HeNCE: A Heterogeneous
Network Computing Environment

Adam Beguelin, Jack Dongarra
Al Geist, Robert Manchek
Keith Moore

CRPC-TR93425
August, 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by the Applied Math-
ematics Sciences subprogram of the Office of Energy Re-
search, U.S. Department to Energy and the NSF.






HeNCE: A Heterogeneous Network Computing Environment

Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, and Keith Moore
Computer Science Department
CS-93-205

August 1993



HeNCE: A Heterogeneous Network Computing Environment *

Adam Louis Beguelin (adamb@cs.cmu.edu)
School of Computer Science and Pittsburgh Supercomputing Center
Carnegie Mellon University
Pittsburgh, PA 15213

Jack. J. Dongarra (dongarra@cs.utk.edu)
University of Tennessee and Oak Ridge National Laboratory

George Al Geist (geist@msr.epm.ornl.gov)
Oak Ridge National Laboratory

Robert Manchek (manchek@cs.utk.edu)
Keith Moore (moore@cs.utk.edu)
University of Tennessee

August 27, 1993

Abstract

Network computing seeks to utilize the aggregate resources of many networked computers to solve a
single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive
local area network. The drawback is that network computing is complicated and error prone when done
by hand, especially if the computers have different operating systems and data formats and are thus
heterogeneous.

HeNCE (Heterogeneous Network Computing Environment) is an integrated graphical environment for
creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower
level package called PVM. The HeNCE philosophy of parallel programming is to have the programmer
graphically specify the parallelism of a computation and to automate, as much as possible, the tasks
of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a

graphical language based on directed graphs that describe the parallelism and data dependencies of an
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application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent
data and control flow.
This paper describes the the present state of HeNCE, its capabilities, limitations, and areas of future

research.

Index Terms:
graph models,
heterogeneous machines,
parallel computing,
programming environments,
programming languages,

visual programming.

1 Introduction

Computer networks have become a basic part of today’s computing infrastructure. These networks connect
a wide variety of machines, presenting an enormous computing resource. The HeNCE project focuses on
developing methods and tools which allow a programmer to tap into this resource. In this paper we describe
a tool and methodology which allows a programmer to write a single program and execute it in parallel on
a networked group of heterogeneous machines.

The HeNCE programmer explicitly specifies the parallelism of a computation and the environment aids
the programmer in designing, compiling, executing, debugging, and analyzing the parallel computation.
HeNCE provides programming support through a graphical interface which the programmer uses to perform
various tasks. HeNCE supports visual representations of many of its functions.

In HeNCE the programmer specifies directed graphs where the nodes in the graphs represent either
procedures or special types of control flow and the edges denote dependencies. These program graphs are
input by the programmer using a the HeNCE graph editor. (There is also a textual interface allowing a
programmer to create a program graph using a conventional text editor.) The procedures represented by

the nodes of the graph are written in either C or Fortran. In many cases these procedures can be taken



from existing code. This ability of software reuse is a great advantage of HeNCE. The environment provides
facilities for editing and compiling these procedures on the various architectures of the user defined collections
of computers, also called a virtual machine.

A unique capability of HeNCE is the ability for the user to specify multiple implementations of HeNCE
nodes based on the target architecture. If a node in the HeNCE graph is executed on a Cray then code
written explicitly for that machine can be used. However, if the node is executed on a distributed memory
multicomputer then another algorithm may be used which has been tuned for that architecture. During
execution of a HeNCE program, HeNCE dynamically chooses which machine executes a node. Scheduling
choices are based on programmer input and the current HeNCE related load on a machine. This combination
of graph specification and multiply defined node implementation is a departure from current single program
multiple data (SPMD) approaches to massively parallel programming systems.

Once a HeNCE program graph has been written and compiled it can then be executed on the user’s
virtual machine. Using HeNCE the programmer specifies the various machines on which the program is to
run. Each machine is specified by its internet name. This collection of machines can be widely varying. A
target machine could be anything from a single processor workstation to a 64K processor CM-2. Because
of the nature of the interconnection network, HeNCE procedures are intended to be large grain. The
programmer may also specify a cost matrix showing the relative costs of running procedures on various
architectures. HeNCE will automatically schedule the program procedures on particular machines based on
this user defined cost matrix and program graph.

As the program is executing, HeNCE can graphically display an animated view of its program’s state
based on the computational graph. Various statistics recorded during program execution may also be stored
and animated post mortem. Debugging support is available. Beyond the post mortem analysis, HeNCE can
execute shells and other debugging tools on user specific machines.

