Fortran M Language Definition

Ian T. Foster
K. Mani Chandy

CRPC-TR93429
August, 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Updated May, 1994.

This research was supported in part by the Office of Sci-
entific Computing, U.S Department of Energy, and by the
National Science Foundation’s Center for Research on Par-
allel Computation.

*

Fortran M Language Definition

Ian T. Foster
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

K. Mani Chandy
Department of Computer Science

California Institute of Technology
Pasadena, CA 91125

Abstract

This document defines the Fortran M extensions to Fortran 77. It updates an
earlier definition, dated June 1992, in several minor respects.

1 Introduction

The reader is referred to other reports for additional information on the Fortran M lan-
guage [2], its theoretical foundations [1], and a Fortran M compiler developed at Argonne
National Laboratory [3].

2 Syntax

Backus-Naur form (BNF) is used to present new syntax, with nonterminal symbols in
slanted font, terminal symbols in TYPEWRITER font, and symbols defined in Appendix F
of the Fortran 77 standard [4] underlined The syntax [symbol] is used to represent
zero or more comma-separated occurrences of symbol; [symbol]() represents one or more
occurrences.

*This research was supported in part by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38 and by the National Science Foundation’s Center for Research
in Parallel Computation, under Contract CCR-8809615. This report was also published as Technical
Report ANL-93/28, Argonne National Laboratory, August 1993.

2.1 Process, Process Block, Process Do-loop

A process has the same syntax as a subroutine, except that the keyword PROCESS is
substituted for SUBROUTINE, INTENT declarations can be provided for dummy arguments,
and a process cannot take an assumed size array as a dummy argument.

A process call can occur anywhere that a subroutine call can occur. It has the same
syntax as a subroutine call, except that the keyword PROCESSCALL is substituted for
CALL. In addition, process calls can occur in process blocks and process do-loops, and
recursive process calls are permitted. A process block is a set of statements preceded by a
PROCESSES statement and followed by a ENDPROCESSES statement. A block includes zero
or one subroutine calls, zero or more process calls, and zero or more process do-loops. A
process do-loop has the same syntax as a do-loop, except that the PROCESSDO keyword is
used in place of DO, and the body of the do-loop can contain only a process do-loop or a
process call.

A port variable or port array element can be passed as an argument to only a single

process in a process block or process do-loop, and then cannot be accessed in a subroutine
called in that block.

2.2 New Declarations

Five new declaration statements are defined: INPORT, OUTPORT, INTENT, PROCESSORS, and
PROCESS COMMON.

inport_declaration :: INPORT ([data_type]) [name](
outport_declaration :: OUTPORT ([data_typel) [namel(
intent_declaration :: INTENT(IN) [namel®) |

INTENT(OUT) [namel® |

INTENT(INOUT) [name]®
machine_declaration :: PROCESSORS(bounds)
name :: variablename | arrayname | array_declarator
data_type :: fortran_data_type |

fortran_data_type name |

INPORT ([data_typel]) |

OUTPORT ([data_typel])

In the PROCESSORS statement, bounds has the same syntax as the arguments to an
array_declarator. The product of the dimensions must be nonzero. Any program,
process, subroutine, or function including a LOCATION or SUBMACHINE annotation must
include a PROCESSORS declaration.

The symbol fortran_data_type denotes the six standard Fortran data types. The dimen-
sions in an array.declarator in a port declaration can include variable declared in the
port declaration, parameters, and arguments to the process or subroutine in which the

declaration occurs. The symbol “¥” cannot be used to specify an assumed size. Variables

declared within a port declaration have scope local to that declaration.

A PROCESS COMMON statement has the same syntax as a COMMON statement.

