Strand and PCN:
Two Generations of Compositional
Programming Languages

Ian Foster

CRPC-TR93446
1993

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Updated May, 1994.
To be published in Communications of the ACM, 1994.

Strand and PCN:
Two Generations of Compositional Programming
Languages

Ian Foster
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

foster@mcs.anl.gov

Abstract

Two parallel languages and their associated programming systems are reviewed
and evaluated. Both Strand and PCN are designed to facilitate parallel program
development by providing an expressive high-level notation; by integrating tools for
debugging, performance analysis, etc.; and by providing portability across differ-
ent parallel computers. Both provide explicit parallel constructs and use single-
assignment variables as an abstraction for communication and synchronization.
They support a compositional approach to program design, in which programs com-
posed from simpler components inherit the properties of these components. Strand,
developed in 1988, is a first-generation system specialized for symbolic applications.
PCN, developed in 1990, is a second-generation system that supports both sym-
bolic and numeric computing. Both systems are available on a range of parallel
computers, have been widely distributed, and are in use in many applications. This
article summarizes their principal features, describes representative applications,
and evaluates their strengths and weaknesses for parallel programming.

1 Introduction

Parallel programming is often considered difficult. This may seem understandable: after
all, the parallel programmer must control hundreds of processors, while the sequential pro-
grammer controls but one. Yet sequential programs manage millions of bytes of memory
and execute billions of machine instructions. Why should additional processors compli-
cate things so tremendously? One reason is that properties that we take for granted in
sequential programming, such as deterministic execution, information hiding, modularity,

1

and virtual resources, are lacking in most parallel programming libraries and languages.
In effect, most parallel programs are written in machine language.

One property that appears fundamental to good parallel programming practice is what
Mani Chandy has termed “compositionality”: the ability to develop programs by compos-
ing simpler components, in such a way that the resulting programs inherit the properties
of the components from which they are constructed, even when executing concurrently. In
particular, programs constructed from deterministic compositions can themselves be guar-
anteed to be deterministic, meaning that the result computed never depends on the order
in which components are scheduled for execution. Compositionality permits modular de-
sign, allows components to be developed and tested separately, simplifies verification, and
encourages reuse of code. However, not all parallel programming notations provide this
property. For example, notations based on shared variables tend not to be compositional:
two deterministic procedures may be nondeterministic when executed concurrently, if
both access the same variable.

Compositionality and determinism can be achieved in a variety of ways: a number
of approaches are reviewed below. The two parallel languages described in this article,
Strand and PCN, realize compositionality by requiring that concurrently-executing com-
ponents interact by reading and writing single-assignment or definitional variables [14, 7].
A definitional variable is initially undefined and can be assigned at most a single value.
If a component attempts to read an undefined variable, execution of that component is
suspended until the variable is defined. Hence, the result of a computation cannot de-
pend on the time at which read operations occur. The race conditions that bedevil many
parallel programs rarely occur in Strand and PCN programs, and then only if specialized
constructs are employed.

Strand and PCN also share other properties that simplify parallel program develop-
ment. A data-driven, lightweight-process execution model decouples the notion of “pro-
cess” and “processor” and permits automatic overlapping of computation and communica-
tion. Sophisticated toolkits provide parallel debuggers, profilers, compilers, etc., for both
parallel and networked computers. Programs can coordinate the execution of sequential
code written in C, Fortran, etc., allowing reuse of sequential code in a parallel environ-
ment. Process mapping is specified by program annotations that affect performance but
not semantics, allowing alternative mapping strategies to be explored without modifying
program logic. Finally, support for symbolic computing — in particular, recursively-
defined data structures and procedures similar to those employed in Lisp and Prolog —
enable a high-level, declarative approach to parallel programming that is useful both for
symbolic problems and for the prototyping of concurrent algorithms.

Strand is a first-generation system that grew out of early work in concurrent logic
programming. It is a high-level, declarative language primarily used in symbolic and
distributed-computing applications. Strand has been commercially supported since 1989
and is in use at over 300 sites in 21 countries. PCN is a second-generation system that
integrates imperative constructs and facilities for reusing parallel code. It is used for
both symbolic and numeric applications. The public-domain PCN system has been avail-
able since 1991 and has been distributed to several hundred sites. Both systems have
been implemented on a wide range of parallel computer systems, made available to a
large community of users, and used in substantial programming projects in industry and

academia.

2 Strand

Strand’s origins in logic programming are evident in its syntax, which has a distinctly
declarative, symbolic flavor. Nevertheless, Strand is first and foremost a parallel lan-
guage, and it retains logic programming concepts only when they are also useful for par-
allel programming. Interfaces to C and Fortran make it possible to integrate imperative
computation into Strand programs. In fact, Strand is commonly used as a coordination
language: that is, as a framework for coordinating the concurrent execution of sequential
code modules.

Strand compilers for a range of parallel and networked computers are distributed
under the tradename STRANDS8 by Strand Software Technologies Inc. (Electronic mail:
will@sstl.uucp and strand@ppg.strand.com).

2.1 Strand Language

This summary of Strand language concepts is not intended to be comprehensive; for
details, see [14]. The syntax of Strand is similar to that of the logic programming language
Prolog. A program consists of a set of procedures, each defined by one or more rules. A
rule has the general form :

H :- Gy, Ggy oy Gm | B, Bay ooy B myn >0,

where the rule head H is a function prototype consisting of a name and zero or more
arguments, the G; are guard tests, “|” is the commit operator, and the B; are body
processes: calls to Strand, C, or Fortran procedures, or to the assignment operator “:=".
If m =0, the “|” is omitted. Procedure arguments may be variables (distinguished by an
initial capital letter), strings, numbers, or lists. A list is a record structure with a head
and a tail, and is denoted [head|ta:l].