HeNCE is implemented on top of a system called PVM (Parallel Virtual Machine) [23, 5, 4]. PVM is a
software package that allows the utilization of a heterogeneous network of parallel and serial computers as a
single computational resource. PVM provides facilities for spawning, communication, and synchronization

of processes over a network of heterogeneous machines. PVM differs from HeNCE in that it provides the low



level tools for implementing parallel programs, while HeNCE provides the programmer with a higher level
abstraction for specifying parallelism and a comprehensive environment for developing, running, and tuning
programs.

In this paper we will expand upon the points introduced here. Section 2 presents an in depth explanation
of the HeNCE paradigm and how procedures and graphs are interfaced. In section 3 the environment’s major
features are presented along with screen dumps showing HeNCE in action. We compare HeNCE to related
work in Section 4. In Sections 5 and 6 we discuss some future directions for this work and provide pointers
for retrieving the software. Finally in Section 7 a summary is given of the project’s current status and the

directions of our continuing work.

2 The HeNCE Paradigm

In developing software, the initial definitions and specifications are often performed graphically; flow charts
or dependency graphs are well known examples. The overall structure of the problem can be visualized
far more easily from these graphical representations than from textual specifications; from the development
point of view, such a representation enhances the quality of the resulting software. However, in order to be
executed, such a description must be converted to program form, typically manifested as source code. These
graphical representations therefore, must eventually be translated to operational programs — the graphical
depiction of a concurrent application, and strategies for its successful execution on a heterogeneous network
are the two fundamental inputs to the HeNCE environment.

With the use of a graphics interface, implemented on a workstation for example, a user can develop
the parallel program as a computational graph, where the nodes in the graph represent the computation
to be performed and the arcs represent the dependencies between the computations. From this graphical
representation, a lower-level portable program can be generated, which when executed will perform the com-
putations specified by the graph in an order consistent with the dependencies specified. This programming
environment allows for a high-level description of the parallel algorithm and, when the high-level description

is translated into a common programming language, permits portable program execution. This environment
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presents the algorithm developer with an abstract model of computation that can bind effectively to a wide
variety of existing parallel processors. Specific machine intrinsics may be confined to the internal workings
of such a tool in order to provide a common user interface to these parallel processors.

Another problem facing the developers of algorithms and software for parallel computers is the analysis of
the performance of the resulting programs. Often performance bugs are far more difficult to detect and over-
come than the synchronization and data dependency bugs normally associated with parallel programs. We
have developed a fairly sophisticated postprocessing performance analysis tool associated with the graphics
programming interface just described. (See section 3.4.) This tool is quite useful in understanding the flow
of execution and processor utilization within a parallel program.

In HeNCE, the programmer explicitly specifies a computation’s parallelism by drawing a graph which
expresses that parallelism. HeNCE graphs provide a usable yet flexible way for the programmer to specify
parallelism. The user directly inputs the graph using the HeNCE compose tool. HeNCE graphs consist of
subroutine nodes which represent subroutines (written in Fortran or C) and special nodes which denote four
different types control flow: conditionals, loops, fans, and pipes. Arcs between subroutine nodes represent
dependencies. It is the user’s responsibility to specify these dependencies. There exist tools such as Parascope
[1] and Forge90 [19] which will take can help the programmer discover parallelism in a sequential code.
HeNCE helps the user describe and run a parallel program but it does not find parallelism for the programmer.
For instance if there is an arc from node a to node b then node ¢ must complete execution before node b
may begin execution. During the execution of a HeNCE graph, procedures are automatically executed when
their predecessors, as defined by the graph, have completed. Functions are mapped to machines based on a
user defined cost m.atrix. The costs are also used as an indication of machine load. The sum of the costs of
the functions currently mapped to a machine constitute a machine’s HeNCE originated load. This load is
considered when mapping a new function to a machine.

Figure 1 shows a simple HeNCE graph containing only dependency arcs. This graph represents a fractal
computation. The start node reads input parameters denoting which part of the complex plane the com-
putation should cover. After the start node completes, the dependency arcs from it to the tile nodes are

satisfied and they may begin execution, computing the pixel tile assigned to them via the parameter list.
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Figure 1: Simple HeNCE graph with dependency arcs.

In this case they are invoked on different parts of the complex plane. Once all of the compute nodes are
finished the collect node can execute and display the resulting fractal.

