Integrated Support for Task and
Data Parallelism

Mant Chandy, Ian Foster
Ken Kennedy
Charles Koelbel
Chau-Wen Tseng

CRPC-TR93430
August, 1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Updated May, 1994.

This research was supported by the National Science Foun-
dation’s Center for Research on Parallel Computation.
To be published in The International Journal of Supercom-
puting Applications, Vol. 8.2 (Summer 1994).

To appear in: Intl. J. Supercomputer Applications

Integrated Support for Task and Data Parallelism”

Mani Chandy

Center for Research on Parallel Computation
California Institute of Technology
Pasadena, CA 91125

Ian Foster

Argonne National Laboratory
Argonne, IL 60439

Ken Kennedy
Charles Koelbel
Chau-Wen Tseng

Center for Research on Parallel Computation
Rice University
Houston, TX 77251-1892

August 27, 1993

Abstract

We present an overview of research at the CRPC designed to provide an efficient, portable
programming model for scientific applications possessing both task and data parallelism. For-
tran M programs exploit task parallelism by providing language extensions for user-defined
process management and typed communication channels. A combination of compiler and
run-time system support ensures modularity, safety, portability, and efficiency. Fortran D
and High Performance Fortran programs exploit data parallelism by providing language ex-
tensions for user-defined data decomposition specifications, parallel loops, and parallel array
operations. Compile-time analysis and optimization yield efficient, portable programs. We
design an interface for using a task-parallel language to coordinate concurrent data-parallel
computations. The interface permits concurrently executing data-parallel computations to
interact through messages. A key notion underlying the proposed interface is the integration
of Fortran M resource management constructs and Fortran D data decomposition constructs.

*This research was supported by the National Science Foundation’s Center for Research in Parallel Compu-
tation, under Contract CCR-8809615.

1 Introduction

The primary goal of the Center for Research on Parallel Computation is to make parallel
computers easier to use. We feel that one of the fundamental problems in the use of parallel
computers today is the difficulty of writing parallel software. Part of this difficulty stems
from the fact that no universally acceptable programming paradigm for parallel machines
has been developed. Some programs are most naturally considered as sets of interacting,
large-grain tasks; others are naturally thought of as many fine-grain operations performed
on the elements of a large data structure; still other programs may have other natural
expressions. Moreover, the same paradigm may be easy to implement on one architecture,
but very difficult to implement efficiently on another. Recent reports have indicated that

even single applications may require several paradigms in their implementation; see, for
example, (Federal HPCC Program, 1993).

In this paper we approach this multiple-paradigm situation directly: We describe two state-
of-the-art parallel programming paradigms for supporting task and data parallelism, show
how they can be integrated, and provide a preliminary design for the necessary interfaces.
Some of these ideas are being investigated in a compilation system under development at
Argonne National Laboratory and Syracuse University (Foster et al., 1994). First, however,
we define both task parallelism and data parallelism, then motivate their integration.

1.1 Task Parallelism

In a task-parallel programming paradigm the program consists of a set of (potentially dissim-
ilar) parallel tasks that interact through explicit communication and synchronization. Task
parallelism may be both synchronous and asynchronous. In this paper, we use Fortran M
(FM) as an example of a language supporting such a programming paradigm (Foster and
Chandy, 1992; Chandy and Foster, 1993). Section 2 describes the FM language in more
detail. Here, we focus on the advantages and disadvantages of the task-parallel paradigm.

A major advantage of task parallelism is its flexibility. Because of its emphasis on explicit
coordination of individual tasks (or processes, as they are often called), task parallelism
can be used to exploit both structured and unstructured forms of parallelism. Many sci-
entific applications contain task parallelism. For example, in a climate model application
the atmospheric and ocean circulation may be computed in parallel as two separate tasks.
A task-parallel language can express this relationship easily, even if different methods are
used for the two circulation models. Another natural application of task-parallel languages
is reactive systems in which tasks must produce output in response to changing inputs, in
a time-dependent manner. Tasks may also be organized as a pipeline to exploit pipeline
parallelism.

Since interactions between tasks are explicit, the programmer can write programs that
exploit parallelism not detectable automatically by compiler techniques. The programmer
may also carefully tune the application so that it includes only the communication and
synchronization that is actually necessary or efficient, hence reducing reliance on compiler

2

optimizations. In general, task parallelism is less dependent on advanced compiler technology
than is data parallelism; in many cases, all that is strictly necessary is the translation of
task interactions into appropriate low-level primitives on the target architecture. However,
compiler technology is still important as a means of guaranteeing correct execution and
permitting representations of communication and synchronization that are convenient for
the programmer.

A disadvantage of the task-parallel programming model is that it requires extra effort
from the programmer to create explicit parallel tasks and manage their communication and
synchronization. It is also often convenient to consider data owned by different tasks as
being part of a single data structure; many task-parallel languages do not support this view
directly. Because communication and synchronization are explicit, changing the manner a
program is parallelized may require extensive modifications to the program text.

1.2 Data Parallelism

In a data-parallel programming paradigm the program consists of a series of operations
that are applied identically to all or most elements of a large data structure. Parallelism
may be implicit or explicit, with additional annotations describing how the data structures
are decomposed and distributed among the physical processors. Data parallelism may be
both regular (e.g., dense matrices) or irregular (e.g., sparse matrices). In this paper, we
use Fortran D (Fox et al., 1990) and High Performance Fortran (HPF) (High Performance
Fortran Forum, 1993) as examples of languages that support a data-parallel programming
paradigm. Section 3 describes these languages in more detail.

A major advantage of data parallelism derives from its scalability. Because operations may
be applied identically to many data items in parallel, the amount of parallelism is dictated
by the problem size. Higher amounts of parallelism may be exploited by simply solving
larger problems with greater amounts of computation. Data parallelism is also simple and
easy to exploit. Because data parallelism is highly uniform, it can usually be automatically
detected by an advanced compiler, without forcing the user to manage explicitly processes,
communication, or synchronization.

Many scientific applications may be naturally specified in a data-parallel manner. Oper-
ations on whole data structures, such as adding two arrays or taking the inner product of
two vectors, are common, as are grid-based methods for solving partial differential equations
(PDEs). Since data-parallel programs are relatively close to sequential programs, many
compiler analysis and optimization techniques can be adapted to produce parallel programs
automatically. The mapping of data and computation can affect performance significantly
(Knobe, Lukas, and Steele, 1990). With data-parallel programs, relatively simple data de-
composition annotations are sufficient to achieve high performance on advanced parallel
architectures. If communication and parallelism are implicit (as in HPF), the user can easily
tune the program by small modifications to its data decomposition annotations.

