Deterministic Parallel Fortran

K. Mani Chandy

Ian Foster

CRPC-TR93445
1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Updated May, 1994.

This work was supported in part by the National Science
Foundation and by the Office of Scientific Computing, U.S.
Department of Energy. -

To be published in Proceedings of SIAM Conference on
Parallel Processing for Scientific Computing, March 22-24,
1993, Norfolk, VA.

LY

Deterministic Parallel FORTRAN*

K. Mani Chandy! Ian Foster?

Abstract

We describe FORTRAN M, message-passing extensions to FORTRAN 77 that provide
deterministic execution and information hiding while preserving desirable properties of
message passing.

1 Introduction

FORTRAN M is a small set of extensions to FORTRAN 77 with the following features:

1.

5.

Modularity. Programs are constructed by using explicitly declared communication
channels to plug together program modules called processes. A process can
encapsulate common data, subprocesses, and internal communication.

. Safety. Operations on channels are restricted so as to guarantee deterministic

execution, even in dynamic computations that create and delete processes and
channels. Channels are typed, so a compiler can check for correct usage.

Architecture Independence. The mapping of processes to processors can be specified
with respect to a virtual computer with size and shape different from that of the
target computer. Mapping is specified by annotations that influence performance but
not correctness.

Efficiency. Programs can be compiled efficiently for vector machines, shared-
memory computers, distributed-memory computers, and networks of workstations.
Because message passing is incorporated into the language, a compiler can optimize
communication as well as computation.

Flezibility. Programs can integrate data-parallel and control-parallel computations.

FORTRAN M is a general-purpose parallel programming language that complements data-
parallel approaches such as High Performance FORTRAN. It appears particularly useful for
irregular and dynamic problems, and for multidisciplinary applications that may require
coordination of multiple data-parallel computations.

*This work was supported by the National Science Foundation under Contract NSF CCR-8809615 and
by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38. Also
available via anonymous ftp from info.mcs.anl.gov/pub/tech_reports/reports/P350.ps.Z.

tDepartment of Computer Science, California Institute of Technology, Pasadena, CA 91125.

!Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.

1

2 CHANDY AND FOSTER

Process: PROCESS
PROCESS COMMON
INPORT
OUTPORT
INTENT
Concurrency: PROCESSES/ENDPROCESSES
PROCESSDO
Communication: CHANNEL
MERGER
SEND
RECEIVE
ENDCHANNEL
MOVEPORT
PROBE
Mapping: PROCESSORS
LOCATION
SUBMACHINE

Fic. 1. FOoRTRAN M’s Eztensions to FORTRAN 77

This paper provides an introduction to FORTRAN M. The reader is referred to [3] for a
detailed language description, a discussion of compiler techniques, and a survey of related
work. A prototype FORTRAN M compiler for sequential and parallel computers is available
from Argonne National Laboratory. Send electronic mail to fortran-m@mcs.anl.gov for
details.

2 Language Overview

FORTRAN M’s extensions to FORTRAN 77 are listed in Figure 1. They consist of
statements for defining processes and for specifying communication, concurrent execution,
nondeterministic execution, and process placement. The extensions have a FORTRAN 77
“look and feel.” For instance, the communication statements are modeled on FORTRAN
file I/O statements and the process placement statements on FORTRAN array manipulation
statements.

2.1 Processes

FORTRAN M programs are constructed from building blocks called processes. A process, like
a FORTRAN program, defines common data (labeled PROCESS COMMON to emphasize that it
is local to the process) and the subroutines that operate on that data. It also defines the
interface by which it communicates with its environment. A process has the same syntax
as a subroutine, except that the keyword PROCESS is used in place of SUBROUTINE.

A process’s dummy arguments (formal parameters) are a set of port variables. These define
the process’s interface to its environment. (For convenience, conventional argument passing

DETERMINISTIC PARALLEL FORTRAN 3

is also permitted between a process and its parent, with INTENT declarations indicating
whether argument values are to be copied on call and/or return. This nonessential feature
is not described here.) A port variable declaration has the general form

port_type (data_type_list) name_list

The port_type is either OUTPORT or INPORT and specifies whether the port is to be used
to send or receive data, respectively. The data_type_list is a comma-separated list of type
declarations. It specifies the format of the messages that will be sent on the port, much as
a subroutine’s dummy argument declarations define the arguments that will be passed to
the subroutine.