When a subroutine node executes, its parameters are taken from its immediate predecessors. Parameter
matching is done on the named variables in the parameter list attached to a subroutine node. If two or more
predecessors have a node’s parameter then one of the parameters is chosen randomly. If a parameter does
not exist among the predecessors to a node, then the program will deadlock. When these conditions can be
checked a priori they will produce warnings.

Next, we use an integrate program to demonstrate the dynamic behavior of HeNCE graphs. Figure
2 shows the graph for computing the integral of a function. This program uses the rectangular rule for
computing the integral. Attached to node 1 is the init function. init will initialize the array z with the
values at which f(z) will be evaluated for integration. The parameters maz._parts and num_procs indicate the
number of maximum number of z values and the number of processes to be used in the parallel computation.

The triangular nodes 5 and 6 are special nodes which specify that node 4 will be replicated dynamically
at runtime. The statement attached to node 5 specifies that node 4 will be replicated num_procs + 1 times.
Each copy of node 4 will comput‘e a partial integral of the function f on the interval from z1 to z2. In this
example only node 4 is replicated. It is possible that an entire subgraph be replicated at runtime.

Besides strict dependencies and dynamic constructs, HeNCE also supports pipelining, looping, and con-
ditionals. Each of these constructs are used in a manner similar to those of the fan construct. Begin and

end nodes mark the subgraph which is affected.




7 O sum(partial, num_procs)

4 O partial[p] = integrate(x1, x2)

5V p =0 TO num_procs

1 O init(x, max_parts, num_procs)

Figure 2: HeNCE program for numerical integration.

HeNCE nodes are stateless. Input and output from these nodes occurs only via the parameter list. In this
way HeNCE is very similar to programming in a sequential language with no global variables. HeNCE does
not prohibit the node from creating external state, for instance in the form of files. However, internal state
is not preserved beyond the node’s parameter list. For example, if a node dynamically allocates storage, this
storage will not be accessible to other nodes in the system nor will it be accessible to future invocations of
the same node. It is in this sense that HeNCE nodes are stateless.

HeNCE nodes may access files. However, HeNCE makes no special provisions for file access. Since nodes
are mapped to machines at runtime, any files would need to be accessible from the target machines. If all
the machines are using the same file system via NFS or AFS then files will be globally accessible and thus
not a problem. If a global file system is not available the programmer can control the mapping of nodes to
machines via the HeNCE cost matrix described in section 3.2.

In general, any combination of constructs may be properly nested. When expressions are evaluated or

subroutines called, their parameters always comes from their predecessors in the graph.



2.1 Parameter Passing in HeNCE

The subroutine are attached to nodes in a HeNCE graph simply by specifying the subroutine call as in
conventional Fortran or C. This approach to automatically passing parameters makes the HeNCE programs
easy to build from pieces of code that have already been written. Re-usability is enhanced.

When a procedure is attached to a particular node, the parameters to be used when the node is invoked
are also specified. Parameters can be input, output, or input/output. Input parameters take their values
from ancestors in the graph. Output parameters pass their values on to descendents in the graph. Scalar,
vector, and two dimensional arrays of all base types are supported. For non-scalar parameters, the row and
column sizes must be input. If only a certain subarray is needed, only the upper and lower bounds for the

subarray need to be specified. For instance,
NEW <> float local_x[a] = x[0:a-1];

specifies that a new local variable called local_z will contain the values of the variable z in the index range

Otoa-—1.

2.2 Heterogeneous Function Implementation

Another strength of HeNCE is its ability to tie together different architectures into a virtual parallel su-
percomputer. In fact, the machines that make up this virtual parallel supercomputer may themselves be
parallel supercomputers. We have shown that HeNCE graphs describe the parallelism of a set of procedures.
Each procedure in a HeNCE graph may be implemented by several algorithms. For instance, computing the
LU decomposition of a matrix on an Intel iPSC/860 is much different from computing the same procedure
on a Cray C90. HeNCE supports the specification of different procedure implementations and invokes the
appropriate implementation when a procedure is executed on a particular machine. Thus a complete HeNCE
program consists of a set of procedures represented by nodes in the program graph and, for each procedure,
a set of implementations of that procedure for various architectures. HeNCE provides mechanisms for spec-
ifying which source files implement which procedures for which architectures. Facilities for compiling source

files on various architectures are also supported. In the future we hope to add facilities which visually repre-
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Figure 3: HeNCE main menu.

sent the status of a user’s virtual machine with respect to which machines are able to execute which HeNCE

nodes.