A disadvantage of the data-parallel programming paradigm is that it is less general than
task parallelism. Data-parallel programs may be converted into task-parallel programs by

investing programmer effort, but the reverse is difficult to achieve with reasonable efficiency.
Applications that require heterogeneous processing are at best difficult to express in data-
parallel languages. Also, despite promising early tests it is not known how well compilers
can optimize data-parallel programs.

1.3 Integrating Parallel Paradigms

As the discussions above make clear, task parallelism and data parallelism have complemen-
tary strengths that are appropriate for different problems. Perhaps less obvious is the fact
that both paradigms may be needed in the same application. An excellent example of this
is a multidisciplinary simulation. Simulating high-performance aircraft may involve many
models, including fluid dynamics, structural mechanics, surface heating, and controls. Some
formulations of such applications allow several disciplines to be solved simultaneously via
task parallelism. Within each discipline the computations often have substantial data par-
allelism; this is certainly the case for the fluid dynamics, structural mechanics and surface

heating models in our example. Other examples of mixed task and data parallelism include
(Federal HPCC Program, 1993)

e environmental models: atmospheric dynamics, surface water, and ground water mod-
els;

e predictive cellular organelle models: fluid dynamics, rigid body mechanics, molecular
dynamics, and other models; and

e multilevel models in a single discipline: linear, Euler, and Navier-Stokes models in
aerodynamics.

Many Grand Challenge computations depend on such multidisciplinary approaches.

Applying only one parallel paradigm to the applications listed above may result in lower
performance than an integrated approach might achieve. If only the task-parallel level is
used, then only a limited amount of parallelism may be available. In our multidisciplinary
aircraft simulation example, there are only four tasks at this level; running such a program
on a 128-processor hypercube would waste most of the available capacity.

Attacking only the data-parallel level may cause other inefficiencies. Different disciplines
may have different levels of parallelism, making it difficult to map them all to the same
machine. Moreover, communication and synchronization overheads grow with machine size;
at some point, it is not profitable to apply more processors to a single data-parallel compu-
tation.

Experience suggests that the best performance can often be obtained by combining ap-
proaches. Each high-level task can be a data-parallel computation. The task-parallel lan-
guage can be used to allocate machine resources to balance the computational load and
coordinate between these tasks. Within individual tasks, a data-parallel language can be
used to take advantage of the parallelism within the discipline. Proper balancing of the

4

high-level tasks and efficient computation within each data-parallel task can then ensure
that the machine is efficiently used.

The situation above, although common, is not the only possibility for combining the two
paradigms. It may also be desirable for a data-parallel program to call a task-parallel lan-
guage. For example, all but one phase of an application may be naturally data parallel.
Using task parallelism on the remaining phase (assuming it is appropriate) then removes a
sequential bottleneck from the overall program.

The remainder of this paper describes programming languages and techniques for sup-
porting the task-parallel and data-parallel programming models and technical requirements
for their integration. Sections 2 and 3 describe the relevant features of the FM and For-
tran D/HPF languages. Section 4 describes the design of the interface and some implemen-
tation issues. Section 5 describes related work, and Section 6 gives our conclusions and plans
for future work.

2 Fortran M

Fortran M (FM) is a language designed by researchers at Argonne and Caltech for expressing
task-parallel computation (Foster and Chandy, 1992). It comprises a small set of extensions
to Fortran and provides a message-passing parallel programming model, in which programs
create processes that interact by sending and receiving messages on typed channels. Two
key features of the extensions are their support for determinism and modularity.

A prototype FM compiler has been developed and used to build libraries of parallel pro-
grams in linear algebra, spectral methods, mesh computations, computational chemistry, and
computational biology. The compiler is available by anonymous ftp from info.mcs.anl.gov,
in directory pub/pcn.

FM is currently defined as extensions to Fortran 77. However, equivalent extensions can
easily be defined for Fortran 90 (American National Standards Institute, 1990), and we plan
to extend the FM compiler to accept Fortran 90 syntax. For clarity, we use some Fortran 90
syntax in subsequent sections when discussing integration of FM and HPF.

2.1 Concurrency and Communication

FM provides constructs for defining program modules called processes; for specifying that
processes are to execute concurrently; for establishing typed, one-to-one communication
channels between processes; and for sending and receiving messages on channels. Send and
receive operations are modeled on Fortran file I/O statements, but operate on port variables
rather than unit numbers.

The FM programming model is dynamic: processes and channels can be created and deleted
dynamically, and references to channels can be included in messages. Nevertheless, compu-
tation can be guaranteed to be deterministic; this feature avoids the race conditions that

5

plague many parallel programming systems (Pancake and Bergmark, 1990). Determinism is
guaranteed by defining operations on port variables to prevent multiple processes from send-
ing concurrently, by requiring receivers to block until data is available, and by enforcing a
copy-in/copy-out semantics on variables passed as arguments to processes. Nondeterministic
constructs are also provided for programs that operate in nondeterministic environments.

Figure 1 illustrates the use of several FM constructs. The first code fragment uses the
CHANNEL statement to create two channels and a process block (delineated by PROCESSES
and ENDPROCESSES statements) to create two processes called CONTROLS and DYNAMICS. The
second code fragment implements the CONTROLS process; it uses the SEND and RECEIVE
statements to send and receive data on the ports passed as arguments. Message formats are
defined by the port declarations, allowing a FM compiler to generate efficient communication
code and to convert to a machine-independent format in a heterogeneous environment.

2.2 Resource Management

FM resource management constructs allow the programmer to specify how processes and
data are to be mapped to processors and hence how computational resources are to be
allocated to different parts of a program. These constructs influence performance but not
correctness. Hence, we can develop a program on a uniprocessor and then tune performance
on a parallel computer by changing mapping constructs.

FM process placement constructs are based on the concept of a virtual computer: a col-
lection of virtual processors, which may or may not have the same shape as the physical
computer on which a program executes. A virtual computer is an N-dimensional array,
and mapping constructs are modeled on array manipulation constructs. The PROCESSORS
declaration specifies the shape and dimension of a processor array, the LOCATION annotation
maps processes to specified elements of this array and, as in PCN, the SUBMACHINE anno-
tation specifies that a process should execute in a subset of the array (Foster, Olson, and
Tuecke, 1992). For example, the following code places the CONTROLS and DYNAMICS processes
on different virtual processors.

