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Abstract

Reconfiguration is largely an unexplored property in the context of parallel models of compu-
tation. However, it is a powerful concept as far as massively parallel architectures are concerned,
because it overcomes the constraints due to the bissection width arising in most of distributed
memory machines. In this paper, we show how to use reconfiguration in order to improve com-
munication operations that are widely used in parallel applications. We propose quasi-optimal
algorithms for broadcasting, scattering, gossiping and multi-scattering.

Keywords: Reconfiguration, broadcast, scattering, gossiping, communications, distributed
memory parallel computers

1 Introduction

For massively parallel architectures, the hardware complexity of the interconnection network is
much higher than that of the processing units: “the interconnection network employs 99% of
the hardware involved” [JMM92]. Moreover, due to the communication-intensive nature of most
computational tasks, their performance depends heavily on the underlying interconnection network.

Reconfiguration is largely an unexplored property in the context of parallel models of com-
putation. The involved literature is focused on three areas: architectures for parallel image pro-
cessing, unit time reconfiguring models (having an underlying wired network), and reconfiguration
to eliminate hardware faults. Our approach is that reconfiguration may be utilized to enhance
communication in general parallel computers. The idea is that when large pools of data are to be
exchanged between two sets of processors, some time may be spent in reconfiguring the system to
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create a high bandwidth channel (or a set of direct channels) between them. After reconfiguration
time (during which local processing may proceed), the data is transmitted in a very short time.
Thus, except for the reconfiguration time, there are no bottlenecks in the interconnection media
and the notion of “locality” varies dynamically according to the specific computation requirements.

In this paper we study global communication schemes, commonly used in all areas of parallel
computing, ranging from neural networks to linear algebra. We propose a numbering scheme
for the processors in order to implement data-communication reconfiguring algorithms, under the
linear models of communication and reconfiguration, for the following problems. (Suppose that
all messages are of the same size, and let ¢, be the reconfiguration time, and 3 and 7 be the
communication startup and inverse of the bandwidth times.)

e One-to-all broadcasting: broadcasting from one node to all other nodes.

o One-to-all personalized broadcasting (scattering): one node sends a distinct message to all
other nodes.

o All-to-all communication: broadcasting from each node to every other nodes.

e All-to-all personalized communication: each node sends a distinct message to every other
node.

We show how to implement the first operation in such a way that there is a machine-dependable
tradeoff between t,, 8, and 7. For all the others, our algorithms come very close to the lower bound
for B and 7, while keeping the reconfiguration cost as low as possible.

Our paper is organized as follows. In next section a brief overview of reconfiguration is given.
Then, the model in which our algorithms are analyzed is well defined in section 3. The numbering
scheme for the reconfiguring communication pattern is introduced in section 4, and all the new
algorithms are presented and discussed in section 5. We close the paper with a cross-analysis of all
the algorithms and ways for further research.

2 Reconfiguration

A classification of the reconfiguration capabilities of today’s multicomputers is given in [BBM91,
BDT93)]. Parallel distributed memory machines can be classified in 4 categories, depending on the
reconfiguration capabilities of their interconnection network, as follows.

o static: the interconnection network is fixed and cannot be modified. This is the case of most
architectures.

o quasi-static: the interconnection network is set before the execution starts. It remains un-
changed during the runtime of the program.

o quasi-dynamic: programs are divided into series of phases. Each phase uses its own topology
and the interconnection network is set before a phase starts. Within phases, the topology
remains fixed.

o dynamic: Links are asked to a configuration manager. This model is close to the circuit-
switching communication protocol, but for the bissection width constraints.




Some projects of reconfigurable architectures using Transputers and their switching chip C004
have raised in the middle of the 80’. These architectures depend on which reconfiguration model
they implement. In the following we describe some related works concerning reconfiguring parallel
computers.

The Parsifal T-Rack [KA91, TM90, JM89] implements a partial reconfiguration. Processors are
connected in a ring of 64 nodes and the remaining links can be connected dynamically through
a switching network. The DAMP project [BBM91] implements dynamic reconfiguration using a
static interconnection network and dynamic connections between transputers in different modules.
This is close to circuit switching communication protocol where a path is set before communication
occurs. The CNET environment [ABB*91] uses a phase based protocol where topologies are set
before the start of the current phase, being therefore quasi-static [BBM91, BDT93]. The target
architecture is a SuperNode machine [Wai90].