3 The HeNCE Tool

HeNCE provides an X window based user interface for using HeNCE facilities. This interface aids the user
in creating HeNCE graphs, configuring virtual machines, visualizing trace information, compiling, executing,
and Aebugging HeNCE programs. Although the graphical front end makes the use of these facilities easier,
for portability reasons it is still possible to utilize HeNCE without it’s graphical interface. All essential
HeNCE facilities have textual counterparts.

Figure 3 shows HeNCE’s main menu. The upper part of the window is a scrollable window that displays
various HeNCE related information. The button allows the user to change directories. The

|gra,ph: l, [ costs: |, and tracefile: | buttons allow the user to load the associated files. The button

specifies whether the node subroutines will be written in C or Fortran. The | compose |, |conﬁg l, , and

buttons are for entering those .relat.ed modes of HeNCE operation. In compose mode the user draws
a program graph. Config mode allows the user to configure a virtual machine, specify the hosts involved
in executing the distributed program. Build mode will compile node programs for execution on the virtual
machine. Trace allows the programmer to animate aspects of program execution. The button
will start executing PVM on the user specified virtual machine. runs the current HeNCE program

on the virtual machine. Finally, the prints a copy of the HeNCE graph and displays a useful

legend of HeNCE symbols.
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3.1 Compose

The compose mode of HeNCE allows the user to interactively create HeNCE graphs. Figure 4 shows HeNCE
in compose mode. Various nodes may be drawn and connected together with arcs. For each procedure node
in the graph the user must specify a procedure which will be called when that node’s dependencies have
been satisfied. For control flow constructs, loops and so on, the required expressions and variables must be
specified. When a procedure is attached to a node the actual parameters are specified. From compose mode

the user can also open an edit window for a particular node’s subroutine source code.

3.2 Configure a Virtual Machine

In order to compile and execute a HeNCE program, a set of machines must be specified. In HeNCE this
is called configuring a virtual machine. Any machine where the user has a login and accessibility via a
network can be used. HeNCE makes use of PVM for most functions. If the PVM daemon is not running on
a machine, then HeNCE can start it. The user may add hosts to the virtual machine simply by supplying
an internet name or address. HeNCE can be customized via X resources to handle different login names on
different machines. (X resources are variables supported by the X windowing environment.)

In configure mode the user may also specify costs for running nodes on different architectures. For a
particular node, costs are ordered pairs of machines and integers. The higher the integer, the more expensive
it is to run that node on that host. HeNCE will use these costs when mapping a procedure to a machine at
run time. Figure 5 shows HeNCE in configure mode where the cost and configure information is input by
the user.

The costs are used at runtime when mapping nodes to machines. These costs reflect the relative runtimes
for HeNCE nodes executing on various machines. The user should estimate these costs based on what he
or she knows of the machines ability to execute a HeNCE node. This should reflect not only the type of
machine but it’s expected load. For instance, an unloaded DEC Alpha workstation may be faster than a
heavily loaded Cray C90. In this case it may make sense for a node to have a lower cost on the Alpha than
the Cray. HeNCE keeps track of where nodes are executing. Using the cost matrix, HeNCE can decide on

the least costly process placement. This placement only takes into account HeNCE processes, ignoring other
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Figure 4: HeNCE in compose mode.
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new cost matrix

[directory: demo5|(graph: demo5.gr|(costs: dao-grackle.mat|tracefile: hence.trace|/language: C|
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mumble foo bar
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dao 15 15 15

rackleR 10 10 10
thud.utk.edu . 110 110, 110,
pscymp S, S S

Figure 5: HeNCE in configure mode.

external load factors. We are exploring more comprehensive methods of load balancing. The advantage of
this method is that it is simple and the user can easily tune a set of costs for a particular combination of
application and virtual machine.

While a HeNCE program is executing, the machine configuration may not be changed by the user.
However, between program executions machines may be added and removed at will. Machine configurations
can be stored in files for easy retrieval. For instance, a different cost matrix may be used late in the evening

rather than during the daytime when certain machines are more heavily loaded.

3.3 Compiling for a Virtual Machine

Each HeNCE node must be ultimately implemented by a binary executable file. The build mode of HeNCE
supports compiling HeNCE nodes for different architectures in the the user’s virtual machine. (See Figure

6.)