PROCESSORS(2)
PROCESSES
PROCESSCALL CONTROLS(...) LOCATION(1)

PROCESSCALL DYNAMICS(...) LOCATION(2)
ENDPROCESSES

In contrast, the following code places each process in a submachine comprising 10 virtual
processors. This would be useful, for example, if the processes were themselves parallel
programs, written in FM or HPF.

PROCESSORS (20)

PROGRAM AERODYNAMICS
INPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) PI
OUTPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) PO

CHANNEL (IN=PI,0UT=P0)
CHANNEL (IN=QI,0UT=Q0)
PROCESSES
PROCESSCALL CONTROLS(PI,QO)
PROCESSCALL DYNAMICS(QI,PO)

ENDPROCESSES
END

PROCESS CONTROLS(IN,OUT)
INPORT (INTEGER, REAL X(10,20), REAL Y(10,20)) IN
OUTPORT (INTEGER, INTEGER, REAL X(10,10,3)) OUT

SEND(OUT) I, J, A
RECEIVE(IN) NSTEP, U, V

END

Figure 1 Example FM Program

PROCESSES
PROCESSCALL CONTROLS(...) SUBMACHINE(1:10)
PROCESSCALL DYNAMICS(...) SUBMACHINE(11:20)
ENDPROCESSES

2.3 Data Distribution

Although the basic paradigm underlying FM is task parallelism, the language also provides
some support for data-parallel computation. Inspired by Fortran D and HPF, it permits
programs to use data distribution statements (as discussed in the next section) to create
distributed arrays (Chandy and Foster, 1993). (However, this capability is not supported in
the prototype compiler.) Semantically, distributed arrays are indistinguishable from nondis-
tributed arrays. That is, they are accessible only to the process in which they are declared
and are copied when passed as arguments to subprocesses. Operationally, elements of a
distributed array are distributed over the nodes of the virtual computer in which the process
is executing. Hence, operations on a distributed array may require communication.

Data-distribution statements allow FM programs to declare arrays that are larger than can

7

fit in a single processor’s memory, and to specify certain limited classes of data-parallel com-
putations on these arrays. However, their principal utility is as a mechanism for integrating
task- and data-parallel computations. This application is discussed in detail below.

2.4 Implementation Issues

The Fortran subset of FM can be compiled with conventional compilers. Hence, the primary
difficulty that arises in compiling FM is achieving efficient implementations of communica-
tion, synchronization, and process-management mechanisms. A prototype FM compiler has
been developed at Argonne to facilitate both exploration of these issues and experimentation
with task-parallel programming.

The prototype compiler is a preprocessor that translates FM programs into Fortran 77 plus
calls to a runtime library called Nexus. Nexus provides basic services required to implement
FM on parallel computers, such as multiple threads of control, global pointers, and remote
procedure calls. Nexus services may be implemented using different technologies on differ-
ent parallel computers: for example, portable message-passing libraries on heterogeneous
networks, low-level message-passing or active messages on multicomputers, shared-memory
operations on multiprocessors, or Windows NT services on networks of PCs.

The prototype compiler is currently operational on networks of workstations, the IBM
SP-1 multicomputer, and the CRAY C90 (Foster, Olson, and Tuecke, 1993). It supports
all language constructs except those concerned with data distribution. Preliminary experi-
ments suggest that the performance of basic communication and synchronization operations
is competitive with, and in some cases superior to, conventional message-passing libraries

(Foster and Chandy, 1992).

3 Fortran D and High Performance Fortran

Fortran D was an early language designed by researchers at Rice and Syracuse for expressing
data-parallel computation (Fox et al., 1990). It provided data decomposition specifications,
parallel loops, and methods for specifying reductions. Fortran D was designed to support
machine-independent parallel programming and was motivated by the observation that few
languages support efficient data placement (Pancake and Bergmark, 1990). It brought to-
gether ideas found in earlier parallel languages such as CM Fortran (Thinking Machines
Corporation 1991) and Kali (Koebel and Mehrotra, 1991), but in a unified framework de-
signed to permit advanced compiler analysis and optimization.

Fortran D sparked widespread interest and strongly influenced the development of High
Performance Fortran (HPF) (High Performance Fortran Forum, 1993), a set of extensions
and modifications to Fortran 90 defined by a coalition of industry, government, and academic
researchers with a broadly similar philosophy. The goals of HPF are to support data-parallel
programming and high performance on a variety of advanced parallel architectures while
minimizing deviation from the Fortran standard. HPF possesses data decomposition specifi-

cations similar to those in Fortran D, as well as additional extensions for parallel statements,
intrinsic functions, extrinsic procedures, etc. We will use HPF syntax throughout this pa-
per; however, our remarks regarding implementation are derived from our experience on the
Fortran D compiler.

Generally speaking, HPF supports data-parallel programs in two ways:

e Defining operations on the elements of large data structures, such as array expressions.

e Partitioning the large data structures among the processors of a parallel machine.

The compiler is then responsible for using the data partitioning information to assign the
computations to the processors.

We present only an overview of the HPF language; see (American National Standards
Institute, 1990) for the full language.

3.1 Parallel Operations

HPF incorporates all of Fortran 90, including data-parallel operations such as array ex-
pressions and assignment, array intrinsics, and WHERE statements. HPF adds a number of
additional data-parallel features, including new functions for reductions, combining scatters,
and prefix operations. It generalizes array assignment using the FORALL construct and pro-
vides an INDEPENDENT assertion that loops may be executed in parallel. In addition to these
explicit parallel features, some HPF systems automatically extract implicit parallelism from
sequential constructs such as DO loops (Applied Parallel Research, 1992). The implementa-
tion described in Section 3.4 applies to either explicit or implicit parallelism.

HPF also supports an interface to other programming paradigms through the declaration
of EXTRINSIC procedures. When invoked, an extrinsic procedure is executed on all proces-
sors assigned to the HPF program. Local sections of distributed arrays may be passed as
parameters to the extrinsic procedure; it can perform local computations and communicate
with other processors. Control returns to the HPF program when all processors exit from
their extrinsic procedure.