2.2 Communication

As each process has its own address space, the only mechanism by which a process can
interact with its environment is via the ports passed to it as arguments. A process uses the
SEND, ENDCHANNEL, and RECEIVE statements to send and receive messages on these ports.
These statements are similar in syntax and semantics to FORTRAN’s WRITE, ENDFILE, and
READ statements and can include optional END=, ERR=, and IOSTAT= specifiers to indicate
how to recover from various exceptional conditions.

A process sends a value by applying the SEND statement to an out-port. It sends a
sequence of values by repeated calls to SEND; it can also call ENDCHANNEL to send an end-
of-channel (EOC) message. The OUTPORT declaration specifies the types of values that
can be communicated on the port. The SEND and ENDCHANNEL statements are nonblocking
(asynchronous): they complete immediately. A process receives a value by applying the
RECEIVE statement to an in-port. A RECEIVE statement is blocking (synchronous): it does
not complete until data is available.

2.3 Concurrent Execution

A FORTRAN M program is constructed by using process blocks and process do-loops to
compose processes. A program creates channels to establish single-producer, single-
consumer communication streams between processes. In this way, processes with more
complex behaviors are defined. These can themselves be composed with other processes,
in a hierarchical fashion. A process block has the general form

processes
statement._1

statement.n
endprocesses
where n > 0 and the statements are process calls, process do-loops (defined below), and/or
at most one subroutine call. Statements in a process block execute concurrently. A process
block terminates, allowing execution to proceed to the next executable statement, when all
its constituent statements terminate.

4 CHANDY AND FOSTER

Recall that a process communicates with its environment by sending and receiving
messages on ports. When composing processes, we use the channel statement to define
these ports to be references to first-in, first-out message queues called channels. This
statement has the general form

channel (out=out-port, in=in-port)

and both creates a channel and defines out-port and in-port to be references to this channel.
These ports are to be used for sending and receiving messages, respectively, and can be
passed as arguments to the composed processes.

A process do-loop creates multiple instances of the same process. It is frequently used
to define single program, multiple data (SPMD) computation structures, in which multiple
copies of a process are connected in a regular communication structure. The process do-
loop is identical in form to the do-loop, except that the keyword processdo is used in place
of DO and the body can include only a process do-loop or a process call. It can be nested
inside both process do-loops and process blocks, for example:

processdo 10 i = 1,n
call myprocess
10 continue

2.4 Nondeterminism

The determinism enforced by the use of channels removes a major source of complexity
in concurrent programming. However, nondeterminism can be useful in nondeterministic
environments. For example, a load-balancing algorithm may need to execute either a local
or remote task, depending on which is the first to become available. Similarly, we may
wish to process requests to access a shared data structure, or input from several external
devices, in the order in which they become available. These behaviors can be specified by
using the merge and probe statements.

A merge statement connects multiple out-ports with a single in-port, to form a many-to-
one communication structure. Values arriving on any out-port are copied to the in-port,
with the order of messages on each out-port being preserved in the in-port and any message
placed on an out-port eventually appearing on the in-port. The probe statement allows a
process to determine whether data is pending on an in-port.

2.5 Process Placement

FoRTRAN M incorporates constructs that allow the programmer to specify how processes
are to be mapped to processors. These constructs influence performance but not correctness.
Hence, we can develop a program on a uniprocessor and then tune performance on a parallel
computer by changing mapping constructs.

FORTRAN M mapping constructs are based on the concept of a virtual computer: a
collection of virtual processors, which may or may not have the same topology as the

DETERMINISTIC PARALLEL FORTRAN 5

physical computer on which a program executes. For consistency with FORTRAN concepts,
a FORTRAN M virtual computer is an N-dimensional array, and the mapping constructs
are modeled on FORTRAN 77’s array manipulation constructs. The processors declaration
specifies the shape and dimension of a processor array, the location annotation maps
processes to specified elements of this array, and the submachine annotation specifies that
a process should execute in a subset of the array.

3 Programming Example

We illustrate the use of FORTRAN M by showing how the language is used to implement a
coupled ocean/atmosphere climate model. An atmosphere circulation model and an ocean
circulation model are to execute concurrently and must exchange information periodically:
The ocean model provides the atmosphere model with an array of sea surface temperatures
(SST), and the atmosphere model provides the ocean model with two arrays containing
components of horizontal momentum, U and V. We implement both models as processes,
and define an interface that allows for the exchange of SST, U, and V values.