For each subroutine in the HeNCE graph a wrapper is automatically generated when the l write wrappersJ

button is pressed. This wrapper code is linked into user subroutines. The wrappers handle the spawning,

synchronization and communication necessary to execute a HeNCE program. Pressing the | write makefile

button causes a custom makefile to be generated for compiling the program’s source code. Specialized
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“dao-grackle.mat”: neuw cost matrix
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build mode._
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[conposﬂlconfig][tracel [start pvm|[execute|lprint|[legend| [quit]
[urite wrappers][urite makefile| make clean|(make|(make install|

Figure 6: HeNCE build mode.

libraries (i.e. Xlib) can also be included in the makefile by setting the correct X resource.

Make can be invoked by clicking | make clean |, [ make |, or | make install ] HeNCE will carry out the

make operation locally or on all machines in the current cost matrix depending on the local/world toggle.
In Figure 6 this toggle, just to the right of the button, is set to world. When compiling on
multiple machines, HeNCE uses a program called pvmrsh for carrying out the remote makes. This global

make handles cases when the user’s home directory is and is not cross mounted.

3.4 Visual Execution Analysis Tools

HeNCE provides tools for visualizing the performance of HeNCE programs. HeNCE can emit trace infor-
mation during a program’s execution. This trace information may be either displayed as the program is
running or stored to be displayed later. Figure 7 shows trace mode in action. Trace information is displayed
as an animation sequence. Replay of this sequence can be controlled by the user; rewind, stop, single step,
and continuous play modes are supported.

The main window shows the graph, drawn using different shapes and colors to indicate the graph’s state
of execution. These shapes and colors are explained in the legend window. In Figure 7 the dprod node is
actually inside a fan construct. This means there may be several copies of this node executing. The 2ro0i
annotation signifies there are two copies of this node running and zero copies idle. The Host Map window
displays icons for each machine in the virtual machine. These icons change color indicating that host is either
performing housekeeping duties or executing a user’s subroutines. The icons for burgundy and concord are

also annotated with 3/0 and 3/1 indicating instances 0 and 1 of node 3 are running on these machines.
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Finally, the utilization graph shows the state of the machines over time. The red line indicates the location
of the current time in the animation sequence. The time scale of the utilization graph can be changed by
clicking on the arrows.

Tracing is optional and may be turned off for efficiency during production runs of a program. However, if

the granularity of the computation is coarse enough then the trace events will not add significant overhead.

3.5 Running a HeNCE Program

Once a virtual machine has been configured and the subroutine nodes have been compiled, HeNCE can
execute the HeNCE graph. First PVM must be started on the configured virtual machine. This can be
done by clicking the button. Clicking this button starts PVM and opens a console window for
interactively controlling the virtual machine. PVM console commands such as reset and ps can be issued in
this window. The button starts the HeNCE program on the currently configured virtual machine.
During execution standard output and error are directed to the PVM console window for the duration of the

rogram’s execution. During execution the programs progress can be monitored in trace mode by clickin
prog g 8 prog 8

on the monitor button (which looks like a satellite dish) and then the button.

4 Related Work

Several research projects have goals which overlap with those of HeNCE. Paralex, Schedule, Phred, Code,
the Cosmic environment, Network Linda, Isis, and Express are a few examples (3, 15, 7, 12, 22, 13, 10, 16].

Paralex [2, 3] is probably the most closely related project to HeNCE. In Paralex, the programmer also
explicitly specifies dependency graphs where the nodes of the graph are subroutines. Paralex programs also
execute on a heterogeneous distributed network of computers. There are, however, several major differences
between Paralex and HeNCE. HeNCE requires less system specific code than does Paralex to interface
subroutines to the graph. The HeNCE programmer must only specify the types and sizes of the elements in
a procedure’s parameter list. HeNCE automatically ensures parameters are available for a procedure when

it is called. In Paralex, a procedure is only allowed to output one value. Although this value is not limited
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to scalars it is the programmer’s responsibility to code “filter” nodes which partition procedure output for
subsequent nodes in the Paralex graph. The requirement of user-defined graph-specific code impairs the
portability and reuse of Paralex programs. The Paralex filter nodes appear to need specific knowledge of
the graph coded into them at a low level. HeNCE’s traditional parameter list approach allows for greater
portability and reuse of code. HeNCE graphs are richer than those of Paralex. HeNCE provides conditional,
loop, fan in/out, and pipeline constructs within its graphs. Paralex graphs do not provide these constructs.
Pipelining is provided in Paralex but at the level of the entire graph. An advantage of Paralex over HeNCE
is it’s support of fault tolerance. Fault tolerance in Paralex is provided by the user specifying the number of
times a node may fail. The current version of HeNCE does not support fault tolerance. The description of
future work in Section 5 discusses fault tolerance for HeNCE.