3.2 Data Decomposition

The placement of data and computation significantly impacts performance on modern com-
puter architectures. Therefore, to enhance efficiency, HPF augments Fortran programs with
a set of data decomposition specifications. These specifications are simply hints to the com-
piler; if they are ignored, the program can be run without change on a sequential machine.
Compilers for parallel machines can use the specifications not only to decompose data struc-
tures but also to control parallelism, based on the principle that only the owner of a datum
computes its value. In other words, the data decomposition also specifies the distribution of
the work in the Fortran program.

seceman

H
Neechonn
v

i
......
H

IO
Secomen

beeemee

.........
.........

.........

fecdecetacdeadmcotccancanans

ALIGN Y(I,J)
with B(I-2,J+2)

DISTRIBUTE
B(BLOCK, *)

...............................

...............................

DISTRIBUTE
B(CYCLIC,*)

.......

.......

ALIGN Y(I,J)
with B(J+2,I-2)

DISTRIBUTE
B(*,BLOCK)

DISTRIBUTE
B(CYCLIC,CYCLIC)

receceemacsecmmccpenneccmany
.........
.........
teesecomectocdactccsencmnce

ALIGN Y(I,J)
with A(I)

DISTRIBUTE
B(BLOCK,BLOCK)

DISTRIBUTE
B(BLOCK,CYCLIC)

Figure 2 HPF Data Decomposition Specifications

10

HPF approaches the data decomposition problem by noting that there are two levels of
parallelism in data-parallel applications. First, there is the question of how arrays should be
aligned with respect to one another, both within and across array dimensions. We call this the
problem mapping induced by the structure of the underlying computation. It represents the
minimal requirements for reducing data movement for the program and is largely independent
of any machine considerations. The alignment of arrays in the program depends on the
natural fine-grain parallelism defined by individual members of data arrays. HPF specifies
this level with the ALIGN directive, which creates a correspondence between the elements of
two arrays.

Second, there is the question of how arrays should be distributed onto the actual parallel
machine. We call this the machine mapping caused by translating the problem onto the finite

resources of the machine. It is dependent on the topology, communication mechanisms, size
of local memory, and number of processors in the underlying machine. Data distribution
provides opportunities to reduce data movement, but must also maintain load balance. The
distribution of arrays in the program depends on the coarse-grain parallelism defined by the
physical parallel machine.

HPF specifies this machine mapping with the DISTRIBUTE directive, which divides each
dimension according to a predefined pattern. The patterns available in HPF are BLOCK (con-
tiguous, equal-sized ranges of elements), CYCLIC (every P'" element on the same processor,
where P is the number of processors), and * (a dimension that is not distributed). In ad-
dition, BLOCK and CYCLIC can take a parameter giving the number of elements in a block.
Figure 2 shows several possible data decompositions in HPF. We believe that this two-phase
strategy for specifying data decomposition is natural for the computational scientist and is
also conducive to modular, portable code.

3.3 Differences between Fortran D and HPF

Though there are many syntactic differences between Fortran D and HPF, their basic ap-
proach is quite similar. We plan to resolve these differences in the future by adapting the
Fortran D compiler to accept HPF syntax. The two languages have different semantics for
the FORALL construct, but this does not affect this paper.

Two areas explored by the Fortran D compiler are interprocedural compilation and irregular
computations. To permit separate compilation, HPF provides language features that define
the effect of data decomposition specifications at subprogram boundaries. In comparison,
the Fortran D compiler relies on interprocedural analysis to determine data mappings across
procedure boundaries. The goal is to evaluate the feasibility and usefulness of employing
compiler analysis, reducing the burden on the programmer. Since Fortran D permits irregular
data distributions, it also serves as a basis for investigating compiler and run-time support
for irregular computations.

In summary, HPF is more carefully defined and contains features needed for supporting
production-level scientific applications, while Fortran D provides a set of features designed to
support interesting compiler research. We plan to continue Fortran D as a separate project
to explore methods of replacing language features with advanced compiler analysis.

3.4 Implementation Issues

In order for HPF to be successful, HPF programs must be able to achieve reasonably efficient
performance on a wide variety of parallel architectures. Key to meeting this requirement is
the development and implementation of advanced compiler analysis and optimization. In
this section we provide a brief description of HPF compilation strategy, based on experiences
with the prototype Fortran D compiler at Rice University. Our philosophy is to exploit large-
scale data parallelism using the owner computes rule, where every processor only performs
computation for data it owns (Callahan and Kennedy, 1989; Rogers and Pingali, 1989; Zima,

11

Bast, andGerndt, 1988). We also identify cases where the owner computes rule is relaxed to
improve performance.

The basic approach taken by the prototype Fortran D compiler is to convert input Fortran D
programs into single-program, multiple-data (SPMD) node programs with explicit message-
passing. The two main concerns for the prototype compiler are to ensure that (i) data and
computations are partitioned across processors and (ii) communication is generated where
needed to access nonlocal data. The compiler applies an optimization strategy based on
data dependence that incorporates and extends previous techniques. We briefly describe
major steps of the compilation process below; details are presented elsewhere (Hiranandani,
Kennedy, and Tseng, 1992; Hall et al., 1992; Tseng, 1993):

1. Analyze program. The Fortran D compiler performs scalar dataflow analysis, sym-
bolic analysis, and dependence testing to determine the type and level of all data
dependences.

2. Partition data. The compiler analyzes Fortran D data decomposition specifications
to determine the decomposition of each array in a program. Alignment and distribu-
tion statements are used to calculate the array section owned by each processor.

3. Partition computation. The compiler partitions computation across processors us-
ing the “owner computes” rule—where each processor only computes values of data it
owns (Callahan and Kennedy, 1988; Rogers and Pingali, 1989; Zima, Bast, and Gerndst,
1988). The left-hand side of each assignment statement is used to calculate its local
iteration set, the set of loop iterations that cause a processor to assign to local data.

4. Analyze communication. Based on the computation partition, references that re-
sult in nonlocal accesses are marked. :

5. Optimize computation and communication. Nonlocal references are examined
to determine optimization opportunities. The key optimization, message vectoriza-
tion, uses the level of loop-carried true dependences to extract element messages out of
loops, combining them into less expensive vectors (Balasundaram et al., 1990; Zima,

Bast, and Gerndt, 1988).

6. Manage storage. Buffers or “overlaps” (Zima, Bast, and Gerndt, 1988) created by
extending the local array bounds are allocated to store nonlocal data.

7. Generate code. The compiler instantiates the communication, data, and compu-
tation partition determined previously, generating the SPMD program with explicit
message-passing that executes directly on the nodes of the distributed-memory ma-
chine.