A procedure’s rules define the actions that the process executing that procedure can
perform. The head and guard of the rule define the conditions under which an action
can take place; the body defines the actions that are to be performed. When a procedure
executes, the conditions defined by the various heads and guards are evaluated in parallel.
Nonvariable terms in a rule head must match corresponding process arguments and guard
tests must succeed. If the conditions specified by a single rule hold, this rule is selected
for execution and new processes are created for the procedures in its body. If two or
more rules could apply, one is selected nondeterministically. It suffices to ensure that
conditions are mutually exclusive to avoid nondeterministic execution. If no condition
holds, an error is signaled. For example, the following procedure defines a consumer
process that executes either actionl or action2, depending on the value of variable X.

consumer(X) :- X == "msg" | actioni(X).
consumer(X) :- X =\= "msg" | action2(X).

In this procedure, X is a variable, "msg" is a string, and == and =\= represent equality
and inequality tests, respectively. Notice that this procedure is deterministic.

3

Communication and Synchronization. Strand variables are single-assignment, or
definitional, variables. The value of such a variable is initially undefined, can be defined
at most once, and subsequently cannot be changed. A process that requires the value of
a variable waits until the variable is defined.

A shared definitional variable can be used both to communicate values and to syn-
chronize actions. For example, consider concurrently executing producer and consumer
processes that share a variable X:

producer(X), consumer(X)

The producer may assign a value to X (e.g., "msg") and thus communicate this value
to the consumer:

producer(X) :- X := "msg".

As shown above, the consumer procedure may receive the value and use it in sub-
sequent computation. The concept of synchronization is implicit in this model. The
comparisons X == "msg" and X =\= "msg" can be made only if the variable X is defined.
Hence, execution of consumer is delayed until producer executes and makes the value
available.

The single-assignment variable would have limited utility in parallel programming if
it could be used to exchange only a single value. In fact, processes that share a vari-
able can use it to communicate a sequence or stream of values. This is achieved as
follows. A recursively-defined producer process incrementally constructs a list structure
containing these values. A recursively-defined consumer process incrementally reads this
same structure. Figure 1 illustrates this technique. The stream_comm procedure creates
two processes, stream producer and stream_consumer, that use the shared variable X
to exchange N values. The producer incrementally defines X to be a list comprising N
occurrences of the number 10:

(10, 10, 10, ..., 10]

The statement Out := [10|0ut1], which defines the variable Out to be a list with head
10 and tail Out1, can be thought of as sending a message on Out. The new variable Out1
is passed to the recursive call to stream producer, which either uses it to communicate
additional values or, if N==0, defines it to be the empty list [].

The consumer incrementally reads the list S, adding each value received to the ac-
cumulator Sum and printing the total when it reaches the end of the list. The match
operation [Val|Ini] in the head of the first stream consumer rule determines whether
the variable shared with stream producer is a list and, if so, decomposes it into a head
Val and tail Ini. This operation can be thought of as receiving the message Val and
defining a new variable In1 which can be used to receive additional messages.

Foreign Interface. “Foreign” procedures written in C or Fortran can be called in the
body of a rule. A foreign procedure call suspends until all arguments are defined and
then executes atomically, without suspension. This approach achieves a clean separation
of concerns between sequential and parallel programming, provides a familiar notation for
sequential concepts, and enables existing sequential code to be reused in parallel programs.

4

stream_comm(N) :-

stream_producer(N, S),
stream_consumer(0, S).

stream_producer (N, Out)
N> o0 |
Out := [10|0uti],
N1 is N - 1,

stream producer (N1, Outl).

stream_producer(0, Out)
Oout := [J].

stream_consumer (Sum, [Val|In1]) :-

Suml is Sum + Val,

stream_consumer (Sumi, Inl).
stream_consumer (Sum, []) :-

print (Sum).

% N is number of messages
% Accumulator initially 0

% More to send (N > 0):
% Send message “10”;
% Decrement count;

% Recurse for more.

% Done sending (N == 0):
% Terminate output.

% Receive message:

% Add to accumulator;
% Recurse for more.

% End of list (In == []):
% Print result.

Figure 1: Producer/Consumer Program.

augcgagucuauggcuucggccauggeggacggeucauu
augcgagucuaugguuucggecauggeggacggeucauu
augcgagucuauggacuucggccauggeggacggeucagu
augcgagucaaggggcucccuugggggcaccggegeacggeucagu

(a)

augcgagucuaugge----uucg----gccauggcggacggeucauu
augcgagucuauggu----uucg----gccauggcggacggcucauu
augcgagucuauggac---uucg----gccauggcggacggeucagu
augcgaguc-aaggggcucccuugggggeaccggegeacggeucagu

(b)

Figure 2: RNA Sequence Alignment

Mapping. The Strand compiler does not attempt to map processes to processors auto-
matically. Instead, the Strand language provides constructs that allow mapping strategies
to be specified by the programmer. This approach is possible because the Strand lan-
guage is designed so that mapping affects only performance, not correctness. Hence, a
programmer can first develop a program and then explore alternative mapping strategies
by changing annotations. This technique is illustrated below.

2.2 Programming Examples

We use a sequence alignment program developed by Ross Overbeek and his coworkers [3]
to illustrate the use of Strand. The goal is to line up RNA sequences from separate but
closely related organisms, with corresponding sections directly above one another and
with indels (dashes) representing areas in which characters must be inserted or deleted to
achieve this alignment. For example, Figure 2 shows (a) a set of four short RNA sequences
and (b) an alignment of these sequences.

Overbeek et al.’s alignment algorithm utilizes a divide-and-conquer strategy which, in
simplified terms, works as follows. First, “critical points” — short subsequences that are
unique within a sequence — are identified for each sequence. Second, “pins” — critical
points that are common to several sequences — are identified. Third, the longest pin
is used to partition the problem of aligning the sequences into three smaller alignment
problems, corresponding to: (a) the subsequences to the left of the pin in the pinned
sequences, (b) the subsequences to the right of the pin, and (c) the unpinned sequences
(Figure 3). Fourth, these three subproblems are solved by applying the alignment algo-
rithm in a recursive fashion. Fifth, the three subalignments are combined to produce a
complete alignment.

