Fortran M as a Language for
Building Earth System Models

Ian T. Foster

CRPC-TR92444
1992

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Updated May, 1994.

From the Proceedings of the 5th ECMWF Workshop on
Parallel Processing in Meteorology, Reading, England,
November 1992.

FORTRAN M AS A LANGUAGE FOR BUILDING
EARTH SYSTEM MODELS~

Ian Foster

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

1. Introduction

FORTRAN M is a small set of extensions to FORTRAN 77 that supports a
modular or object-oriented approach to the development of parallel programs
(Foster and Chandy, 1992). In this paper, I discuss the use of FORTRAN M
as a tool for building earth system models on massively parallel computers. I
hypothesize that the use of FORTRAN M has software engineering advantages
and outline experiments that we are conducting to investigate this hypothe-
sis.

2. Earth System Models

An earth system model is a computer code designed to simulate the in-
terrelated processes that determine the earth’s weather and climate, such as
atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic
circulation, and biosphere. A scientist might use a diagram similar to Fig-
ure 1 to explain an earth system model. In this figure, boxes represent
processes and arrows represent linkages between processes. This description
is easy to follow. It hides unnecessary detail and makes the interfaces be-
tween components clear. These desirable characteristics, which have obvious
value to the scientist, are also of value to the software engineer. In fact,
they constitute the central attributes of modular or object-oriented design.
Unfortunately, this natural modularity is normally lost when an earth sys-
tem model is implemented as a computer program. On massively parallel

*This research was supported by the Atmospheric and Climate Research Division of
the Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-
38. Also available via anonymous ftp from info.mcs.anl.gov/pub/tech reports/reports/
P345.ps.Z.

computers, extensive reengineering can be required to combine component
models or to experiment with alternative mappings of computation to pro-
cessors. The result is that it is difficult both to implement these models and
to adapt them to changing requirements.

CLOUD PHYSICS —

& RADIATION BIOSPHERE

Figure 1: Simplified schematic description of an earth system model. Boxes repre-
sent component models and arrows represent data transfers between components.

3. FORTRAN M

FORTRAN M is a small set of extensions to FORTRAN 77 that supports a
modular or object-oriented approach to the design of message-passing par-
allel programs. The following features of this language appear useful when
developing earth system models.

Modularity. Programs are constructed by using explicitly-declared com-
munication channels to plug together program modules called processes. A
process can encapsulate common data (called PROCESS COMMON to emphasize
that it is local to the process), subprocesses, and internal communication.
Processes do not share data and can communicate only by sending and re-
ceiving data on channels. Access to channels is provided via ports that are
passed to processes as arguments. Hence, a FORTRAN M implementation
of an earth system model can preserve the modularity that is inherent in
its scientific specification. Each component can be encapsulated as a mod-
ule (Figure 2) and alternative implementations can be substituted without
modifications to other program components.

Safety. Operations on channels are restricted so as to guarantee determin-

Figure 2: A process and its interface. In this example, four in-ports and two out-
ports (represented as arrows) define the interface, while internal implementation
details are hidden. These internal details can include subprocesses and internal
communications.

istic execution, even when programs execute on many processors. Channels
are typed, so a compiler can check for correct usage. Hence, the risk of
incorrect (and particularly time-dependent) errors is reduced.

Architecture Independence. The mapping of processes to processors can be
specified with respect to a virtual computer with size and shape different
from that of the target computer. Mapping is specified by annotations that
influence performance but not correctness. Hence, the programmer need
not change component programs in order to experiment with alternative
configurations of processors and computers.

4. Building Models

The FORTRAN M implementation of a simplified ocean/atmosphere model
is presented for illustrative purposes. In this model, two components exe-
cute concurrently and exchange information periodically: An ocean model
provides an atmosphere model with an array of sea surface temperatures
(SST), and an atmosphere model provides an ocean model with two arrays
containing components of horizontal momentum, U and V. The two models
are assumed to utilize the same grid system, numerical units, and time steps;
hence, data can be transferred between them without additional computa-
tion. Normally, two additional components would be required to convert
data between the representations used by the two models.

4.1 Sequential Models

The FORTRAN M program implements both models as processes, and de-
fines an interface that allows for the exchange of SST, U, and V values.