We assume for simplicity that the atmosphere model is a sequential program. Hence, we
define an interface consisting of two ports, sst_i and uv_o. The in-port sst_i can be used
to receive arrays of real values representing sea surface temperatures, while the out-port
uv_o can be used to send two such arrays representing U and V values. The following code
implements a model with this interface that repeatedly sends U and V data on the port
uv_o and receives SST data from the port sst_i. After doing this TMAX times, it signals
the end of the communication by sending an end-of-channel (EOC) message on uv_o. Note
the use of process common to hold the sst, u, and v arrays. These arrays are local to the
atmosphere process.

process atmosphere(sst_i,uv.o)
parameter (NLAT=128, NLON=256, TMAX=100)
C The ports sst_i and uv_o are the external interface.
inport (real x(NLAT,NLON)) sst_i
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uv.o
o Process common variables.
process common /atmo/ sst, u, Vv
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)
C Repeat TMAX times: recv SST, update U & V, send U & V.
do 10 i=1,TMAX
send(uv_o) u,v
receive(sst_i) sst
call atm_compute
10 continue
C Signal end of communication.
endchannel (uv_o)
end

The ocean model might be as follows. Its interface is complementary to that of the
atmosphere model: the in-port uv_i can be used to receive U and V data and the out-port

6 CHANDY AND FOSTER

uv_o can be used to send SST data. The body of the program repeatedly sends SST data
on the out-port and receives U and V data on the in-port, until EOC is detected on sst_i.
Note the use of the END= specifier in the RECEIVE statement to indicate where execution
should continue if EOC is detected. Again, process common is used to maintain local data.

process ocean(uv_i,sst_o)
parameter (NLAT=128, NLON=256)

C The ports uv_i and sst_o are the external interface.
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_i
outport (real x(NLAT,NLON)) sst_o

¢ Process common variables.
process common /ocean/ sst, u, v
real sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)

C Repeat until EOC: recv U & V, compute SST, send SST.
do while(.true.)

send(sst_o) sst
receive(uv_i,end=10) u,v
call ocn_compute
enddo
10 end

The two processes are plugged together by means of two channels, one for communicating
SST values and the other for communicating U and V values. This structure is illustrated
in Figure 2 and is created by the following program. The program creates two channels,
spawns the atmosphere and ocean processes, blocks until the process block terminates,
and then terminates itself.

program coupled_model
parameter (NLAT=128, NLON=256)
C Local port variables.
inport (real x(NLAT,NLON)) ssti
outport (real x(NLAT,NLON)) ssto
inport (real x(NLAT,NLON), real y(NLAT,NLON)) uvi
outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvo
o Create channels and define ports.
channel (out=ssto,in=ssti)
channel (out=uvo, in=uvo)
C Call two models with ports as arguments.
processes
call atmosphere(ssti,uvo)
call ocean(uvi,ssto)
endprocesses
end

We now have a complete parallel program that can be executed on a sequential or parallel
computer. This program can be executed on one processor or two, or on two different
computers, simply by changing mapping statements; no changes to the component modules
are required. Similarly, different implementations of the ocean or atmosphere module can

DETERMINISTIC PARALLEL FORTRAN 7

channel(uvi, uvo)
uyy' \{Vi

channel(ssti, ssto
N [l%o

ssti

Fi1G. 2. Coupled Ocean/Atmosphere Model

be substituted, as long as they use the same interface. Notice that although the execution
order of the concurrently executing atmosphere and ocean processes is determined only by
availability of messages on channels, the computed result does not depend on the order in
which the processes execute. That is, the program is deterministic.

This example is easily extended to incorporate parallel ocean and atmosphere models (3].
The atmosphere and ocean processes use process do-loops to create multiple subprocesses
and the interface between the two components is defined in terms of arrays of channels.
Similarly, the example can be extended to incorporate a separate interpolator process
that handles conversion of data between the different grid systems commonly used in ocean
and atmosphere models, an I/O process that handles data reduction and file I/O, and so
on. Hence, FORTRAN M can be used as a general-purpose modular framework for building
earth system models on parallel computers [2].