Concerning optical networks, the current trend is to use free space optics, with reconfiguration,
for parallel computing. Designs like the Electro-Optical Crossbar have been proposed [IKYI], that
uses a hybrid reconfiguration technique for interconnecting processors. There are N processors, each
located in a distinct row and column of the N x N processing layer. For each processor, there is a
hologram module having N units, such that the ith unit has a grating plate with a frequency leading
to a deflection angle corresponding to the processor located at the grid point (3,7). In addition,
each unit has a simple controller and a laser beam. To establish or reconfigure to a new connection
pattern, each processor broadcasts the desired destination processor’s address to the controller of
each of N units of its hologram module, using an electrical bus. The controller activates a laser
(for conversion of the electrical input to optical signal) if its ID matches the broadcast address of
the destination processor. The connection is made when the laser beams are passed through the
predefined gratings. Therefore, since the grating angles are predefined, the reconfiguration time
of this design is bounded by the laser switching time, which is in the order of nano-seconds using
Gallium Arsenide (GaAs) technology. :

The Milord project from the ONERA/CERT [TCS88] uses optical technology for the switching
network of a transputer based machine. It implements phases model of reconfiguration due to the
cost of the switching cost. The optical crossbar is based on a matrix-vector concept using Spacial
Light Modulator devices. The reconfiguration time is about 200 milliseconds for the whole network.

3 Model of analysis

We assume that we have a distributed parallel machine with P processors (0..P — 1). Each pro-
cessor has independent units for communication and computation. Thus, on the same node it is
possible to perform simultaneously, bidirectional data transfer on each link (full duplex and k-port
assumptions [FL91]) and arithmetic operations.

Each node is assumed to have k links (0..k — 1) to connect with other nodes. This assumption
allows us to realize every topology with a degree less or equal to k. We assume that k < P.

The communication protocol is a “point-to-point rendez-vous”. However, with the exception of
the communication “handshake”, all the processors are independent and run asynchronously.

The time needed to communicate a message of size L between two processors is modeled as a
linear function of the start-up time 3, the length L and the propagation time 7 of the communication
channel. Here we shall use the communication cost as defined in [SS89]: (teom = B+ LT).

Several models can be used for the reconfiguration cost. We could, for instance, assume that
the reconfiguration time is negligible in comparison to communications but unfortunately this is
not realistic.
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Figure 1: RCP algorithm for 27 nodes and degree 3

Previous experiments with reconfigurable parallel computers [BDT93, DT92] taught us that the
reconfiguration cost in existing architectures is best modeled linearly in the number of reconfigured
links, i.e. for n links set, the cost of reconfiguration is t, = 3, + nr..

4 Reconfigurating Communication Pattern

In this section, we describe the Reconfigurating Communication Pattern (RCP), a numbering
scheme that defines an algorithm where, from a special node — supposed hereinafter and with-
out loss of generality to be node 0 —, degree k topologies are built at each step. At its completion,
the RCP guarantees that for any node in the system there is a path — in time — connecting node 0
to it. And this, in a minimum number of steps.

In a first step, node 0 is connected to k processors. In the next step, every already reached
processor is able to have the same behavior as node 0 in the first step. This is iterated until all the
processors involved in the communication operation are reached (see algorithm in Figure 2 and an
example for N = 27 and k = 3 on Figure 1).

Clearly, log; .. (N) is the number of steps needed to reach every node. Then, there are log. (V)
reconfiguration steps. Since the RCP can be seen as a forest of k-ary trees, the total number of
modified links is N — 1.

Hence, under the model defined in the previous section, the reconfiguration cost is given by:

Tr}zccoﬁf =log;1(N)Br + (N - 1)7,. 1)

Let ! be the current step and ¢ be the number of a node already reached. Therefore, we define
the RCP in such a way that node 7 in step ! will be connected to nodes:

(k+1) +ik, (k+1) +ik+1, (k+1) ' +ik+2, --- and (k+1)'+ik+k—-1

5 Global communication schemes

In the remainder of the paper, let h = log,,,(N).
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i = mymode_id
for [ =0 to log;,(N) do
if i < (k+1)! /* I have been reached at step 1 —1 */
for j=0 to k—1 do
connect i to node (k+1)'+ik+j
endfor
else
if i < (k+1)"*! I'm connected at this step
else /* I'm not concerned at this step */
endif
endif
endfor

Figure 2: Algorithm implementing the RCP

5.1 RCP Scattering algorithm

The scattering operation, or personalized one-to-all, is used for instance in the distribution of data
on a set of processors [BDT93, Ede91, JH89).

We assume that node 0 owns N packets of size L that have to be delivered one to each node
in the system. In the first step of the algorithm, node 0 divide the set of data in k + 1 equal parts.
One of these packets remains on the node (it contains the data used in the next steps), while the
k others are sent to the k nodes connected at this step.