This is a complex algorithm that happens to exhibit many opportunities for parallel
execution. For example, critical points can be computed in parallel for each sequence, and

6

Lett |P| Right

Pinned | ! | Pinned
N
Unpinned

Figure 3: Splitting Sequences Using a Pin

each alignment subproblem produced during the recursive application of the algorithm
can be solved concurrently. The challenge is to formulate this algorithm in a way that
does not obscure the basic algorithm structure and that allows alternative parallel exe-
cution strategies to be explored without substantial changes to the program. The Strand
implementation has this property. The procedures in Figure 4 implement the top level of
the algorithm. The align_chunk procedure calls pins to compute critical points for each
sequence in a set of sequences (a “chunk”), form a set of pins, and select the best pin.
If a pin is found (Pin =\= []), divide uses it to split the chunk into three subchunks.
Recursive calls to align_chunk align the subchunks. If no pin is found (Pin == []), an
alternative procedure, c_basic_align, is executed.

This example illustrates three important characteristics of the Strand language. First,
programs can exploit high-level logic programming features to simplify the specification
of complex algorithms. These features include the use of list structures to manage col-
lections of data and a rule-based syntax that provides a declarative reading for program
components. Second, programs can call routines written in sequential languages to per-
form operations that are most naturally expressed in terms of imperative operations on
arrays. In the example, three C-language procedures (distinguished here by a “c_” prefix)
are called in this way. This multilingual programming style permits rapid prototyping
of algorithms without compromising performance. (The absence of an array data type
means that code for manipulating arrays would be both clumsy and inefficient if written
in Strand.) Third, alternative parallel implementation strategies can be explored simply
by annotating the program text with different process mapping directives. For example,
in Figure 4 annotations @ random are placed on the recursive calls to align to specify
that these calls are to execute on randomly selected processors. Alternatively, annota-
tions @ elsewhere could be used to specify that these calls are to be scheduled to idle
processors by using a load-balancing strategy. As communication and synchronization
are specified in terms of operations on shared definitional variables, no other change to
the program text is required: the Strand compiler translates these operations into either
low-level message-passing or shared-data access operations, as required.

A second example illustrates the use of Strand to implement distributed algorithms.
Figure 5 provides a complete implementation of a manager/worker load-balancing sched-
uler. As illustrated in Figure 6, request streams from different “worker” processes (W)
are combined by a special process called a merger to yield a single stream. (The merger

align chunk(Sequences,Alignment) :-
pins(Chunks,BestPin),
divide(Sequences,BestPin,Alignment).

pins(Chunk,BestPin) :-
cps(Chunk,CpList),
cform pins(CpList,PinList),
best_pin(Chunk,PinList,BestPin) .

cps([Seq|Sequences],CpList) :-
CpList := [CPs|CpListi],
ccritical_points(Seq,CPs),
cps(Sequences,CpList1).

cps([],CpList) :- CpList := [].

divide(Seqs,Pin,Alignment) :-
Pin =\= [] |

split(Seqs,Pin,Left,Right,Rest),
align chunk(Left,LAlign) @ random,
align_chunk(Right,RAlign) @ random,
align_chunk(Rest,RestAlign) Qrandom,
combine(LAlign,RAlign,RestAlign,Alignment).

divide(Seqs, [],Alignment) :-
c_basic_align(Seqs,Alignment) .

Figure 4: Genetic Sequence Alignment Algorithm

is Strand’s second nondeterministic construct, the first being guards that are not mutu-
ally exclusive.) Each worker repeatedly sends a request for a task, waits for a response,
executes the task that it receives, and terminates when no more tasks are available. A
“manager” process (M) matches requests with tasks received on a separate stream, and
signals termination when all tasks have been scheduled.

Mapping constructs are used to control the placement of worker processes on physical
processors. The first statement in the program indicates that the programmer wants to
think of the computer as a virtual ring. The ring virtual computer supports mapping
annotations @ fwd and @ bwd that specify that a process is to execute on the “next”
or “previous” node in this ring, respectively. In the example, the recursive call in the
workers procedure is annotated so that the worker processes are placed on successive
virtual processors.

This example also illustrates the code reuse that can be achieved with Strand. The
load-balancing library can be used in any Strand program that adheres to its interface.
This interface is defined by the call to scheduler (its two arguments are an integer
specifying a number of workers and a list of tasks) and the call to execute, which takes
a task as an argument and invokes the appropriate procedure, defining the variable Done
when this completes.

2.3 Strand Toolkit

A small toolkit provides the essential utilities required for parallel application develop-
ment. This comprises a compiler and runtime system, a linker for foreign code, a debugger,
a parallel I/0O library, a performance profiler, and an X-Windows interface.

The compiler translates Strand programs into the instruction set of an abstract ma-
chine. A runtime system implements this abstract machine and provides communica-
tion, thread management, and memory management functions. Its implementation is
designed for portability and is easily retargeted to new computers. The compiler and
runtime system are designed to optimize the performance of programs that create many
lightweight processes and that communicate by using recursive stream structures. For
example, tail-recursion optimizations are applied to translate recursion into iteration and
to reuse storage occupied by list cells, hence avoiding the need for garbage collection in
certain common cases. A garbage collector is nevertheless required in the general case.
On distributed-memory computers, a shared variable is represented by a single occurrence
and one or more remote references [32]; read and write operations on remote references are
translated into communication operations. The garbage collector must also trace these in-
terprocessor references; however, individual processors can reclaim storage independently,
hence avoiding a need for global synchronization.

The foreign code linker allows the programmer to define the data conversions that are
to be performed when moving data between Strand, C, and Fortran; the linker generates
the necessary conversion code. The debugger allows the programmer to trace program
execution and to examine suspended processes in the event of deadlock.