Paralex is built on Isis [10]. Isis is a parallel programming toolkit for fault tolerant parallel computing
over a network of heterogeneous machines. Compared to Isis, HeNCE is a higher level programming tool.
HeNCE could be built on Isis rather than PVM. PVM was chosen for several reasons. Isis is a much larger
system. A goal of HeNCE is to allow the use machines where one simply has a login. Isis alone requires
on the order of tens of megabytes of disk storage and a system administrator to install. Comparatively,
PVM is a much smaller system, requiring the order of a megabyte of disk storage and PVM can be easily
installed by a user. The main difference between PVM and Isis is that Isis provides fault tolerance and more
complicated process communication and control. Research into adding fault tolerance to PVM is currently
underway [18].

Code [12, 21] is also a graph based parallel programming system. It allows the users to specify a parallel
computation using Unified Computation Graphs [11]. Code has more advanced rules for node execution.
Code firing rules are akin to guards used in logic programming.

Express [16] supports parallel programming approximately at the same level as PVM. The programmer
writes explicit parallel code which makes calls to the Express libraries for process control and message
passing.

The Cosmic environment [22] is a publicly available programming environment targeted toward tightly

coupled homogeneous groups of local memory MIMD machines or multicomputers. The Cosmic environment
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is a lower level parallel programming tool than HeNCE. If HeNCE were targeted for a multicomputer
environment then it would be possible to implement HeNCE on top of the Cosmic environment. Similar
to Express and PVM the Cosmic environment provides a low level infrastructure for process control and
communication. Unlike PVM the cosmic environment is not targeted toward heterogeneous networks of
machines.

Network Linda is a commercial implementation of the Linda primitives [13] which runs over a network of
processors. Network Linda does not support the heterogeneous data formats automatically; it will, however,
support a Linda tuple space over a network of machines which conform to the same data formats. To
effectively use Network Linda the programmer must explicitly write programs which use Linda primitives.
This is similar to writing a program at the PVM level where process initialization and communication '
is explicit. This contrasts to HeNCE where the programmer specifies the high level synchronization and
standard parameter list procedure invocation is handled automatically.

Piranha [17] is a system which is built on top of network Linda. Programming in Piranha is similar to
Linda programming except the Piranha tasks migrate around the network. A major goal of Piranha is to
consume unused compute cycles without disturbing machines which are in use. Piranha monitors machine
utilization and will migrate tasks off of machines which are being used.

Condor [20] is similar to Piranha in it’s goals. A major difference between Condor and Piranha is
that Condor runs single threaded applications and Piranha applications are typically multithreaded. An
advantage of Condor is that programs can utilize the system without changing any source. Piranha programs
need to be explicitly written to be used with the system and a retreat function, to be called when a task is
to migrate, must be provided by the programmer. We are currently exploring the use of Condor with PVM
programs. The main challenge here is to provide efficient checkpointing for PVM programs.

Schedule [14, 15, 9] is similar to HeNCE. Although HeNCE graphs are more complex than those of Sched-
ule, the basic HeNCE dependency graphs are equivalent. Schedule runs on a shared memory multiprocessor,
not a heterogeneous network of distributed memory machines. Schedule programs also rely on shared mem-
ory semantics which are unavailable in HeNCE, since it is intended for distributed memory architectures.

However, a HeNCE node that executes on a shared memory machine may take advantage of the available
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shared memory. If fact, a HeNCE node executing on a shared memory machine could actually utilize the
Schedule primitives.

Phred [6, 7, 8] is also similar to HeNCE. Phred graphs are more complicated than those of HeNCE; they
contain separate data and control flow graph constructs. The pipe and fan constructs of HeNCE are based

on similar constructs from Phred. However, the emphasis of Phred is not heterogeneity but determinacy.

5 Future Work

While HeNCE supports many facets of the programming task, it is still deficient in several areas, mainly
debugging, fault tolerance and efficiency.