At a step I, when the communication has complete, reconfiguration occurs and each processor
having been reached in a previous step behaves as node 0 did at the first step. Thus, there are
k + 1 nodes having a message of length Ug}f—)f bytes. All the reached nodes are then connected to
k “sons” and send one (k + 1)-th of the message to each one.

The algorithm stops when the message at every node is of length L (the size of the personal
message). It is not difficult to see that, at this point, all the nodes have been reached.

The reconfiguration cost is given by the reconfiguration cost of the RCP:

scat __ RCP
Trec - Trec

= loguy (N6, + (N = D)7y, ®)

And the total communication cost equals the sum of the costs for each step:

h
NL
O (.
“ i=1 (k+1)
N-1
k

= logpy (N)B+ ~——L. 3

5.2 RCP broadcasting

The broadcast is one of the basic operations on a number of parallel algorithms. It is used for
example, to load the same code or data, or to communicate results on a network of processors. This
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operation has been extensively studied for distributed memory architectures [FL91, JH89, SW87)
under different models of communication [FL91].

5.2.1 Naive algorithm

If we imagine that in the RCP, node 0 has a message to be broadcast, then a straightforward
broadcast algorithm is obtained, where at each step, every reached node sends the message along
its k links.

Since each step costs (8 + L7) in communication time, we have a total cost of:

Ty rec = rﬁcCaI:f + logk+l (N) (ﬂ + LT) (4)

5.2.2 Two phase algorithm

Suppose now that we change the naive algorithm above by splitting the original message in (k + 1)
parts in the beginning of the algorithm. Then, the naive algorithm proceeds and once all the
processors were reached, node 0 has the whole message and each processor has 1/(k + 1) of the
message. Hence, in order to finish the broadcasting operation, the message must be rebuilt in the
processors. For this, complementary processors are connected in (k4 1)-cliques and they exchange
through all their channels the missing parts of the message. Since each (k+ 1)-clique has the whole
message, divided among the processors, this single all-to-all operation allows every processor to
recover all missing parts of the original message.

Notice that we can recursively apply this idea. We get then a first phase, where the message is
continuously split according to the RCP; followed by a second phase, where the message is step after
step completely recomposed, with the help of all-to-all operations implemented in (k + 1)-cliques
of complementary processors.

It is clear that the number of reconfigured links is larger during the second phase because it
concerns cliques and no longer trees. Therefore, the reconfiguration cost will be much higher.
Actually, the longer the splitting phase, the more expensive the second phase. Then, the savings
in the communication time yielded by the splitting disappear under the weight of reconfiguration.
One idea is then to stop splitting somewhere in the middle of the first phase, in some step A’
(0 < A’ < logg41(N)). The first phase will thus be composed by a splitting phase followed by a
naive phase, where the naive broadcasting algorithm is implemented.

An example with N = 27 and k£ = 3 is given in figure 3. There are 3 steps in the first phase,
but only 2 splitting phases (i.e., A’ = 2) and thus 2 all-to-all steps in the second phase.

In the following, we give the complexity analysis of the two main phases of this algorithm.

hl

mr = 3 (o )+ 3, (04 ) ®
Trhasez  _ zl: <ﬂ +—= L ) (6)
com Z *+ 1)

giving a total communication cost:

Theast _ 2'2:’;(134.#7)-% i ('H+ZE_+LT)"TT)

i=h/41
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2 ’ Lt
= (M+h)pB+ (— k+1)¥ ~1 +h—h’) —
W +mB+ (1 (k+1¥-1) T
= / 2 K / Lt
= (R +logry1(N)) B+ (E ((k'*' )" — 1) + logy41 (V) — h) (—"7_‘*‘—1)7
2 (logy1 (V) — 1)
< (W = +1
= ( + l0gk+1 (N)):B + kLT + (k + l)h' Lt (7)
The reconfiguration cost is given by:
T;;::.iel = TrIZcCP
= logry 1 (N)Br+ (N -1) 7, (8)
ase Nk
TPt = W (ﬂr + —2—rr) , (9)
giving a total reconfiguration cost:
bcast ' ,Nk
Treconf = (h + logk+1(N))ﬂr + (N - 1) + h T Tr. (10)

If we assume that the splitting-phase lasts until the end of the RCP, i.e., A’ = h, the communi-
cation cost is given by:

N-1
Tt = 2 (logk (V)P + L)
2Lt
< 2logey (N)B+ ——, (11)
and the reconfiguration cost is given by:
bca st Nk
Trecon] = 2logk+l (N),B,- + (N - 1) + logk+1 (N)_z— Try (12)

The total cost of the RCP broadcasting T%°** is given by the sum of the reconfiguration cost
Ttest . and the communication cost T,

Now we want to compute the optimal number of splitting steps (h{,,) which minimizes the total
execution cost. To obtain it, we derive the total cost function with regard to A'.