Initially, the two models are assumed to be sequential programs; hence, the
interface can consist of one channel in each direction. For example, the atmo-
spheric model interface consists of two ports, sst_i and uv.o, and is defined
as follows. Notice the type declarations for the ports: The in-port sst_i can
be used to receive arrays of real values representing sea surface temperatures,
while the out-port uv_o can be used to send two such arrays representing U
and V values.

process atmosphere(sst_i,uv_o)

parameter (NLAT=128 ,NLON=256)

inport (real x(NLAT,NLON)) sst_i

outport (real x(NLAT,NLON), real y (NLAT,NLON)) uv_o

The following code shows the atmosphere model process in its entirety. It
uses SEND and RECEIVE statements to repeatedly send U and V data on the
port uv_o, receive SST data from the port sst_i, and call the atmosphere
model proper. A total of TMAX messages are sent and received. Note the use
of process common to hold the sst, u, and v arrays.

process atmosphere(sst_i,uv.o)
pa.ra.meter(NLAT=128, NLON=256, TMAX=100)
C The ports sst_i and uv_o are the external interface.
inport (real x(NLAT,NLON)) sst.i
outport (real x(NLAT,NLON), real y (NLAT,NLON)) uv.o
C Process common variables.
process common /state/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
call atm_init
C Repeat TMAX times: send U & V, recv SST, update U & V.
do 10 i=1,TMAX
send (uv_o) u,v
receive(sst_i) sst
call atm_compute
10 continue
end

The ocean model might be as follows. This repeatedly sends SST data on
the out-port sst_o and receives U and V data on the in-port uv_i.

4

10

process ocean(uv_i,sst.o)
parameter (NLAT=128, NLON=256, TMAX=100)
The ports uv_i and sst_o are the external interface.
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_i
outport (real x(NLAT,NLON)) sst.o
Process common variables.
process common /state/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
call ocn_init
Repeat TMAX times: send SST, recv U & V, compute SST.
do 10 i=1,TMAX

send(sst.o) sst

receive(uvi) u,v

call ocn_compute
continue
end

The implementation of the ocean/atmosphere model is completed by a
main program that invokes the two processes in a parallel block (delineated
by PROCESSES and ENDPROCESSES statements) and creates two channels, one
for communicating SST values and the other for communicating U and V
values. This structure is illustrated in Figure 3 and is created by the following
program. The program creates two channels, spawns the atmosphere and
ocean processes, and waits until these processes terminate.

program model
parameter (NLAT=128, NLON=256)
Local port variables.
inport (real x(NLAT,NLON)) ssti
outport (real x(NLAT,NLON)) ssto
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uvi
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvo
Create channels and define ports.
channel (out=ssto,in=ssti)
channel (out=uvo,in=uvi)
Call two models with ports as arguments.
processes _
call atmosphere(ssti,uvo)
call ocean(uvi,ssto)

channel(uvi, uvo?
u?;/' _NQli

channel(ssti, ssto
— [l‘ﬁo

ssti

Figure 3: Ocean/atmosphere model. Two concurrently executing processes are
connected by two single-producer, single-consumer channels.

endprocesses
end

The values of the four port variables declared in this code fragment are
initially undefined. The CHANNEL statements each create a channel and define
their two port variable arguments to be references to this channel. These port
variables are passed as arguments to the concurrently executing atmosphere
and ocean processes, establishing the connections shown in Figure 3.

We now have a complete parallel program which can be executed on a
sequential or parallel computer. This program can be executed on one pro-
cessor or two without any change to its component modules: these different
behaviors are specified by annotations to the process calls in the main pro-
gram. The execution order of the concurrently executing atmosphere and
ocean processes is determined only by availability of messages on channels.
The computed result does not depend on the order in which the processes
execute. That is, the program is deterministic.