The HeNCE trace mode does a good job with respect to tuning a program but more debugging support
is needed. Support for source level debugging in HeNCE would b‘e helpful. Issues with respect to parallelism
and debugging need to be addressed. It is not sufficient to simply open a window for each node in the
graph running dbx. This would become unwieldy all too soon. HeNCE could support the examination and
alteration of node subroutine parameter lists during runtime. These parameter lists may be examined either
before or after a subroutine executes.

Currently fault tolerance is not supported. As the number of computers involved in a computation grows,
so does the chance that any one machine may fail. The addition of checkpointing to HeNCE is very attractive
way of dealing with failures. The state of a HeNCE node can be described by the parameter list it was sent.
If a node fails and this parameter list is stored, then a new version of the node can be started. Version 3 of
PVM supports dynamic configurations of computers in the virtual machine. HeNCE can take advantage of
this feature by adding new machines when one fails.

Once the fault tolerance support is added, it would be interesting to extend the system to migrate tasks
off of machines under certain circumstances. If a workstation owner arrives and starts using his system,
HeNCE could migrate that task by killing it and restarting it on another machine. HeNCE could also place
or move processes based on other load factors. The cost matrix would need to be modified so the user could

supply information about how to treat specific machines.
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The execution of HeNCE programs is carried out by a centralized controller. This leads to efficiency
problems, mainly due to bottlenecks. It would be beneficial to explore a more efficient execution scheme for

HeNCE programs which eliminated much of this support on a central locus of control.

6 Availability

An underlying philosophy of our work has been to emphasize practicality; therefore, our work is oriented
towards software systems that are realizable and immediately applicable to real-life problems. The soft-
ware produced is freely distributed to researchers and educators, allowing them to harness their distributed
compute power into comprehensive virtual machines.

At least one Unix workstation with X-Windows is required to use HeNCE. HeNCE assumes PVM is
installed. HeNCE will work with either version 2 or 3 of PVM.

PVM and HeNCE are available by sending electronic mail to netlib@ornl.gov containing the line “send
index from pvm” or “send index from hence”. For version 3 of PVM use “send index from pvm3”. Instructions

on how to receive the various parts of the PVM and HeNCE systems will be sent by return mail.

7 Summary

HeNCE is an integrated graphical environment designed to simplify the task of writing, compiling, running,
debugging, and analyzing programs on a heterogeneous network. In HeNCE the user explicitly specifies
parallelism by drawing a graph of the parallel application and indicating data dependencies. HeNCE then
writes the necessary message passing code (using PVM) and compiles this code on the machines the user has
requested in the HeNCE configuration. When HeNCE executes an application graph HeNCE dynamically
load balances the parallel tasks taking into account the heterogeneity in the algorithm and the machine
performance. During execution HeNCE collects trace information which can be displayed graphically in real
time or saved for replay. The drawing, writing, compiling, executing, and tracing steps are all integrated
into a single X-Window environment.

Future research in HeNCE will focus mainly on debugging, fault tolerance, and efficiency. Source level
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debugging is a useful feature not presently integrated into HeNCE. As the number of computers added to a
configuration grows, so does the need for more robust fault tolerance. The nature of HeNCE allows for the
straightforward incorporation of fault tolerance at the application level. The efficiency of program execution
under HeNCE can be improved and future work will look at better algorithms and protocols to facilitate

this.

8 Acknowledgements

We would like to acknowledge the efforts of Vaidy Sunderam and James Plank. Many intense discussions
with both of these scientists helped shape this research. Vaidy can also be credited with coming up with the
acronym HeNCE. James Plank developed the initial version of the execution system for dynamic HeNCE

graphs.

References

[1] 3. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs for parallel
execition. In Conf. Rec. 14th ACM Sym. Principles of Programming Langues (POPL), volume 14, pages

63-76, 1987.

[2] Ozalp Babaoglu, Lorenzo Alvisi, Alessandro Amoroso, and Renzo Davoli. Paralex: An environment for
parallel programming in distributed systems. Technical Report UB-LCS-91-01, University of Bologna,

Department of Mathematics, Piazza Porta S. Donato, 5, 40127 Bologna, Italy, Febuary 1991.

[3] Ozlap Babaoglu, Lorenzo Alvisi, Alessandro Amoroso, Renzo Davoli, and Luigi Alberto Giachini. Par-
alex: An environment for parallel programming in distributed systems. In 1992 International Conference

on Supercomputing, pages 178-187. ACM, ACM Press, July 1992.