We first assume that the reconfiguration cost is zero.

oTices
Bl 0
log(N)k+k=2log(k+1)
log(N)k +k —2log(k+1) - O ( T ﬁ) k
W = . (13)

klog(k +1)

If we take into account the reconfiguration cost in our minimization, we have:
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Figure 4: RCP broadcasting on 3125 nodes for k = 4
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Roughly, for the communication part, there is a tradeoff between logi41(N)B and 2logiy,(N)S
for the startup cost and between logy,(N)7 and 2L for the propagation time, as follow.

{14)

I h’ | Reconfiguration [ Communication |
0 logk+l (N):Br + (N - l)T,- 10gk+l (N) (ﬂ + LT)
ogxs1 (V) | 2108x1 (V)Br + (N = 1) +logyys (N) BE) 7, | 2loge (V)8 + 22

Figure 4 shows the time ellapsed for the RCP broadcasting of messages from 10 to 1000 bytes
on 3125 nodes in a theoretical degree 4 target machine, with the following parameters. We let
B equals 0, 1 and 4 (recall that logs(3125) = 5). Notice that, since 7, is the cost of a memory
allocation, it is negligible with regard to .

Br g

T

100 ps | 11.5 us | 0.88 us/byte

Notice that for small messages (< 20 bytes) the splitting phase is not recommended.
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5.3 All-to-all algorithm

The all-to-all operation is usually very costly and is used in many parallel algorithms when all the
processors have to exchange their data [JH87]. This operation is sometimes called gossiping [FL91]
or complete broadcast [Sei89].

This operation can be efficiently implemented on a reconfigurable network using several steps of
all-to-all operations on K4, topologies. The number of steps remains the same as for the one-to-all
type operations (broadcast and scattering).

The reconfiguration cost is given by:

h-1

Nk
T:ctgonf = Z (,Br + T‘Tr) ’

1=0

= n(6+5En)

= loge(N) <ﬁ, + %’fr) (15)

and the communication cost is given by:

T = hf(ﬂ+(k+1)-zr).
1=0

h _

k
N-1)L
= tog(Mp+ L DE (16)
5.4 DPersonalized all-to-all algorithm

This operation, also called total exchange [Ede91] or multi-scattering [FL91], is used, for instance,
in the transposition of a matrix stored by rows or columns [JH87].
We use the same reconfiguration method as for the all-to-all scheme, and at each step of the

algorithm, each node sends a message of size k—IY'_-[f
T:::?n f = T:et:onf
h-1
NLt
pata __
Tcom - ;('B—*—kﬁ-l)
NL
= logers (V) (B4 357) (7)

6 Summary

In tables 1 and 2, we give a summary of the complexity results obtained. One can see that our
algorithms match the lower bound for three of the problems. As far as broadcasting is concerned,
we recall that there is a tradeoff between the factor on 3 and the one on 7, depending on the length

10



[ Algorithm | Communication cost | Lower bound |
ota (h' =0) | logg (N)(B+ L) max (log;,,(N)B, %r
ota (b = h) | 2log,, (N)B+ 2= max glogk 1 (N)B, %rg
pota logp41 (N)B + ﬂ?&r max (logk+1(N)ﬂ, UL',})—QT)
ata logy 1 (N)B + LN—I—I)AT max (logk_,,l(N),B, ﬂi—l)ér)
pata logr41 (V) (ﬂ + ,’cv—_‘_l-‘l-r) max (logk+1 (N)B, ﬂi—lET)

Table 1: Summary of the Communication costs and lower bounds

[ algorithm | reconfiguration cost |
ota (k' =0) logi41(N)Br + (N = )¢
ota (' = h) | 2loges) (V)8 + (N = 1) +logiy (M) 1) 7>
pota logi41(N)Br + (N = 1)1
ata log,+1(N) (B, + 557r)
pata log 1, (N) (8- + BErv)

Table 2: Summary of the Reconfiguration costs

of the splitting phase. If we are willing to compromise a factor two in front of 8, then we can save
a factor of as much as k/2 in front of 7.

We remark that the numbering scheme introduced in Section 4 works only for multi-computers
with a number of nodes which is exactly a power of (k + 1). Finding a numbering scheme for an
arbitrary number of nodes is not difficult if we lose a little of the efficiency of the algorithms. On
the other hand, matching the lower bounds in this case seems a very challenging problem.
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