Performance monitoring functions are integrated into the compiler and programming
system. These functions, designed by Carl Kesselman [21], allow information such as total
procedure execution time, procedure execution frequencies, and communication volumes

-machine(ring).

scheduler(NumWorkers, Tasks) :-
manager (Tasks, Requests),
merger (Regs,Requests),
workers(Regs) .

manager ([Task|Tasks], [Req|Requests]) :

Req := Task, manager(Tasks,Requests).

manager([], [Req|Requests]) :-

Req := "halt", manager([],Requests).

manager ([]1, [1).

workers(NumWorkers,Reqs) :-
NumWorkers > 0 |
NumWorkersi is NumWorkers - 1,
Reqs := [merge(R)|Reqsi],
worker(R),

workers (NumWorkersi,Reqsl) @ fwd.

workers(0,Regs) :- Regs := [].
worker (Reqs) :-
Reqs := [Request|Reqsi],
worker1(Reqs1,Request,"done").

worker1(Reqs,Request,'done") :-
Request =\= "halt" |
Reqs := [NewReq|Reqsi],
execute(Request,Done),
worker1(Reqs1,NewReq,Done) .

worker1(Regs,"halt","done") :- Regs :

.

% Virtual computer.

% Create processes:

% Manager;
% Merger;
% Workers.

% Serve request.
% Signal done.

% Terminate.

% Create workers, each
% on different node.

% Register with merger.
% Create worker; then
% move to next node.

% Worker:
% Request task;
% Process task.

% Process task.

% Not halt; so:

% Request next task;
% Execute task;

% Repeat process.

Figure 5: Load-Balancing Library

Figure 6: Manager/Worker Scheduler Structure

to be obtained on a per-processor basis. This information is collected by additional
instructions inserted by the compiler; the cost of these instructions is almost always much
less than one per cent of total execution time [21]. As profiling is based on counters,
rather than the logging of events, the amount of data collected is independent of program
execution time. Communication is required only upon program termination, to dump
profile data collected on each processor. A graphical analysis tool called Gauge permits
interactive exploration of this data.

2.4 Strand Experiences

Strand has been used in companies, research laboratories, and academic institutions to
program hypercubes, shared memory machines, transputer surfaces, and workstation net-
works. Universities in Europe, the U.S., and Japan use Strand to teach courses in parallel
computing, distributed computing, parallel algorithms, parallel operating systems, and
related topics.

Strand applications range from the purely symbolic through mixed symbolic/numeric
to the purely numeric, from reactive to transformational, and from sequential through
parallel to distributed. The most successful seem to be those with a strong symbolic
or reactive component; these take advantage of Strand’s high-level, declarative features
and/or its lightweight processes and data-driven execution model. Most are multilingual,
with a few tens, hundreds, or thousands of lines of Strand coordinating the execution of
sequential code written in C or Fortran. For example:

Parallel Computer Algebra. Researchers at the Research Institute for Symbolic Com-
putation in Linz, Austria, have developed ||Maple||, a parallel implementation of the com-
puter algebra system Maple [30]. In the United States, a telecommunications company
has developed an interface between Strand and the Mathematica computer algebra sys-
tem. Both systems use Strand to coordinate execution of symbolic algebra computations
on parallel computers and workstation networks.

Discrete Event Simulation. Researchers at the University of Exeter have used Strand
to develop a parallel discrete event simulation system that implements a variant of the

11

Timewarp simulation algorithm [34]. This system is used on both transputer networks
and the Kendall Square Research KSR-1.

Telephone Exchange Control. A Swedish telecommunications company has used Strand
to develop telephone exchange control software. Strand is used to manage the data-driven
execEﬂiion of multiple threads of control, each representing a physical resource or telephone
call [1].

Multiuser Databases. Strand Software Technologies has developed a system that allows
multiple users to interact with a single Strand service in a workstation network. This
facility has been used to develop a multiuser spreadsheet, a multiuser project management
system, and concurrency control mechanisms for distributed databases.

Other representative applications include the prototyping of new concurrent file system
structures, database management in the banking industry, planning, protein structure
determination, finite element analysis, mesoscale weather modeling, implementation of
logic programming systems, and parallel theorem provers.

2.5 Evaluation

As a high-level, declarative language, Strand inherits many of the strengths of sequen-
tial declarative languages such as Lisp and Prolog. In particular, complex concurrent
algorithms can be implemented quickly and modified easily; symbolic algorithms can be
expressed succinctly as recursively defined procedures that operate on recursively defined
data structures; and programs have a naturally modular structure and a useful declarative
reading. In addition, Strand provides portability across parallel computers, a data-driven
execution model, and, through its foreign interface, a mechanism for migrating sequential
code into a parallel environment.

Strand’s weaknesses are also linked with its logic programming origins. Its syntax
— in particular, its lack of iterative and block structuring constructs — is an obstacle
to most programmers. In addition, the encapsulation of imperative constructs behind
the foreign interface works well only when an application is primarily symbolic or when
imperative components are easily isolated. Programs that are primarily numeric often
become convoluted, due to the need to convert data repeatedly between symbolic and
imperative representations.

In summary, Strand has proven to be a powerful symbolic and distributed program-
ming language, but is ill suited for numeric problems. Its unfamiliar syntax poses a
significant barrier to the casual user.

3 Program Composition Notation

Program Composition Notation (PCN) is a high-level parallel language and program-
ming toolkit developed at Argonne National Laboratory and the California Institute of
Technology (7, 13]. The language design extends the basic Strand ideas of lightweight
processes, logical variables, declarative programming, and multilingual programming in
three important ways. First, it integrates declarative and imperative programming with-
out compromising compositional properties. Second, it provides a richer and more flexible
syntax. Third, it supports the implementation and use of reusable parallel modules.

12

The PCN software is in the public domain and is obtainable by anonymous ftp from
info.mcs.anl.gov, in directory pub/pcn. It has been installed on a wide range of parallel
and networked parallel computers; as system dependencies are isolated in the implemen-
tation, porting to a new computer system is normally straightforward.