[4] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. Solving computational

grand challenges using a network of heterogeneous supercomputers. In Jack Dongarra, Ken Kennedy,

21



Paul Messina, Danny C. Sorensen, and Robert G. Voigt, editors, Proceedings of Fifth SIAM Conference

on Parallel Processing for Scientific Computing, pages 596-601, Philadelphia, 1991. SIAM.

[6] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. A users’ guide to PVM
parallel virtual machine. Technical Report ORNL/TM-11826, Oak Ridge National Laboratory, July

1991.

[6] Adam Beguelin and Gary Nutt. Collected papers on Phred. Technical Report CU-CS-511-91, University

of Colroado, Department of Computer Science, Boulder, CO 80309-0430, January 1991.

[7] Adam Beguelin and Gary Nutt. Examples in Phred. In Jack Dongarra, Ken Kennedy, Paul Messina,
Danny C. Sorensen, and Robert G. Voigt, editors, Proceedings of Fifth SIAM Conference on Parallel

Processing for Scientific Computing, pages 602-608, Philadelphia, 1991. SIAM.

[8] Adam Beguelin and Gary Nutt. Visual parallel programming and determinacy: A language specification,
an analysis technique, and a programming tool. Technical Report CMU-CS-93-166, Carnegie Mellon

University, June 1993. To appear in JPDC in 1994.

[9] Adam L. Beguelin. SCHEDULE: A hypercube implementation. In Proceedings of The Third Conference

on Hypercube Concurrent Computers and Applications, volume 1, pages 468-471, January 1988.

[10] Kenneth Birnam and Keith Marzullo. Isis and the META project. Sun Technology, pages 90-104,

Summer 1989.

[11] James C. Brown. Formulation and programming of parallel computers: a unified approach. In Proc.

Intl. Conf. Par. Proc., pages 624-631, 1985.

[12] Jim Browne, Muhammad Azam, and Stephen Sobek. CODE: A unified approach to parallel program-

ming. IEEE Software, 6(4):10-18, July 1989.

[13] Nicholas Carriero and David Gelernter. Linda in context. Communications of the ACM, 32(4):444-458,

1989.

22

o A s



[14] J.J. Dongarra and D. C. Sorensen. A portable environment for developing parallel FORTRAN programs.
In Proceedings of the International Conference on Vector and Parallel Computing - Issues in Applied
Research and Development, pages 175-186, July 1987. Published in Parallel Computing, Volume 5,

Numbers 1 & 2.

[15] J. J. Dongarra and D. C. Sorensen. SCHEDULE: Tools for Developing and Analyzing Parallel Fortran
Programs. In D. B. Gannon L. H. Jamieson and R. J. Douglass, editors, The Characteristics of Parallel

Algorithms, pages 363-394. The MIT Press, Cambridge, Massachusetts, 1987.

[16] J. Flower, A. Kolawa, and S. Bharadwaj. The express way to distributed processing. Supercomputing

Review, pages 54-55, May 1991.

[17] David Gelernter and David Kaminsky. Supercomputing out of recycled garbage: Preliminary experience
with Piranha. In 1992 International Conference on Supercomputing, pages 417-427. ACM, ACM Press,

July 1992.

[18] Juan Leon, Allan L. Fisher, and Peter Steenkiste. Fail-safe pvm: A portable package for distributed
programming with transparent recovery. Technical Report CMU-CS-93-124, Carnegie Mellon University,

February 1993.

[19] J. M. Levesque. FORGE 90 and High Performance Fortran (HPF). InJ. S. Kowalik and L. Grandinetti,

editors, Software for Parallel Computation, pages 111-119. Springer-Verlag, Berlin Germany, 1993.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor — A hunder of idle workstations. In Proceedings of the

Eighth Conference on Distributed Computing Sys tems, San Jose, California, June 1988.

[21] Peter Newton and James C. Browne. The code 2.0 graphical parallel programming language. In 1992

International Conference on Supercomputing, pages 167-177. ACM, ACM Press, July 1992.

[22] Charles L. Seitz, Jakov Seizovic, and Wen-King Su. The C programmer’s abbreviated guide to mul-
ticomputer programming. Technical Report Caltech-CS-TR-88-1, California Institute of Technology,

Department of Computer Science, Pasadena, California 91125, 1988.

23



[23] V. S. Sunderam. PVM : A framework for parallel distributed computing. Concurrency: Practice and

Ezperience, 2(4):315-339, December 1990.

24

et e