Figure 3 displays how a simple Jacobi solver is written as a HPF program and compiled
into SPMD message-passing code for a four-processor machine. Computation is parallelized
by partitioning iterations of the i loop across processors. Communication is extracted and
combined into vector messages outside both the i and j loops. Preliminary experimental
results show that the prototype Fortran D compiler can closely approach the performance
of hand-optimized code for stencil computations, but requires additional improvements for
linear algebra and pipelined codes (Hiranandani, Kennedy, and Tseng, 1993).

12

{* HPF Program *}
REAL, DIMENSION(100,100) :: A, B
'HPF$ PROCESSORS DIMENSION(4) :: PROCS
'HPF$ ALIGN A(I,J) WITH B(I,J)
'HPF$ DISTRIBUTE A(*,BLOCK) ONTO PROCS
A(2:99,2:99) = 0.25%(B(1:98,2:99) + B(3:100,2:99)
+ B(2:99,1:98) + B(2:99,3:100))
4

{* HPF Compiler Output *}
REAL A(100,25), B(100,0:26)

my$p = mynode() {*0...3 %}
1b$1 = max((my$p*25)+1,2)-(my$p*25)
ub$1 = min((my$p+1)*25,99) - (my$p*25)

if (my$p .GT. 0) send B(2:99,1) to my$p-1
if (my$p .LT. 3) send B(2:99,25) to my$p+1
if (my$p .GT. 0) recv B(2:99,26) from my$p+1
if (my$p .LT. 3) recv B(2:99,0) from my$p-1
do j = 1b$1, ub$t
do i = 2,99
A(i,j) = 0.25%(B(i-1,j) + B(i+1,j) +
B(i,j-1) + B(i,j+1))
enddo
enddo

Figure 3 HPF Compilation Process

4 Integrating FM and HPF

In this section, we describe techniques that can be used to interface a task-parallel lan-
guage (Fortran M) and a data-parallel language (High Performance Fortran). The interface
enables the use of the task-parallel language to coordinate concurrent data-parallel compu-
tations, allows data-parallel computations to invoke task-parallel computations, and permits
concurrently-executing data-parallel computations to interact by exchanging messages. The
interface is conceptually simple and is expected to be useful in a wide range of scientific and
engineering applications, particularly in the area of multidisciplinary design and optimiza-
tion.

A key notion underlying the proposed interface is the integration of FM resource man-
agement constructs and HPF data distribution constructs. This allows a coordinating task-
parallel computation to control the initial location of both distributed data and the data-
parallel computations that operate on this data. For example, a coordinating task-parallel
program can partition a parallel computer into several submachines and invoke a different
data-parallel computation in each.

13

4.1 Calling HPF from FM

The ability to call HPF from FM allows FM programs to be used to coordinate concurrent
execution of different data-parallel programs. Two main issues must be addressed in an
FM/HPF interface: resource management and data sharing. In addition, some method of
identifying data-parallel procedures to the task-parallel language compiler is needed, since
different linkage conventions are needed for the different programming models. In the fol-
lowing, we use the statement HPFCALL for this purpose.

We first consider resource management. The virtual computer in which a HPF procedure
is to execute may be specified via a SUBMACHINE annotation on the call; if none is provided,
the HPF procedure executes in the same virtual computer as the calling process. Data and
computation for a HPF procedure called from FM are distributed only over this virtual com-
puter, rather than over all processors, as would be case in a pure data-parallel programming
system. For example, the following code calls the HPF routines CONTROLS and DYNAMICS,
invoking each in a virtual computer of size 10. Arrays X and Y are passed as arguments. (In
practice, we also need to provide a mechanism by which these processes can communicate.
This issue is discussed below.)

PROGRAM PROG1
PROCESSORS (20)
REAL X(1000,1000), Y(1000,1000)
PROCESSES
HPFCALL CONTROLS(X) SUBMACHINE(1:10)
HPFCALL DYNAMICS(Y) SUBMACHINE(11:20)
ENDPROCESSES

In contrast, the following code locates the two HPF computations on the same 10 proces-
sors:

PROGRAM PROG2
PROCESSORS(10)
REAL X(1000,1000), Y(1000,1000)
PROCESSES

HPFCALL CONTROLS(X)

HPFCALL DYNAMICS(Y)
ENDPROCESSES

It may happen that FM arrays passed as arguments to a HPF program are not distributed
in the manner expected by the HPF program. (Indeed, they may not be distributed at all!)
Hence, redistribution operations may be required to convert FM data distributions into those
required for the HPF computation. Similar redistribution operations may be required upon
termination of the HPF computation, prior to passing data back to the calling FM program.

In the example above, arrays X and Y are not distributed. Hence, redistribution is required
to convert X and Y to whatever distribution is required in CONTROLS and DYNAMICS. This may

14

involve considerable communication. FM programs can also define distributed arrays using
HPF-style data-distribution statements (Chandy and Foster, 1993). This is illustrated in
the following code. Arrays X and Y are distributed over the 10 nodes of the virtual computer
in which program PROG3 is executing. In this case, redistribution is required only if the
CONTROLS and DYNAMICS computations use a different distribution.

PROGRAM PROG3
PROCESSORS (10)
REAL, DIMENSION(1000,1000) :: X, Y
ALIGN X(I,J) WITH Y(I,J)
DISTRIBUTE X(*,BLOCK)
PROCESSES

HPFCALL CONTROLS(X)

HPFCALL DYNAMICS(Y)
ENDPROCESSES

4.2 Calling FM from HPF

As noted previously, a data-parallel computation may include a phase that is not naturally
data parallel. In a purely data-parallel programming system, this phase would execute
sequentially, introducing a sequential bottleneck. Hence, we allow HPF programs to call FM
routines; this permits a programmer to avoid such bottlenecks by calling FM routines that
implement appropriate task-parallel algorithms. '

The issues involved in the HPF/FM interface are essentially the same as those involved in
the FM/HPF interface. A special notation (e.g., FMCALL) is required to distinguish a call
to a FM procedure. The FM procedure executes on the same (virtual) processors as the
calling HPF program, and redistribution operations may be required for arrays passed as
arguments.

4.3 Communicating between HPF Computations

Two concurrent data-parallel computations initiated by a coordinating task-parallel compu-
tation may need to exchange data. This is possible in principle if the coordinating task-
parallel computation establishes channels and passes the appropriate ports to the data-
parallel program. However, it is necessary to define the mechanism by which data-parallel
programs operate on these ports.