3.1 PCN Language

PCN syntax is similar to that of the C programming language. A program is a set of
procedures, each with the following general form (k,! > 0).

name(arg;, . ..,argx)
declaration;; ...; declarationy;
block

A blockis a call to a PCN procedure (or to a procedure in a sequential language such as
Fortran or C), a composition, or a primitive operation such as assignment. A composition
is written {op block;, ..., blockm}, m > 0, where op is one of “||” (parallel), «;”
(sequential), or “?” (choice), indicating that the blocks block;, ..., blocky, are to be
executed concurrently, in sequence, or as a set of guarded commands, respectively. In
the latter case, each block is a choice with the form guard -> block, where guard is a
conjunction of boolean tests and block can be executed only if guard evaluates to true.
If two or more guards evaluate to true, one is selected nondeterministically, as in Strand.

A parallel composition specifies opportunities for parallel execution but does not in-
dicate how the composed blocks (which can be thought of as lightweight processes) are
to be mapped to processors. As in Strand, mapping is specified by annotations. In PCN,
annotations can name arbitrary user-defined functions.

Any Strand program can be rewritten directly as a PCN program that uses only
parallel composition, choice composition, and definitional variables and that uses PCN’s
definition statement (“=") in place of Strand’s assignment statement (“:="). For example,
Figures 7 and 8 are direct translations of Figures 1 and 4.

Imperative Constructs. PCN programs can also use imperative constructs. Conven-
tional, or mutable scalar and array variables of type integer, double-precision real, and
character can be created. (These are distinguished from definitional variables by the fact
that they are declared.) Mutable variables, like variables in C or Fortran, have an ini-
tial arbitrary value that can be modified many times by using an assignment statement
(“:="). For example, Figure 9 shows PCN, C, and Fortran programs for computing the
inner product of two double-precision arrays arrayi and array2. All assume that their
arguments are passed by reference and use an iteration statement to accumulate the values
arrayi[i]*array2[i] in the mutable variable sum.

The three procedures in Figure 9 can be called interchangeably by PCN programs.
PCN semantics ensure that updates to mutable variables within inner_product do not
result in race conditions in a parallel program. In particular, they prohibit updates
to mutable variables shared by processes in a parallel block, and require the compiler
to copy the value of mutables and definitions when they occur on the right-hand side

13

stream_comm(n)

{ll stream_producer(n,x), % Execute in parallel
stream_consumer (x)

}

stream_producer(n,out)

{?7n>0- %Ifn > o:
{I| out = [10Jout1], % Send message;
stream producer(n-1, outil) % Recurse for more.

}s

n==0 ->out = [] % Ifn == 0: stop

}

stream_consumer (sum, in)

{ 7 in ?= [vallini] -> % If message: receive;
stream_consumer (sum+val,inl), % Recurse for more.
in 7= [] -> % If done:
stdio:printf ("Sum=Yd\n",{sum},_) % Print sum.

Figure 7: PCN Producer/Consumer

14

align_chunk(sequences,alignment)
{Il pins(chunks,bestpin),
divide(sequences,bestpin,alignment)

}

pins(chunk,bestpin)

{1l cps(chunk,cplist),
c_form_pins(cplist,pinlist),
best_pin(chunk,pinlist,bestpin)

}

cps(sequences,cplist)
{ ? sequences ?= [seqlsequencesi] ->
{Il cplist = [cpslcplisti],
c_critical_points(seq,cps),
cps(sequencesi,cplistl)
}’
sequences 7= [] -> cplist = []

¥

divide(seqs,pin,alignment)
{7 pin =[] >
{l! split(seqgs,pin,left,right,rest),
align_chunk(left,lalign),
align_chunk(right,ralign),
align_chunk(rest,restalign),
combine(lalign,ralign,restalign,alignment)
}’
pin == [] ->
c_basic_align(seqs,alignment)

Figure 8: PCN Version of Figure 4

15

inner_product(n,arrayl,array2,sum)
double sum;
{; sum := 0.0,
{; i over 0..n-1 ::
sum := sum + arrayl[i]*array2[i]
}
}

inner_product(n,arrayl,array2,sum)
int *n;
double arrayi[], array2[], *sum;
{ int i;
*sum = 0.0;
for(i=0; i<*n; i++)
*sum = *sum + arrayl[i]*array2[i];

b

SUBROUTINE INNER_PRODUCT(N,ARRAY1,ARRAY2,SUM)
INTEGER N
DOUBLE PRECISION ARRAY1(N), ARRAY2(N), SUM
INTEGER I
SUM = 0.0
DO I=1,N
SUM = SUM + ARRAY1(I)*ARRAY2(I)
ENDDO
END

Figure 9: Inner Product in PCN, C, and Fortran

16

£(in1,in2,o0ut)
double sum;
{ 7 in1 ?= [allinia]l, in2 ?= [a2]in2a] ->
{ 7 length(al) == length(a2) ->
{ ; inner_product(length(al),al,a2,sum),
out = [sum|outi],
f(inla,in2a,outl)

},

default ->

{1l out = ["error"|outi],
f(inla,in2a,outl)

}

},
default -> out = []

Figure 10: PCN Program That Calls Inner Product.

of definition and assignment statements, respectively. In this way, the two worlds of
parallel/declarative and sequential/imperative programming are able to coexist without
the possibility of nondeterministic interactions.

Figure 10 shows a program that receives arrays of double-precision values a1 and a2
on two input streams inl and in2, calls one of the inner_product routines to compute
the inner product, and sends the result (sum) on an output stream out. Notice that the
mutable variable sum is used only within a sequential block. Furthermore, the compiler
makes a copy of sum when creating the list structure [sumlout1], hence ensuring that
the process that receives the message out sees a definitional value.

