, either because the program did not finish or the test ratios did not pass
the threshold, you will probably have to find and correct the problem before continuing. If
you have been testing a system-specific BLAS library, try using the Fortran BLAS for the
routines that did not pass the tests. For more details on the BLAS test programs, see (8]
and [6].

E.1.5 Create the LAPACK Library

Compile the files xXLASRCF with ALLAUXF and create an object library. If you have
compiled either the S or C version, you must also compile and include the files SCLAUXEF,
SLAMCHF, and SECONDF, and if you have compiled either the D or Z version, you must
also compile and include the files DZLAUXF, DLAMCHF, and DSECNDF. If you did not
compile the file ALLBLASF and include it in your BLAS library as described in Section
A.3, you must compile it now and include it in your LAPACK library.

116

E.1.6 Create the Test Matrix Generator Library

Compile the files XMATGENF and create an object library. If you have compiled either
the S or C version, you must also compile and include the file SCATGENTF, and if you have
compiled either the D or Z version, you must also compile and include the file DZATGENF.

E.1.7 Run the LAPACK Test Programs

There are two distinct test programs for LAPACK routines in each data type, one for
the linear equations routines and one for the eigensystem routines. In each data type, there
is one input file for testing the linear equation routines and fourteen input files for testing
the eigenvalue routines. For more information on the test programs and how to modify the
input files, see Section 6.

E.1.7.1 Testing the Linear Equation Routines

a) Compile the files xLINTSTF and either SCLNTSTF (for single precision real and
complex) or DZLNTSTF (for double precision and double complex) and link them
to your matrix generator library, your LAPACK library, and your BLAS library or
libraries in that order (on some systems you may get unsatisfied external references if
you specify the libraries in the wrong order).

b) The data files for the linear equation test program are called xXLINTSTD. For each of
the test programs, associate the appropriate data file with Fortran unit number 5.

c) The output file is written to Fortran unit number 6. Associate a suitably named file
(e.g., SLINTST.OUT) with this unit number.

d) Run the test programs.

If you encountered failures in this phase of the testing process, please consult our re-
lease_notes file on netlib (send email to netlib@ornl.gov and in the message type ”send
release_notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have had
similar difficulties on that machine. If there is not an entry for your machine or the sugges-
tions do not fix your problem, please feel free to contact the authors as directed in Section
5.9. Tell us the type of machine on which the tests were run, the version of the operating
system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the output file in which the
failure occurs.

We would like to keep our release_notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

E.1.7.2 Testing the Eigensystem Routines

a) Compile the files xXEIGTSTF and link them to your matrix generator library, your
LAPACK library, and your BLAS library or libraries in that order (on some systems
you may get unsatisfied external references if you specify the libraries in the wrong

117

order). If you have compiled either the S or C version, you must also compile and
include the file SCIGTSTF, and if you have compiled either the D or Z version, you
must also compile and include the file DZIGTSTF.

b) There are fourteen sets of data files for the eigensystem test program, xBAKTSTD,
xBALTSTD, xECTSTD, xEDTSTD, xSBTSTD, xGGTSTD, xSGTSTD, NEPTSTD,
SEPTSTD, SVDTSTD, GLMTSTD, GQRTSTD, GSVTSTD, and LSETSTD. Note
that seven of the input files (NEPTSTD, SEPTSTD, SVDTSTD, GLMTSTD, GQRT-
STD, GSVTSTD, and LSETSTD) are used regardless of the data type of the test
program. For each run of the test programs, associate the appropriate data file with
Fortran unit number 5.

c¢) The output file is written to Fortran unit number 6. Associate suitably named files
with this unit number (e.g., SNEPTST.OUT, SBAKTST.OUT, etc.).

d) Run the test programs.

If you encountered failures in this phase of the testing process, please consult our re-
lease_notes file on netlib (send email to netlib@ornl.gov and in the message type "send
release_notes from lapack”). This file contains machine-dependent installation clues which
hopefully will alleviate your difficulties or at least let you know that other users have had
similar difficulties on that machine. If there is not an entry for your machine or the sugges-
tions do not fix your problem, please feel free to contact the authors as directed in Section
5.9. Tell us the type of machine on which the tests were run, the version of the operating
system, the compiler and compiler options that were used, and details of the BLAS library
or libraries that you used. You should also include a copy of the offending file in which the
failure occurs.

We would like to keep our release_notes file as up-to-date as possible. Therefore, if you
do not see an entry for your machine, please contact us with your testing results.

E.1.8 Run the LAPACK Timing Programs

There are two distinct timing programs for LAPACK routines in each data type, one
for the linear equations routines and one for the eigensystem routines. The timing program
for the linear equations routines is also used to time the BLAS. We encourage you to
conduct these timing experiments in REAL and COMPLEX or in DOUBLE PRECISION
and COMPLEX*16; it is not necessary to send timing results in all four data types.