In a truly integrated task-parallel/data-parallel programming language, SEND and RECEIVE
operations would be incorporated into HPF. This would require some care to avoid creating
multiple writers or readers. One approach would be to designate one processor to perform all
SEND-and RECEIVE operations in an HPF program. While conceptually simple, this would se-
rialize the communication to and from that process. Another possibility would be to provide
parallel INPORT and OUTPORT data types and data-parallel SEND and RECEIVE statements.

15

This would allow many processes to cooperate in sending data to other process groups,
and would be particularly appropriate for communicating distributed arrays or other data
structures. This approach is being explored in a compilation system under development at
Argonne National Laboratory and Syracuse University (Foster et al., 1994). A disadvantage
is that HPF does not currently provide such operations.

An alternative approach is to use an existing mechanism, namely, HPF’s eztrinsic procedure
facility (High Performance Fortran Forum, 1993). In the HPF code, an extrinsic procedure
call is made to a FM subroutine. This has the effect of calling the FM routine on every
processor that is executing the HPF routine, passing the local section of the distributed
array arguments on each processor, as well as copies of all scalar variables. For example,
the following code calls the FM procedure FM_PROC. The EXTRINSIC declaration is needed to
indicate to the compiler that FM_PROC is an extrinsic procedure, and thus may use a different
linkage convention from that used by HPF subroutines.

INTERFACE
EXTRINSIC SUBROUTINE FM_PROC(PI, Y, Z)
INTEGER PI(10)
REAL Y(1000)
REAL Z
'HPF$ DISTRIBUTE PI(BLOCK), Y(CYCLIC)
END SUBROUTINE

END INTERFACE

CALL FM_PROC(A, B, C)

FM code called in this way can perform SEND and RECEIVE statements on ports passed as
distributed array arguments. (Single ports cannot be passed as scalar arguments to HPF
procedures, since these will be duplicated at every processor, defeating determinism.)

A difficulty encountered when defining this interface is that HPF does not have a port data
type. In a full HPF implementation, this could be solved by defining INPORT and OUTPORT
as Fortran 90 abstract data types. However, no full HPF implementation exists yet, least of
all in our prototype implementations. A less satisfactory solution to this problem is to use
some conventional representation of port arrays inside HPF computations, such as arrays of
integers. Use of these port arrays as ordinary integers would, of course, have to be restricted
by programming convention. For example, multiplying two ports together would not be
meaningful.

4.4 Implementation Issues

We discuss briefly some practical issues that must be addressed when interfacing FM and

HPF.

We first consider structural issues that arise when attempting to integrate existing FM and
HPF compilers. FM is designed to support dynamic task-parallel computations in which the

16

number and identify of the processors allocated to a computation may be determined only at
runtime, and several computations may be mapped to the same processor. Hence, the FM
runtime is multithreaded, and mapping decisions typically depend on runtime parameters.
In contrast, Fortran D and HPF compilers normally assume that they are generating code for
a dedicated machine of known size. The runtime code assumes a single thread per processor,
and mapping decisions are made at compile time whenever possible.

These differences complicate the development of an integrated FM/HPF system based on
existing compilers. A full FM/HPF programming system must allow multiple HPF and/or
FM computations to execute on each physical processor as independent threads. However,
existing Fortran D and HPF compilers do not support this level of generality. In a FM/HPF
prototype, it may be desirable to make the restriction that only one HPF or FM node can
be located on each physical processor, so as to simplify implementation. .

In a full FM/HPF programming system, the size and physical location of the virtual com-
puter within which a FM process executes are not necessarily known at compile time. Hence,
a FM process must pass a representation of this virtual computer to any HPF routine that it
calls, and the HPF compiler must be able to generate code that uses the processors specified
by this representation. This requirement can be handled in several ways:

e Part of the linkage convention can incorporate a processor count and a vector of pro-
cessor identifiers. This approach has the advantage of conceptual simplicity. However,
many prototype HPF compilers (including the Rice Fortran 77D compiler) require the
number of processors to be known at compile time. Such systems would require con-
siderable rewriting to interface with task-parallel languages. Other systems, such as
the Fortran 90D compiler designed at Syracuse University, rely on finely tuned library
routines for efficiency. It is unclear how dynamically chosen processor sets would affect
their performance. -

e The FM processes calling HPF routines can be restricted in some way. For example,
routines compiled for exactly 10 processors might be called unchanged from FM if the
calling process were guaranteed to use 10 processors. (Some additional work might be
needed to deal with the identities of the processors.) This approach has the advantage
that it could be implemented quickly, but is not a viable alternative in the long run.

Similar issues arise when HPF calls FM.

A second set of issues relates to the representation of data passed between task- and
data-parallel computations as arguments or in common blocks. FM and HPF compilers
and runtime systems must either use common data representations or provide facilities for
coverting between different representations. In addition, as discussed above, redistribution
operations may be required. Interface specifications will probably be required so as to enable
FM and HPF compilers to generate correct code at language boundaries without the need
for interprocedural analysis.

Conventions for passing procedure arguments are also vital when HPF calls FM via the
extrinsic procedure facility. In particular, every process in FM has a private memory space;

17

in HPF, all memory is conceptually shared. This dichotomy can be addressed by providing
a translation mechanism between the two paradigms. In essence, what is needed is a way to
translate a FM local address (process identifier plus position in a local array) into an HPF
global address (position in the global array, given the array distribution). The HPF language
specification describes one possible translation mechanism (High Performance Fortran Fo-
rum, 1993), and several of the data-parallel languages in Section 5 give similar definitions.

In an aggressive optimizing compiler, however, the local to global translation may become
quite complex. In particular, such compilers often define overlap areas at the edges of
the array section owned by a node. Adding these to the translation (and to the memory
allocation) is tedious, but necessary for correctness. Moreover, the sizes of the overlap areas
may depend on the HPF code being compiled and on the compiler in use. This situation
suggests that the HPF compiler must produce query routines for memory allocation in the
FM calling routines. Such interactions must be built into the system from the beginning
rather than as an afterthought.