Modules and Templates. PCN supports the application of modular programming
techniques. A PCN process can encapsulate subprocesses and internal communication
channels but need not encapsulate processor numbers or other physical names. Hence,
a process can be thought of as a module, and can be reused easily in different circum-
stances. A module may also be parameterized with the code executed at each node in a
parallel structure, in which case we call it a template. A distributed array of definitional
variables can be used as an interface, avoiding the contention that would occur if pro-
cesses interacted via a centralized data structure [13]. PCN programmers regularly reuse
modules and templates implementing parallel program structures such as pipelines and
butterflies; distributed data structures such as arrays and dictionaries; and load balancing
algorithms.

The PCN procedure module_example in Figure 11 composes a ring-pipeline template
(ring), a reduction module (maximum), and an output module (display). Each moduleis
parameterized with the number of processors on which it is to execute (n) and defines its

17

module_example(n, threshold)

port pi[n], p2[n];

{ll maximum(n, p1),
ring(n, ringnode(), threshold, pl, p2),
display(n, p2)

}

ring(n, op, threshold, I, 0)
port S[nl, I[], 0[];
{Il 1 over 0..n-1 ::
‘op‘(threshold,
S[il, s[(i+1)¥%n], I[i], o[i]
) @ node(i)
}

ringnode(threshold, fr_nbr, to_nbr, in, out)

{1 ...}

Figure 11: Templafe Use and Definition.

own internal process and communication structure. The modules interact via distributed
arrays of definitional variables p1 and p2, declared using the syntax port.

Figure 11 also shows an implementation of the ring template and a function prototype
for the ringnode procedure invoked by this template in module_example. The syntax
“{Il i over 0..n-1 ::” is a parallel enumerator, used here to create n instances of the
process with name given by the variable op (the backquotes denote a higher-order call).
As in Strand, a mapping annotation (@ node(i)) is used to indicate the processor on
which each process is to execute. Each process is passed five variables as arguments: a
threshold value and communication streams from the left neighbor, to the right neighbor,
and to and from the interface, respectively.

3.2 PCN Toolkit

The PCN toolkit includes a compiler, linker, debugger, profiler, trace analyzer, I/O
library, and mapping library. The compiler translates PCN programs to a machine-
independent, low-level form (PCN object code). An interface to the C preprocessor allows
macros, conditional compilation constructs, and the like to be used in PCN programs. A
programmable transformation system integrated with the compiler allows programmer-
specified transformations to be applied to programs [15]. Otherwise, the compilation and
runtime techniques are similar to those employed in Strand.

The linker combines PCN object code (PCN compiler output), foreign object code
that is called from PCN (C or Fortran compiler output), libraries, and the PCN run-time

18

system into a single executable program. This permits C and Fortran procedures to be
integrated seamlessly into PCN programs. A set of standard libraries provides access to
Unix facilities (e.g., I/O) and other capabilities.

The symbolic debugger, PDB, includes specialized support for debugging of concurrent
programs. PDB allows the programmer to detect deadlocked programs, examine the
process pool, and set breakpoints in individual processes.

The ezecution profiling package incorporates run-time system support for collecting
and saving execution profiles. As in Strand, the X-windows tool Gauge is provided for
interactive exploration of profile data. A snapshoting facility allows multiple profiles to
be created during a single program execution. The trace analysis package incorporates
run-time system support for collecting and saving event traces, and two graphical tools,
Upshot and PADL, for interactive exploration of trace data [23]. Gauge is illustrated in
Figure 12, which shows two views of a profile from an execution of a parallel weather
model. These are histograms showing message counts and communication volume per
processor, respectively; each horizontal line (a pixel wide) represents a single processor.
Total message counts and message volumes are also provided.

3.3 PCN Experiences

Like Strand, PCN has been applied to a broad range of different problems. However,
there is a definite slant towards more numeric, scientific applications, particularly numeric
problems that involve irregular, adaptive computation, distributed data structures, or
reactive (data-driven) computations. For example, PCN has been used to develop a
massively parallel implementation of a mesoscale meteorological model, for use in weather
prediction and studies of regional impacts of global change. Here, PCN describes a logical
mesh structure corresponding to a two-dimensional decomposition of the model data
structures; during execution, nodes in this logical mesh may be moved between processors
for load-balancing purposes, and new nodes may be created as the mesh is refined. Other
mesh-based applications include a computational fluid dynamics code developed by Harrar
et al. for computing Taylor-vortex flows, based on a torus structure [18] (5300 lines
Fortran, 900 lines PCN); climate modeling codes based on icosahedral and overlapping
stereographic grids (3800 lines C, 640 lines PCN); and a finite-element code for simulating
flow in Titan rocket engines (9000 lines Fortran, 180 lines PCN).

Load-balancing libraries similar to that shown in Figure 5 have been used in a range
of applications, including the computation of phylogenetic trees in computational biol-
ogy, the prediction of protein structure, and computer graphics. Other PCN applications
include circuit simulation, oil reservoir modeling, Hartree Fock quantum chemistry, molec-
ular dynamics, genetic algorithms, computational fluid dynamics, and parallel theorem
provers.