2.3 New Executable Statements

There are seven new executable statements: CHANNEL, MERGER, MOVEPORT, SEND, RECEIVE,
ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control specifiers,
termed a control information list. The SEND and RECEIVE statements also take other
arguments. A control information list can include at most one of each specifier, except
those that name ports. The number of allowable port specifiers varies from one statement
to another. The first three of these statements are as follows.

channel_statement :: CHANNEL ([channel_control] ()
merge_statement :: MERGER([merge_control](1))
moveport_statement :: MOVEPORT([moveport_control]())

channel_control i outport_name | OUT=outport_name |
inport_name | IN=inport.name |
I0STAT=storage_location | ERR=label

merge_control it outport_specifier | OUT=outport_specifier |
inport_name | IN=inport.name |
I0STAT=storage_location | ERR=1label

moveport_control . port-name | FROM=port_name |
port_name | TO=port_name |
I0STAT=storage_location | ERR=1label

outport_specifier . outport_name | data_implied do_list
outport_name it port_name
inport_name :t port_name
port_name :: variablename | array element_name

A CHANNEL statement must include two port specifiers, and these must name an out-port
and an in-port of the same type. If the strings OUT= and IN= are omitted, these specifiers
must occur as the first and second arguments, respectively.

A MERGER statement must include at least two port specifiers, and these must name an
in-port and one or more unique out-ports, all of the same type. If the strings OUT= and
IN= are omitted, the out-port specifiers must precede the in-port specifier, which must
precede any other specifiers,

In a MOVEPORT statement, the port specifiers must name two in-ports or two out-ports,
both of the same type. If the strings FROM= and TO= are omitted, these specifiers must
. occur as the first and second arguments, respectively. The first then specifies the “from”
port and the second the “to” port.

The other four statements are as follows.

send_statement :: SEND([send_control]1M)) [argument]
receive_statement :: RECEIVE([recv_control](V)) [variable]
close_statement :: ENDCHANNEL ([send_control]1(1))
probe_statement :: PROBE([probe_control]())
send_control :: outport_.name | PORT=outport_name |
I0STAT=storage_location | ERR=label
recv_control :: inport_-name | PORT=inport_name |
I0STAT=storage_location | ERR=1label | END=label
probe_control :: inport_.name | PORT=inport_name |
ERR=1label | IOSTAT=storagelocation | EMPTY=storage location
storage_location :: variablename | array_element_name
argument :: expression |
variable :: variablename | array_element name | array.name

If a port specifier does not include the optional characters PORT=, it must be the first
item in the control information list. A storage_location specified in an IOSTAT= or EMPTY=
specifier must have integer and logical type, respectively.

2.4 Mapping

The mapping annotations LOCATION and SUBMACHINE are appended to process calls:

process_call LOCATION (indices)
process_call SUBMACHINE (indices)

where indices has the same syntax as the arguments to an array_element_name.

2.5 Restrictions
Port variables cannot be named in EQUIVALENCE statements. Programs cannot include

COMMON data; PROCESS COMMON must be used instead.

3 Concurrency

With two exceptions, a process executes sequentially, in the same manner as a Fortran
program. That is, each statement terminates execution before the next is executed. The

4

two exceptions are the process block and the process do-loop, in which statements execute
concurrently. That is, the processes created to execute these statements may execute in
any order or in parallel, subject to the constraint that any process that is not blocked
(because of a RECEIVE applied to an empty channel) must eventually execute. A process
block or process do-loop terminates, allowing execution to proceed to the next statement,
when all its process and subroutine calls terminate.

A process can access its own process common data but not that of other processes. By
default, process arguments are passed by value and copied back to the parent process, in
textual and do-loop iteration order, upon termination of the process block or process do-
loop in which the process is called, or upon termination of the process, if the process does
not occur in a process block or do-loop. A dummy argument declared INTENT (INOUT)
is treated in the same way. If a dummy argument is declared INTENT(IN), then the
corresponding parent argument is not updated upon termination. If a dummy argument
is declared INTENT (OUT), the value of the variable is defined to a default value upon entry
to the process.

4 Channels

Processes communicate and synchronize by sending and receiving values on typed com-
munication streams called channels. A channel is created by a CHANNEL statement, which
also defines the supplied in-port and out-port to be references to the new channel. A
channel is a first-in/first-out message queue. An element is appended to this queue by
applying the SEND statement to the out-port that references the channel. This statement
is asynchronous: it returns immediately. An element is removed from the queue by apply-
ing the RECEIVE statement to the in-port that references the channel. This statement is
synchronous: it blocks until a value is available. The ENDCHANNEL statement appends an
end-of-channel (EOC) message to the queue. The MOVEPORT statement copies a channel
reference from one port variable to another.