A third set of issues relates to compiler analysis and optimization. HPF and HPF-like
compilers rely heavily on program analysis. For example, the Rice Fortran 77D compiler
performs both intra- and inter-procedural analysis to allocate memory, parallelize computa-
tion, and manage communication. This implies that the compiler needs information about
all parts of the program, such as which procedure starts execution, what procedures can be
called, and what data can be accessed by the called procedures. In a combined HPF/FM
system, the compiler must generate this information either by analyzing both Fortran di-
alects directly or by relying on summary data for routines that it cannot analyze. As a
first step, we propose to provide summary information regarding FM routines to the HPF
compiler using auxiliary files.

Once the analysis is completed, optimization by the data-parallel compiler may also intro-
duce complexity. We have already mentioned overlap areas as a possible interaction. Another
example is interprocedural optimization of communication. Some research has shown that
moving communication across procedure boundaries can have great benefits (Hall et al.,
1992). However, if the compiler assumes that such optimizations are performed, the FM
programmer who wants to call an HPF routine may face serious difficulties. In effect, the
task-parallel programmer would have to replicate the data-parallel compiler’s analysis. One
approach to this problem would be to make worst-case assumptions at all FM/HPF inter-
faces. While limiting the compiler optimizations, this would minimize the programmer’s
work. Another approach would be to provide an interface explaining the HPF compiler’s
important assumptions and optimizations; this would at least tell the FM programmer the

. preconditions needed to call the HPF routine.

Another class of interactions relates to the effectiveness of the data-parallel compilers when
they are combined with task-parallel languages. HPF compilers usually assume that they
are generating code for a dedicated machine, or at least a dedicated partition of a shared
machine. The choices of computation and communication granularity are made based on
estimates of performance in the dedicated environment. Such assumptions are clearly not
valid in FM’s threaded environment, where multiple FM and HPF threads may execute on a
single processor. No research has been done to date on the effect of such multiprogramming

18

on code optimized by data-parallel compilers.

5 Related Work

There has been a large amount of research in the area of providing language and compiler
support for either task or data parallelism. Relatively few researchers, however, have focused
on the issue of integrating support for both types of parallelism. Languages for supporting
or coordinating task-level parallelism include PCN (Chandy and Taylor, 1991; Foster, Olson,
and Tuecke, 1992), Strand (Foster and Taylor, 1990), Linda (Carriero and Gelernter, 1989),
and Delirium (Graham, Lucco, and Sharp, 1993). Tools for exploiting task-level parallelism
include Schedule (Dongarra and Sorensen, 1987), Hence (Beguelin et al., 1991), and CODE
(Newton and Browne, 1992). PCF Fortran exemplifies a parallel language for exploiting
fork-join and loop-level parallelism (Parallel Computing Forum, 1991). In comparison with
these systems, Fortran M is designed to provide greater support for modularity and safety.

Languages for expressing data-parallelism include Fortran 90 (American National Stan-
dards Institute, 1990; CMF (Thinking Machines Corporation, 1991); Vienna Fortran (Chap-
man, Mehrotra, and Zima, 1992), C* (Rose and Steele, 1987), Dataparallel C (Hatcher
and Quinn, 1991), Dino (Rosing, Schnabel, and Weaver, 1991), Kali (Koelbel and Mehro-
tra, 1991), and Paragon (Chase et al., 1991). Compilers for data-parallel programs include
Adapt (Merlin, 1991), Adaptor (Brandes, 1993) Aspar (Ikudome et al., 1990), Callahan
and Kennedy (Callahan and Kennedy, 1988), Forge90 (Applied Parallel Research, 1992),
Id Nouveau (Rogers and Pingali, 1989), and Superb (Zima, Bast, and Gerndt, 1988). The
Fortran D compiler adapts techniques from several of these systems, but performs greater
compile-time analysis and optimization and relies less on language extensions and run-time
support.

Massingill describes mechanisms that allow the use of PCN to coordinate SPMD programs
written in message-passing C (Massingill, 1993). However, this framework is more restrictive
than that considered here, in that SPMD computations must execute on disjoint sets of
processors and cannot communicate. Delves et al. describe an extended Fortran 90 compiler
which includes both message passing along channels (as extensions to file I/O operations)
and remote procedure calls (Delves et al., 1992). However, data distribution issues are not
addressed in their prototype implementation.

One of the few systems to examine both types of parallelism, the iWarp compiler pursues
a sophisticated compile-time approach for exploiting both task and data parallelism on a
mesh-connected distributed-memory machine (Subhlok et al., 1993). The input Fortran
program contains Fortran 90 array constructs, Fortran D data decomposition specifications,
and parallel sections. The iWarp compiler analyzes statements and directives to produce a
uniform task graph labeled with communication edges, maps each task to a processor, and
inserts communications. Depending on the problem size, the best performance is obtained
when exploiting task parallelism, data parallelism, or a combination of both. In comparison
with the iWarp compiler, FM supports more general and dynamic forms of task parallelism,
but requires the user to explicitly manage tasks and communication. The interface between

19

FM and HPF reflects the need to support arbitrary user-specified tasks and communication.

6 Conclusions

Both task and data parallelism are important for many large scientific applications. In
this paper, we have demonstrated language and compiler support for both task and data
parallelism. Fortran M programs exploit task parallelism by providing language extensions
for user-defined process management and typed communication channels. Fortran D and
High Performance Fortran (HPF) programs exploit data parallelism by providing language
extensions for user-defined data decomposition specifications, parallel loops, and parallel
array operations. Preliminary experiences show that both programming models are portable
yet efficient. We have also presented the design of an interface for integrating support for
both task and data parallelism. We believe future experiences will demonstrate its usefulness.

References

American National Standards Institutte 1990. ANSI X3J3/S8.115. Fortran 90.

Applied Parallel Research 1992. Forge 90 distributed memory parallelizer: User’s guide,
version 8.0 edition, Placerville, California: Applied Parallel Research.

Balasundaram, V., Fox, J., Kennedy, K., and Kremer, U. 1990. An interactive environ-
ment for data partitioning and distribution. In Proceedings of the 5th distributed memory
computing conference, Charleston, S.C.

Beguelin, A., Dongarra, J., Geist, G., Manchek, R., and Sunderam, V. 1991. Graphical
development tools for network-based concurrent supercomputing. In Proceedings of Super-
computing ‘91, Albuquerque, N.M.

Brandes, T. 1993. Automatic translation of data parallel programs to message passing
programs. In Proceedings of AP’93 international workshop on automatic distributed memory
parallelization, automatic data distribution and automatic parallel performance prediction,
Saarbriicken, Germany.

Callahan, D., and Kennedy, K. 1988. Compiling programs for distributed-memory multipro-
cessors. J. Supercomputing 2:151-169.