3.4 Evaluation

Like Strand, PCN provides portability, flexibility, reuse of sequential code, and symbolic
processing capabilities. In addition, it provides a more convenient block-oriented syntax,
integrates imperative constructs and, as a second generation system, has been able to cor-

19

[Usags || Calls] [statistics | [Subset] [Delsts || Ciear | [Golor Scals | [Help] [1nto | [uit]
Log Scale Bucket Thireel:

Unzoom Lincar Srale UnEurket UnSort Eskrossdsies

—]
[Current Snapshot Selection Hi ShowAll |
K]
=
Message Counts
0650
maamao&& H
980888380008888304.
ceoeouuomgm%nm
5600000 00003000030000903090080005
a‘é‘a‘&‘c‘c‘e‘c‘o’?&"a‘%%?&‘
c ’&’h’a‘&?&‘u‘é‘&é‘ 20300300002,
ea’e‘? %‘a‘c‘c‘é’c’c"a‘fa‘o‘%‘r‘
$03000000000000 sennns
Displaying message counts
Sent: 1145109
Received: 1145109
Total: 2290218
[Usage | [Calls | Statistics | [Subset | [Delets | [Glear | [Color Scals | [Help | [1nfo | [Quit]
-
LogScale Bucket Threels
Unzoom Linfar Srale SHRNSE UnSort E;'Prfx‘edx:vas
-
I Current Snapshot Selection I | Showall]
I |
-
Communication Volume
........ -

ncmeae«eevecmccwewco
9000980008083890800888080830¢
aozaccnonea‘a’aae-acoccaaaacox

LLL e
noaoucunaaaaacmnuawauua 980088000

08!
G008~3-838358”80“8@0”0”33303'
300 mcnueuwnno 0088508080830000030008

T T T T T A A A AP P AP Y e .
8 30803988839388098809988833338888330986305085500530088

98380808000838080808833328003888800000080008063001
9803S30022838388020000333888088300002083030200099960033088083000,

AARARAANRARARANANARAAAAAANANAAANANAS

Displaying communication volume in KBytes
Sent: 293452

Received: 293452

Total: 586904

§'
:
&
g
s
o

Figure 12: Message Count and Communication Volume Data from Mesoscale Model (see
text for description) 20

rect many of Strand’s “rough edges,” particularly in the compiler, debugger, and foreign
interface. It is our experience that most programmers prefer PCN to Strand for these
reasons.

On the downside, PCN is not yet commercially supported. Although technical sup-
port is provided by its developers on a best-efforts basis, resources for this activity are
necessarily limited. In addition, the PCN compiler does not currently optimize the per-
formance of imperative code, which may execute 10-20 times more slowly than equivalent
Fortran or C. (However, typical PCN applications spend much of their time executing
Fortran or C, in which case this is not a problem.) Finally, while PCN syntax is more
familiar to most sequential programmers than that of Strand, it remains a new language
that must be mastered before parallel programs can be written.

In summary, PCN like Strand is an excellent language for prototyping and implement-
ing scalable concurrent algorithms for parallel and distributed computer systems. It is
better suited than Strand for applications that combine symbolic and numeric computa-
tion, and is supported by a richer program development toolkit.

4 Historical Notes

The Strand system was designed in 1988 by the author and Steve Taylor, and the first
compiler was released by Strand Software Technologies in 1989. In 1990, Strand was
awarded the British Computer Society’s Award for Technical Innovation.

The Strand design builds on work in concurrent logic programming at Imperial Col-
lege [8, 11, 17, 28], the Weizmann Institute [26, 29, 32], and elsewhere. Concurrent logic
programming itself has intellectual roots in logic programming [9, 22], functional pro-
gramming [20, 25], guarded commands [10], and CSP [19]. However, Strand omits many
characteristic features of logic programming languages, such as unification and backtrack-
ing, in order to focus on issues relevant to parallel programming. This yields a dramat-
ically simplified language that can be implemented efficiently on sequential and parallel
computers. The compiler incorporates numerous optimizations that take advantage of
Strand’s simplicity. In addition, Strand introduces constructs that support multilingual
programming, allowing its use as a coordination language.

The initial PCN design was developed by Mani Chandy and Steve Taylor in 1990 [7].
Important innovations included the integration of declarative programming (as in Strand)
and imperative programming (as in C and Fortran), and a syntax that is both more
flexible and closer to sequential programming practice than that of Strand. Chandy and
Taylor also developed a PCN to Strand translator that was used for early programming
experiments. Subsequent development introduced extensible process mapping constructs
and syntactic support for defining reusable templates, and developed implementation
techniques for parallel computers [13, 15].

5 Related Work

Many parallel languages and libraries have been developed over the years with the goal of
making parallel programming easier. Only a few of these systems have seen widespread

21

use. We compare and contrast some of these approaches with Strand and PCN.

One promising approach to achieving compositionality and determinism in parallel
programs is to exploit parallelism while preserving sequential semantics. This approach
is taken in parallel dataflow, logic, and functional languages, which exploit parallelism
implicit in declarative specifications [4, 24, 25]; in data-parallel languages, which exploit
the parallelism available when the same operation is applied to many elements of a data
structure [33, 16]; and in Jade, which allows programmers to identify statements which are
independent and hence can be executed concurrently [27]. Adherence to sequential seman-
tics has important software engineering advantages. However, not all parallel algorithms
are easily expressed in sequential terms. For example, the load-balancing algorithm of
Figure 6 is an explicitly parallel algorithm, with no sequential equivalent. In the interests
of generality, Strand and PCN provide explicit parallel constructs.

Other explicitly-parallel approachs include Linda and message-passing libraries such
as p4 and PVM. Linda extends sequential languages with operations for creating processes
and for manipulating a shared associative store called tuple space [5]. Like Strand and
PCN, Linda utilizes a data-driven execution model in which the actions of “sending”
and “receiving” data are decoupled and processes execute when data are available. A
significant advantage of Linda is that the programmer need learn only a small set of tuple
space operations. On the other hand, the use of a global tuple space for communication
makes it difficult to develop modules that encapsulate internal communication operations:
Linda is not “compositional.”

p4 and PVM extend sequential languages with functions for sending and receiving mes-
sages [2, 31]. Advantages include simplicity and portability, and the efficiency that can
be achieved by accessing directly the low-level communication mechanisms of a message-
passing computer. These features make them well-suited for scientific and engineering
applications, particularly when communication costs dominate performance. In other
classes of problems, the low-level nature of these libraries can be a disadvantage. Appli-
cations that communicate complex data structures or that utilize dynamic process and
communication structures are more easily expressed using higher-level languages such as

Strand and PCN.