These statements all take as arguments a control information list (cilist). The optional
IOSTAT=, END=, and ERR= specifiers have the same meaning as the equivalent Fortran I/O
specifiers, with end-of-channel treated as end-of-file, and an operation on an undefined
port treated as erroneous. An implementation should also provide, as a debugging aid,
the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE statement is applied
to a port that is the only reference to a channel.

SEND(cilist) Ei,...,E, Add the values E, ..., E, (the sources) to the channel referenced
by the out-port named in cilist (the target). The source values must match the data
types specified in the port declaration, in number and type.

RECEIVE(cilist) Vq,...,V, Block until the channel referenced by the in-port named in
cilist (the target) is nonempty. If the next value in the channel is not EOC, move
values from the channel into the variables Vi, ..., V,, (the destinations). The des-

tination variables must match the data types specified in the port declaration, in
number and type.

ENDCHANNEL (cilist) Append an EOC message to the channel referenced by the out-port
named in cilist.

MOVEPORT (cilist) Copy the value of the port specified “from” in cilist (the source) to the
port specified “to” (the target), and set the source port to undefined.

A port is initially undefined. An undefined port becomes defined if it is included in a
CHANNEL (or MERGER: see below) statement, if it occurs as a destination in a RECEIVE, or
if it is named as the target of a MOVEPORT statement whose source is a defined port. Any
other statement involving an undefined port is erroneous.

Application of the ENDCHANNEL statement to an out-port causes that port to become un-
defined. The corresponding in-port remains defined until the EOC message is received by
a RECEIVE statement, and then becomes undefined. Both in-ports and out-ports become
undefined if they are named as the source of a SEND or MOVEPORT operation.

Storage allocated for a channel is reclaimed when both (a) either the out-port has been
closed, or the out-port goes out of scope or is redefined, and (b) either EOC is received
on the in-port, or the in-port goes out of scope or is redefined.

5 Nondeterminism

The MERGER and PROBE statements are used to specify nondeterministic computations.
MERGER is identical to CHANNEL, except that it can define multiple out-ports to be references
to its message queue. Messages are added to the queue as they are sent on out-ports,
with the order of messages from each out-port being preserved and all messages eventually
appearing in the queue. An EOC value is added to the queue only after it has been sent
on all out-ports.

The PROBE statement is used to obtain status information for a channel. It can be applied
only to an in-port. The IOSTAT= and ERR= specifiers in its control list are as in the Fortran
INQUIRE statement. A logical variable named in an EMPTY= specifier is assigned the value
true if the channel is known to be empty, and false otherwise. Knowledge about sends
is presumed to take a non-zero but finite time to become known to a process probing an
in-port. Hence, a PROBE of an in-port that references a nonempty channel may signal true
if the channel values were only recently communicated. However, if applied repeatedly
without intervening receives, PROBE will eventually signal false, and will then continue to
do so.

6 Mapping

The PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have no se-
mantic content, but determine performance by specifying how processes are to be mapped
within an N-dimensional array of processors (N > 1).

The PROCESSORS declaration is analogous to a DIMENSION statement: it declares the
shape and dimensions of the processor array that is to apply in the program, process, or
subroutine in which it appears. As we descend a call tree, the shape of this array can
change, but its size can only become smaller, not larger.

A LOCATION annotation is analogous to an array reference. It specifies the virtual pro-
cessor on which the annotated process is to execute. The specified location cannot be
outside the bounds of the processor array specified by the PROCESSORS declaration.

The SUBMACHINE annotation is analogous to an array reference in a subroutine call. It
specifies that the annotated process is to execute in a virtual computer with its first
processor specified by the annotation, and with additional processors selected in array
element order. These processors cannot be outside the bounds of the processor array
specified by the PROCESSORS declaration.

References

[1] Chandy, K. M., and Foster, I., A deterministic notation for cooperating processes,
Preprint MCS-P346-0193, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Ill., 1993.

[2] Foster, 1., and Chandy, K. M., Fortran M: A language for modular parallel pro-
gramming, Preprint MCS-P327-0992, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., 1992.

[3] Foster, I., Olson, R., and Tuecke, S., Programming in Fortran M, Technical Report
ANL-93/26, Argonne National Laboratory, Argonne, IIl., 1993.

[4] Programming Language Fortran, American National Standard X3.9-1978, American
National Standards Institute, 1978.