4.2 Parallel Models

The example in the preceding section shows how FORTRAN M is used to
combine sequential models. Similar techniques can be used to combine par-
allel models. A parallel model implemented in FORTRAN M creates many
processes (typically one per processor); these execute in parallel and exchange
data by channels that are local to the parallel model. When defining an in-
terface between two such models, it is not in general sufficient to utilize a
single channel as this is likely to constitute a bottleneck. Instead, we define
a parallel interface consisting of an array of channels. For example, assume
that we have parallel versions of our ocean and atmosphere models, each

designed to execute on NP XNP processors. We decompose two channels used
to connect the sequential programs to obtain two arrays of NP XNP channels.
While a channel in the sequential program was used to communicate arrays
of size NLAT XNLON, each channel in the parallel program is used to commu-
nicate arrays of size (NLAT/NP)x (NLON/NP). The code used to combine the
two parallel models is as follows.

program model
parameter(NLAT=128,NLON=256,NP=16,PLON=NLON/NP,PLAT=NLAT/NP)
inport (real x(PLAT,PLON)) SstI(NP,NP)

outport (real x(PLAT,PLON)) SstO(NP,NP)

inport (real x(PLAT,PLON), real y(PLAT,PLON)) UvI(NP,NP)
outport (real x(PLAT,PLON), real y(PLAT,PLON)) UvO(NP,NP)

C Create NPXNP channels.
do 10 i=1,NP
do 11 j=1,NP
channel (out=Sst0(i,j),in=SstI(i,j))
channel (out=Uv0(i,j),in=UvI(i,j))
11 continue
10 continue

C Pass port arrays to parallel models.
processes
call par_atmosphere(SstI,Uv0)
call par_ocean(Sst0,UvI)
endprocesses
end

5. Discussion

As the simple examples presented in this paper show, the use of FOR-
TRAN M allows earth system models to be developed in a modular fashion.
I hypothesize that this modularity can reduce software engineering costs in
at least four ways. First, existing programs can be integrated into earth
system models without the need for extensive reengineering. Second, alter-
native implementations of components can be substituted without changes
to other parts of a system. Third, reusable modules can be defined that

7

implement such commonly-used functions as interpolation and parallel I/O.
Fourth, models can be adapted to run on different computers or to use differ-
ent processor configurations, without changes to the component programs.

These hypothetical benefits must be confirmed by empirical investigations
in larger systems. These investigations need to focus on issues of compati-
bility, performance, and modularity. I discuss these issues briefly here and
outline how we are addressing them.

Compatibility. Development of an earth system model would be easy if all
parallel codes that were to be integrated into an earth system model were
written in FORTRAN M. However, in practice we must be able to deal with
codes developed with other technologies. In the short term, these will be
primarily message-passing libraries such as p4/PARMACS, PICL, Express,
and PVM. In the medium term, High Performance FORTRAN is also likely
to be important. As it will not in general be feasible to rewrite message-
passing or HPF programs in FORTRAN M, we plan to develop compatability
libraries that allow message-passing and HPF programs to be integrated into
FORTRAN M programs in a seamless fashion.

Performance. A program developed in the modular fashion advocated in
this paper may incur overheads that would not be incurred if it were imple-
mented as a monolithic program. Primary sources of overhead are additional
copying due to the use of channels for data transfer between processes and
process switching when multiple processes execute on the same processor.
These costs must be carefully evaluated and weighed against the benefits of
modular design, ease of modification, ease of reuse, and portability. We plan
to conduct experiments to quantify these costs.

Modularity. The modular programming style encouraged by FORTRAN M
is expected to allow the development of generic, reusable modules for such
commonly used functions as interpolation between grid systems and parallel
I/0. However, it is possible that the complexities of different grid systems,
data representations, etc., will frustrate such attempts. In order to investi-
gate this issue, we are developing prototype parallel versions of generic data
transfer modules developed at GFDL by Ron Pacanowski and his colleagues.

We have recently completed implementation of a prototype FORTRAN M
compiler (send electronic mail to fortran-m@mcs.anl.gov for details) which
we plan to use for these investigations.

Acknowledgments

FORTRAN M is joint work with Mani Chandy of the California Institute of
Technology and is supported in part by the National Science Foundation’s
Center for Research in Parallel Computation, under Contract CCR-8809615.
Robert Olson has made major contributions to the development of the com-
piler. I am grateful to Ron Pacanowski of GFDL for discussions on modular
construction of climate models.

Reference

I. Foster and K. M. Chandy, 1992: FORTRAN M: A Language for Modular
Parallel Programming, Preprint MCS-P327-0992, Argonne National
Laboratory, Argonne, Ill.