6 Future Directions

Strand and PCN have proven to be useful parallel programming languages, particularly for
applications that can exploit their unique mix of declarative and imperative capabilities.
Future research directions enabled or suggested by the availability of these systems include
the following.

o How can we best integrate declarative and imperative language compiler technology
to construct optimizing compilers for languages like Strand and PCN?

¢ Can software reuse become the norm rather than the exception in parallel program-
ming? What parallel modules and templates are needed to make this happen? How
should these be organized to facilitate reuse?

22

e Are compositional programming ideas also valuable in applications that do not re-
quire the symbolic constructs of Strand or PCN? What language constructs are
needed in these cases? (Initial studies suggest that only small extensions to sequen-
tial languages are required [6, 12].)

Acknowledgments

This work was supported in part by the National Science Foundation’s Center for Research
in Parallel Computation under Contract NSF CCR-8809615 and by the Office of Scientific
Computing, U. S. Department of Energy, under Contract W-31-109-Eng-38.

References

[1] Armstrong, J., and Virding, S., Programming telephony, Chapter 13 in [14].

[2] Boyle, J., R. Butler, T. Disz, B. Glickfield, E. Lusk, R. Overbeek, J. Patterson, and
R. Stevens, Portable Programs for Parallel Processors, Holt, Rinehart and Winston,
1987.

[3] Butler, R., et al., Aligning genetic sequences, Chapter 11 in [14].

[4] Cann, D. C., J. T. Feo, and T. M. DeBoni, Sisal 1,2: High Performance Applicative
Computing, Proc. Symp. Parallel and Distributed Processing, IEEE CS Press, Los
Alamitos, Calif., 1990, 612-616.

[5] Carriero, N., and Gelernter, D., How to Write Parallel Programs, MIT Press, 1990.

[6] Chandy, K. M., and Kesselman, C., Compositional parallel programming in CC++,
Technical Report, Caltech, 1992.

[7] Chandy, K. M., and Taylor, S., An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

[8] Clark, K. and Gregory, S., A relational language for parallel programming, Proc. 1981

ACM Conf. on Functional Programming Languages and Computer Architectures, 171-
178, 1981.

[9] Clocksin, W., and Mellish, C., Programming in Prolog, Springer-Verlag, 1981.

[10] Dijkstra, E.W., Guarded commands, nondeterminacy and the formal derivation of
programs, CACM, 18, 453-7, 1975.

[11] Foster, 1., Systems Programming in Parallel Logic Languages, Prentice Hall, 1990.

[12] Foster, 1., and Chandy, K.M., Fortran M: A language for modularv parallel pro-
gramming, Preprint MCS-P327-0992, Mathematics and Computer Science Division,
Argonne National Lab, Argonne, Ill. 60439, 1992.

23

[13] Foster, ., Olson, R., and Tuecke, S., Productive parallel programming: The PCN
approach, Scientific Programming, 1(1), 51-66, 1992.

[14] Foster, L., and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-
Hall, 1989.

[15] Foster, I., and Taylor, S., A compiler approach to scalable concurrent program design,
ACM Trans. Prog. Lang. Syst., (to appear).

[16] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, M.Wu,
Fortran D Language Specification, Technical Report TR90-141, Computer Science,
Rice Univ., Houston, TX, 1990.

[17] Gregory, S., Parallel Logic Programming in PARLOG, Addison-Wesley, 1987.

(18] Harrar, H., Keller, H., Lin, D., and Taylor, S., Parallel computation of Taylor-vortex
flows, Proc. Conf. on Parallel Computational Fluid Dynamics, Stuttgart, Germany,
Elsevier Science Publishers B.V., 1991.

[19] Hoare, C., Communicating Sequential Processes, CACM, 21(8), 666677, 1978.

[20] Kahn, G., and MacQueen, D., Coroutines and networks of parallel processes, In-
formation Processing 77: Proc. IFIP Congress, B. Gilchrist (Ed.), 993-998, North-
Holland, 1977.

[21] Kesselman, C., Integrating Performance Analysis with Performance Improvement in

Parallel Programs, Ph.D. thesis, UCLA.
[22] Kowalski, R., Logic for Problem Solving, North-Holland, 1979.

[23] Lusk, E., Performance visualization for parallel programs, Theoretica Chimica Acta,
1992.

[24] Lusk, E. et al., The Aurora Or-parallel Prolog system, Proc. Fifth Generation Com-
puter Systems Conference, Tokyo, 819-830, 1988.

[25] McLennan, B. J., Functional Programming: Practice and Theory, Addison-Wesley,
Reading, Mass. 1990

[26] Mierowsky, C., Taylor, S., Shapiro, E., Levy, J., and Safra, M., Design and imple-
mentation of Flat Concurrent Prolog, Tech. Report CS85-09, Weizmann Institute of
Science, Rehovot, Israel, 1985.

[27] Rinard, M. C., Scales, D. J., and Lam, M. S., Jade: A high-level machine-independent
language for parallel programming, Computer, 26(6), 28-38, June 1993.

[28] Ringwood, G., PARLOGS86 and the dining logicians, CACM, 31(1), 10-25, 1988.
[29] Shapiro, E. (Ed.), Concurrent Prolog: Collected Papers, MIT Press, 1987.

24

[30] Siegl, K., Grobner bases computation in Strand: A case study for concurrent sym-
bolic computation in logic programming languages, Tech. Report 90-54, RISC-Linz,
Johannes Kepler University, Linz, Austria, 1990.

[31] Sunderam, V.,PVM: A Framework for Parallel Distributed Computing, Concurrency
Practice and Ezperience, 2, 1990, 315-339.

[32] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, 1989.

[33] Thinking Machines Corporation, CM Fortran Reference Manual, Thinking Machines,
Cambridge, Mass., 1989.

[34] Xu, M., and Turper, S., A multi-level time warp mechanism, Proc. 1990 Summer
Computer Simulation Conf., 165-170, Society for Computer Simulation, 1990.

25