4 Data Parallelism

The basic paradigm underlying FORTRAN M is task parallelism: the parallel execution of
(possibly dissimilar) tasks. However, FORTRAN M also provides some support for data-
parallel computation. Programs can use data distribution statements to create distributed
arrays. Semantically, distributed arrays are indistinguishable from nondistributed arrays.
That is, they are accessible only to the process in which they are declared and are copied
when passed as arguments to subprocesses. Operationally, elements of a distributed array
are distributed over the nodes of the virtual computer in which the process is executing.
Hence, operations on a distributed array may cause communication.

We utilize FORTRAN D-style data distribution statements to create distributed arrays
in FORTRAN M. (High Performance FORTRAN statements could also be used.) These
statements allow FORTRAN M to specify certain classes of data-parallel computations. For
example, in the following code fragment, the same computation is performed on each row
of a distributed array. The processors statement indicates that the program is to be
compiled for an array of N (virtual) processors; the location annotation on the call to
computesum specifies that the process is to execute on the ith processor.

8 CHANDY AND FOSTER

processors(N)
real A(N,N), sum(N)
decomposition B(N)
align A(i,j) with B(i)
processdo i=1,N
computesum(N, A(i,1), sum(i)) location(i)
enddo
end

process computesum(N, B, sum)
real B(N), sum
intent(in) N,B
intent(out) sum

sum = 0.0
doi=1,N

sum = sum + B(i)
enddo
end

5 Theoretical Foundations

FORTRAN M is supported by a theory of parallel and sequential composition of communi-
cating processes [1]. Key characteristics of this theory include (1) proofs that a FORTRAN M
program is deterministic even though processes and channels are created and deleted and
channels are reconnected; (2) extension of sequential programming proof techniques to par-
allel programs; and (3) a compositional proof theory in which the specification of the whole
is derived from the specifications (and not the texts) of the part.

DETERMINISTIC PARALLEL FORTRAN 9

6 Conclusions

Our goal in defining FORTRAN M is to make the advantages of high-level languages available
to programmers developing programs for parallel machines. In particular, we are concerned
with ensuring safety. This is achieved in two ways. First, programs that do not use two
nondeterministic constructs are guaranteed to be deterministic, meaning that they produce
the same output for all executions with a given input. Second, the type information required
by FORTRAN M allows a compiler to detect many erroneous programs at compile time.

FORTRAN M’s extensions to FORTRAN 77 can be described in a few minutes and mastered
in a few hours. The extensions allow programmers to develop parallel programs by
plugging together modules that encapsulate both code and data. This object-oriented
approach to program design supports the implementation of reusable parallel libraries and
multidisciplinary applications. Furthermore, because the extensions can be implemented
efficiently on a wide variety of parallel computers, application portability is achieved with
little or no performance penalty. Indeed, as communication forms an integral part of the
language, it should be possible to realize substantial performance improvements through
compiler optimizations.

The definition of FORTRAN M opens several avenues for future research. The integration of
data-parallel notations such as High Performance FORTRAN with FORTRAN M will allow the
implementation of heterogeneous applications, in which a FORTRAN M program coordinates
multiple data-parallel computations. Data-parallel subroutines can be invoked in a specified
processor array, with ports used for communication with FORTRAN M computations. The
integration of FORTRAN 90 constructs is also of interest. For example, array sections can
be used to specify both mapping to a column of a processor array and communication of a
column of a data array.

Acknowledgments

We are grateful to Bob Olson for his splendid efforts developing the prototype FORTRAN M
compiler and to members of the Rice University FORTRAN compiler group for their valuable
comments on the FORTRAN M language design.

References

[1] K. M. Chandy and I. Foster, On communicating processes, Preprint MCS-P346-0193, Mathe-
matics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1993.

(2] I. Foster, FORTRAN M as a language for building earth system models, Preprint MCS-P345-
0193, Argonne National Laboratory, and Proc. 5th ECMWF Workshop on Parallel Processing
in Meteorology, ECMWF, Reading, U.K., 1992.

[3] I. Foster and K. M. Chandy, FORTRAN M: A language for modular parallel programming,
Preprint MCS-P237-0992, Mathematics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 1992.

- [4] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu,
FORTRAN D language specification, Technical Report TR90-141, Department of Computer
Science, Rice University, Houston, Texas, 1990.