Carriero, N., and Gelernter, D. 1989. Linda in context. Comm. ACM 32(4):444-458.

Chandy, K. M., and Foster, 1. 1993. Deterministic parallel Fortran. In Proceedings of the

20

sizth SIAM conference on parallel processing for scientific computing, Norfolk, Virginia.

Chandy, K. M., and Taylor, S. 1991. An introduction to parallel programming. Jones and
Bartlett.

Chapman, B., Mehrotra, P., and Zima, H. 1992. Programming in Vienna Fortran. Scientific
Programming 1(1):31-50.

Chase, C., Cheung, A., Reeves, A., and Smith, M. 1991. Paragon: A parallel programming
environment for scientific applications using communication structures. In Proceedings of
the 1991 international conference on parallel processing, St. Charles, Illinois.

Delves, L., Craven, P., and Lloyd, D. 1992. A Fortran 90 compilation system for distributed
memory architectures. In Proceedings PACA92 conference, IOP.

Dongarra, J., and Sorensen, D. 1987. SCHEDULE: Tools for developing and analyzing
parallel Fortran programs. In The characteristics of parallel algorithms, edited by D. Gannon,
L. Jamieson, and R. Douglass. Cambridge, Massachusetts: The MIT Press.

Foster, 1., Avalani, B., Choudhary, A., and Xu., M. A compilation system that integrates
High Performance Fortran and Fortran M. In Proc. 1994 Scalable High Performance Com-
puting Conf., Knoxville, Tenn., 1994.

Foster, I., and Chandy, K. M. 1992. Fortran M: A language for modular parallel program-
ming. Technical Report MCS-P327-0992, Argonne National Laboratory.

Foster, 1., Olson, R., and Tuecke, S. 1992. Productive parallel programming: The PCN
approach. Scientific Programming 1(1):51-66.

Foster, 1., Olson, R., and Tuecke, S. 1993. Programming in Fortran M. Technical Report
ANL-93/26, Argonne National Laboratory.

Foster, 1., and Taylor, S. 1990. Strand: New concepts in parallel programming. Englewood
Cliffs, N.J.: Prentice-Hall.

Fox, G., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer, U., Tseng, C., and Wu, M.
1990. Fortran D language specification. Technical Report TR90-141, Dept. of Computer
Science, Rice University.

Graham, S., Lucco, S., and Sharp, O. 1993. Orchestrating interactions among parallel
computations. In Proceedings of the SIGPLAN ’98 conference on program language design
and implementation, Albuquerque, N.M.

21

Federal HPCC Program 1993. Workshop and Conference on Grand Challenges Applications
and Software Technology. GCW-0593. Pittsburgh, Pa.

Hall, M. W., Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Interprocedural compilation
of Fortran D for MIMD distributed-memory machines. In Proceedings of Supercomputing ’92,
Minneapolis, Minn.

Hatcher, P., and Quinn, M. 1991. Data-parallel programming on MIMD computers. Cam-
bridge, Mass.: The MIT Press.

High Performance Fortran Forum 1993. High Performance Fortran language specification,
version 1.0. Technical Report CRPC-TR92225. Center for Research on Parallel Computa-
tion, Rice University, Houston, Texas.

Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Compiling Fortran D for MIMD
distributed-memory machines. Comm. ACM 35(8):66-80.

Hiranandani, S., Kennedy, K., and Tseng, C. 1992. Evaluation of compiler optimizations
for Fortran D on MIMD distributed-memory machines. In Proceedings of the 1992 ACM
international conference on supercomputing, Washington, D.C.

Hiranandani, S., Kennedy, K., and Tseng, C. 1993. Preliminary experiences with the Fortran
D compiler. In Proceedings of Supercomputing ’983, Portland, Oregon.

Ikudome, K., Fox, G., Kolawa, A., and Flower, J. 1990. An automatic and symbolic par-
allelization system for distributed memory parallel computers. In Proceedings of the 5th
distributed memory computing conference, Charleston, S.C.

Knobe, K., Lukas, J., and Steele, Jr., G. 1990. Data optimization: Allocation of arrays to
reduce communication on SIMD machines. J. Parallel and Distributed Computing 8(2):102—
118.

Koelbel, C., and Mehrotra, P. 1991. Compiling global name-space parallel loops for dis-
tributed execution. IEEE Trans. Parallel and Distributed Systems 2(4):440-451.

Massingill, B. 1993. Integrating task and data parallelism. TR CS-TR-93-01. Pasadena:
California Institute of Technology.

Merlin, J. 1991. ADAPTing Fortran-90 array programs for distributed memory architectures.
In First international conference of the Austrian Center for Parallel Computation, Salzburg,
Austria.

22

Newton, P., and Browne, J. C. 1992. The CODE 2.0 graphical parallel programming lan-
guage. In Proceedings of the 1992 ACM international conference on supercomputing, Wash-
ington, D.C.

Pancake, C., and Bergmark, D. 1990. Do parallel languages respond to the needs of scientific
programmers? [EEE Computer 23(12):13-23.

Parallel Computing Forum 1991. PCF: Parallel Fortran extensions. Fortran Forum 10(3).

Rogers, A., and Pingali, K. 1989. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN ’89 conference on program language design and implementation,
Portland, Oregon.

Rose, J., and Steele, Jr., G. 1987. C*: An extended C language for data parallel program-
ming. In Proceedings of the second international conference on supercomputing, edited by
L. Kartashev and S. Kartashev. Santa Clara.

Rosing, M., Schnabel, R., and Weaver, R. 1991. The DINO parallel programming language.
J. Parallel and Distributed Computing 13(1):30-42.

Subhlok, J., Stichnoth, J., O’Hallaron, D., and Gross, T. 1993. Exploiting task and data
parallelism on a multicomputer. In Proceedings of the fourth ACM SIGPLAN symposium
on principles and practice of parallel programming, San Diego.

Thinking Machines Corporation 1991. CM Fortran reference manual, version 1.0 edition.
Cambridge, Mass.: Thinking Machines Corp.

Tseng, C. 1993. An optimizing Fortran D compiler for MIMD distributed-memory machines.
Ph.D. thesis. Dept. of Computer Science, Rice University.

Zima, H., Bast, H.-J., and Gerndt, M. 1988. SUPERB: A tool for semi-automatic MIMD /SIMD
parallelization. Parallel Computing 6:1-18.

23