Two sets of input files are provided, a small set and a large set. The small data sets are
appropriate for a standard workstation or other non-vector machine. The large data sets
are appropriate for supercomputers, vector computers, and high-performance workstations.
We are mainly interested in results from the large data sets, and it is not necessary to run
both the large and small sets. The values of N in the large data sets are about five times
larger than those in the small data set, and the large data sets use additional values for
parameters such as the block size NB and the leading array dimension LDA. The small input
files end with the four characters “TIMD’ and the large input files end with the characters
“TM2D’ (except for the BLAS timing files, see Section A.8.2).

118

We encourage you to obtain timing results with the large data sets, as this allows us to
compare different machines. If this would take too much time, suggestions for paring back
the large data sets are given in the instructions below. We also encourage you to experiment
with these timing programs and send us any interesting results, such as results for larger
problems or for a wider range of block sizes. The main programs are dimensioned for the
large data sets, so the parameters in the main program may have to be reduced in order
to run the small data sets on a small machine, or increased to run experiments with larger
problems.

The minimum time each subroutine will be timed is set to 0.0 in the large data files
and to 0.05 in the small data files, and on many machines this value should be increased.
If the timing interval is not long enough, the time for the subroutine after subtracting the
overhead may be very small or zero, resulting in megaflop rates that are very large or zero.
(To avoid division by zero, the megaflop rate is set to zero if the time is less than or equal to
zero.) The minimum time that should be used depends on the machine and the resolution
of the clock. ’

For more information on the timing programs and how to modify the input files, see
Section 7.

If you encounter failures in any phase of the timing process, please feel free to contact
the authors as directed in Section 5.9. Tell us the type of machine on which the tests were
run, the version of the operating system, the compiler and compiler options that were used,
and details of the BLAS library or libraries that you used. You should also include a copy
of the output file in which the failure occurs.

E.1.8.1 Timing the Linear Equations Routines

Three input files are provided in each data type for timing the linear equation routines,
one for square matrices, one for band matrices, and one for rectangular matrices. The small
data sets are in xXLINTIMD, xBNDTIMD, and xRECTIMD, and the large data sets are in
xLINTM2D, xBNDTM2D, and xXRECTM2D.

a) Compile the files xXLINTIMF, and link them to your LAPACK library and your BLAS
library or libraries in that order (on some systems you may get unsatisfied external
references if you specify the libraries in the wrong order). If you have compiled either
the S or C version, you must also compile and include the file SCINTSTF, and if you
have compiled either the D or Z version, you must also compile and include the file

DZINTSTF.

b) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value, or to restrict the size of the tests
if you are using a computer with performance in between that of a workstation and
that of a supercomputer. The computational requirements can be cut in half by using
only one value of LDA. If it is necessary to also reduce the matrix sizes or the values
of the blocksize, corresponding changes should be made to the BLAS input files (see
Section A.8.2).

Associate the appropriate input file with Fortran unit number 5.

119

c) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SLINTIM.OUT, SBNDTIM.OUT, and SRECTIM.OUT

for the REAL version).

e) Run the timing programs in each data type you are using for each of the three input
files.

E.1.8.2 Timing the BLAS

The linear equation timing program is also used to time the BLAS. Three input files are
provided in each data type for timing the Level 2 and 3 BLAS. These input files time the
BLAS using the matrix shapes encountered in the LAPACK routines, and we will use the
results to analyze the performance of the LAPACK routines. For the REAL version, the
small data sets are SBLTIMAD, SBLTIMBD, and SBLTIMCD and the large data sets are
SBLTM2AD, SBLTM2BD, and SBLTM2CD. There are three sets of inputs because there
are three parameters in the Level 3 BLAS, M, N, and K, and in most applications one of
these parameters is small (on the order of the blocksize) while the other two are large (on
the order of the matrix size). In SBLTIMAD, M and N are large but K is small, while in
SBLTIMBD the small parameter is M, and in SBLTIMCD the small parameter is N. The
Level 2 BLAS are timed only in the first data set, where K is also used as the bandwidth
for the banded routines.

a) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value. If you modified the values of N or
NB in Section A.8.1, set M, N, and K accordingly. The large parameters among M,
N, and K should be the same as the matrix sizes used in timing the linear equation
routines, and the small parameter should be the same as the blocksizes used in timing
the linear equations routines. If necessary, the large data set can be simplified by
using only one value of LDA.

Associate the appropriate input file with Fortran unit number 5.

b) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SBLTIMA.OUT, SBLTIMB.OUT, and SBLTIMC.OUT
for the three runs of the REAL version).

¢) Run the timing programs in each data type you are using for each of the three input
files.

E.1.8.3 Timing the Eigensystem Routines

Four input files are provided in each data type for timing the eigensystem routines, one
for the generalized nonsymmetric eigenvalue problem, one for the nonsymmetric eigenvalue
problem, one for the symmetric eigenvalue problem and generalized symmetric eigenvalue
problem, and one for the singular value decomposition. For the REAL version, the small
data sets are SGEPTIMD, SNEPTIMD, SSEPTIMD, and SSVDTIMD and the large data
sets are SGEPTM2D, SNEPTM2D, SSEPTM2D, and SSVDTM2D. Each of the four input

120

o

files reads a different set of parameters and the format of the input is indicated by a 3-
character code on the first line.

The timing program for eigenvalue/singular value routines accumulates the operation
count as the routines are executing using special instrumented versions of the LAPACK
routines. The first step in compiling the timing program is therefore to make a library of
the instrumented routines.

a) Compile the files xEIGSRCF and create an object library. If you have compiled either
the S or C version, you must also compile and include the file SCIGSRCF, and if you
have compiled either the D or Z version, you must also compile and include the file
DZIGSRCF. If you did not compile the file ALLBLASF and include it in your BLAS
library as described in Section A.3, you must compile it now and include it in the
instrumented LAPACK library.

b) Compile the files xEIGTIMF with AEIGTIMF and link them to your test matrix
generator library, the instrumented LAPACK library created. in the previous step,
your LAPACK library from Section A.5, and your BLAS library in that order (on
some systems you may get unsatisfied external references if you specify the libraries
in the wrong order). If you have compiled either the § or C version, you must also
compile and include the file SCIGTIMF, and if you have compiled either the D or Z
version, you must also compile and include the file DZIGTIMF.

c) Make any necessary modifications to the input files. You may need to set the minimum
time a subroutine will be timed to a positive value, or to restrict the number of tests
if you are using a computer with performance in between that of a workstation and
that of a supercomputer. Instead of decreasing the matrix dimensions to reduce the
time, it would be better to reduce the number of matrix types to be timed, since the
performance varies more with the matrix size than with the type. For example, for
the nonsymmetric eigenvalue routines, you could use only one matrix of type 4 instead
of four matrices of types 1, 3, 4, and 6. See Section 7 for further details.

Associate the appropriate input file with Fortran unit number 5.

d) The output file is written to Fortran unit number 6. Associate a suitably named file
with this unit number (e.g., SGEPTIM.OUT, SNEPTIM.OUT, SSEPTIM.OUT, and
SSVDTIM.OUT for the four runs of the REAL version).

e) Run the programs in each data type you are using with the four data sets.

E.1.9 Send the Results to Tennessee

testing, and timing LAPACK. Your

Congratulations! You have now finished installing,
ts should be sent by electronic

participation is greatly appreciated. Test failures and commen
mail to
lapack@cs.utk.edu.

We encourage you to make the LAPACK library available to your users and provide
us with feedback from their experiences. This release of LAPACK is not guaranteed to be

compatible with any previous test release.

121

e et AR N B P+ e s 3 aa k

Bibliography

[1] E. Anderson, 7. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide,

SIAM, Philadelphia, PA, 1992.

[2] E. Anderson and J. Dongarra, LAPACK Working Note 16: Results from the Initial
Release of LAPACK, University of Tennessee, CS-89-89, November 1989.

[3] C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, and

D. Sorensen, LAPACK Working Note #5: Provisional Contents, Argonne National
Laboratory, ANL-88-38, September 1988.

[4] Z. Bai, J. Demmel, and A. McKenney, LAPACK Working Note #13: On the Condi-
tioning of the Nonsymmetric Eigenvalue Problem: Theory and Software, University of
Tennessee, CS-89-86, October 1989.

[5] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, “A Set of Level 3 Basic Linear
Algebra Subprograms,” ACM Trans. Math. Soft., 16, 1:1-17, March 1990

[6] J. Dongarra, J. Du Croz, L Duff, and S. Hammarling, “A Set of Level 3 Basic Linear
Algebra Subprograms: Model Implementation and Test Programs,” ACM Trans. Math.
Soft., 16, 1:18-28, March 1990

[7] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, “An Extended Set of Fortran
Basic Linear Algebra Subprograms,” ACM Trans. Math. Soft., 14, 1:1-17, March 1988.

[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson, “An Extended Set of Fortran
Basic Linear Algebra Subprograms: Model Implementation and Test Programs,” ACM
Trans. Math. Soft., 14, 1:18-32, March 1988.

[9] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic Linear Algebra
Subprograms for Fortran Usage,” ACM Trans. Math. Soft., 5, 3:308-323, September

1979.

122

