A Parallel Performance Study of
Jacobi-like Eigenvalue Solution

Makan Pourzandi
Bernard Tourancheau

CRPC-TR94442
Marhch, 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by MRE, the CNRS-NSF,
DARPA, ARO, and Archipel SA.

A Parallel Performance Study of Jacobi-like
Eigenvalue Solution

Makan Pourzandi *

Laboratoire de I'Informatique du Parallélisme,
Unité de Recherche Associée 1398 du CNRS
Ecole Normale Supérieure de Lyon,
69364 Lyon Cedex 07, France
Tel. (+33) 72 72 85 03 Fax (+33) 72 72 80 80
e-mail: mpourzan@lip.ens-lyon.fr

Bernard Tourancheau
The University of Tennessee
Computer Science Department,
Knoxville, TN 37996-1301, USA
Tel (1) 615 974 8295, Fax (1) 615 974 8296,
e-mail: btouranc@cs.utk.edu

March 24, 1994

Abstract

In this report we focus on Jacobi like resolution of the eigen-problem
for a real symmetric matrix from a parallel performance point of view:
we try to optimize the algorithm working on the communication inten-
sive part of the code. We discuss several parallel implementations and
propose an implementation which overlaps the communications by the
computations to reach a better efficiency. We show that the overlapping
implementation can lead to significant improvements. We conclude by
presenting our future work.

*This work was supported by MRE grant No. 974, the CNRS-NSF grant No. 950.22/ 07
and the research program C3.

tOn leave from LIP, CNRS URA 1398, ENS Lyon, 4 allée d’Italie, 69364 Lyon Cedex 07,
France.

$This work was supported in part by the National Science Foundation under grant ASC-
871728, the National Science Foundation Science and Technology Center Cooperative Agree-
ment CCR-8809615, the DARPA and ARO under contract DAAL03-91-C-0047, PRC C3,
CNRS-NSF grant 950.223/07, Archipel SA and MRE under grant 974, and DRET.

1 Introduction

As quantitative analysis becomes increasingly important in sciences and engi-
neering, the need grows for faster methods to solve large eigenvalue problems.
Large eigenvalue problems occur in a wide variety of applications, including the
dynamic analysis of large-scale structures such as aircraft and spacecraft, the
prediction of structural responses in solid and soil mechanics, the study of solar
convection, the modal analysis of electronic circuits, and the statistical analysis
of data [TMLZ93]. Thus the need for faster methods to solve these large eigen-
value problems becomes very important.

The problem of finding the eigenvalues of a matrix can be stated as follows:
Find the values)\ that satisfy the equation: Az = Az for a vector z, which is
called an eigenvector and A an eigenvalue.

In this report we focus on Jacobi like resolution of the eigen-problem for a real
symmetric matrix from a parallel performance point of view: we try to opti-
mize the algorithm working on the communication intensive part of the code.
We discuss several parallel implementations [Ebe87, EP90, Fou89, LP89a] and
propose an implementation which overlaps the communications by the compu-
tations to reach a better efficiency. We first present briefly our target machine
and our analysis model in the sections 2 and 3. In Chapter 4, we present the
sequential Jacobi like resolution [Jac46, Mod88, Wil65]. Afterwards, we discuss
the parallel implementations (section 5). We discuss our implementation on the
Intel machine iPSC/860 hypercube, using the Intel gossiping procedure. Then,
we discuss the same implementation but using our hand coded gossiping algo-
rithm, following the works of [Fra90, JH89] leading to a very efficient solution.
Afterwards, we present the same algorithm with overlapping of the communica-
tions by the computations. We use for that, a general methodology, developed
in [DT92, PT93] and a tuned implementation. In the next section, we compare
the experimental results of all algorithms. We show that the overlapping im-
plementation can lead to a 6% improvement of the execution timings and that
represents a decrease of 35% of the total communication time. This is achieved
on our target hardware which has only one asynchronous communication port.
Regarding the communication strategy employed, we surely guess on even more
improvement if the hardware is able to handle multi-ports asynchronous com-
munications. We conclude by presenting our future work.

2 Target machine

The experiences were done on a 32 nodes iPSC/860 with a hypercube topology.
Each node of the iPSC provides an i860 processor, a Direct Connect Module and
16 Megabytes of memory. The Direct Connect Module (DCM) does the inter-
nodes communications. Using the DCM, the communications are independent
from the i860 and are routed in circuit switched mode [Int90, MMM91, SB77].

There are several technical reports concerning the iPSC/860 architecture and
communication performances [Dun90, MM91]. One can easily refer to them to
have more details.

The 1860 is a 40 MHz RISC type processor with 8k bytes of cache memory.
It uses two arithmetic units (adder and multiplier) and a graphic unit. These
units could be used in pipelined and chained modes. It allows i860 to have
peak performances of 80 Mflops (32 bits) or 60 Mflops (64 bits). Actually
the performances are 11.5 Mflops with our present compilers (64 bits) for the
average vector length of our experiments (512 words). The gap between the
peak and sustain performance is principally due to memory delays (cache miss,
page-translation-miss, DRAM access delays ...) [Dun90].

3 Analysis Model

Let 7, be the time to perform a floating point operation (double precision,
addition or multiplication). The time to communicate between 2 neighbor nodes
is modelized by a+ L+ where a is the startup time and £ is the time to transmit
a word. For the iPSC/860 a is 136 us for long messages (larger than 100 bytes)
and 75 ps for short ones. 3 is 3,2 us for a word of 4 bytes [DS86, Dun90].

We define the speedup as sp = L+ and the efficiency as e = ;Tf!:, where T; is
the execution time for the algorithmp using i processors and T} is the execution
time for the best sequential algorithm.

4 Jacobi Algorithm

In this subsection we define our notation for the Jacobi method for symmetric
matrix diagonalization. For an n x n real symmetric matrix A with elements a,,
the Jacobi method [GL90] systematically reduces the norm of the non-diagonal

elements:
of f(A) =Y al, (1)

P q#p

by a sequence of plane (Jacobi) rotations. We call a Jacobi sweep, every 1("2—'12
plane rotations reducing all non diagonal elements.

AW = A Ak+D) = gE) AR JEOIT [=1 2,3
Where the matrix J(*) is block-diagonal such that

JE) =65 (i, # pog), with & = 1ifi=j, = 0 otherwise

(k) _ _ gy _ (k) _ g(k) _
‘](P,q) - J(q,P) =S J(P,P) - J(q.q) =c

o o

where s = sin(@},’;)) and ¢ = cos(@,{,’f,)). The angle @,(,';) is chosen such that
a%}! is annihilated.
The Forbenius norm, i.e. the sum of the squares of the matrix elements, is
invariant under orthogonal transformations, hence, we have:
2
of F(ARHVY = of F(AW) — 2 (ag’;)) :
Thus a sequence of matrices A*) is produced such that lim_eo A®) = D, a
diagonal matrix consisting of the eigenvalues of A, and
lim JOTJAT JOT gET =y,
k=00
is a matrix consisting of the eigenvectors of A [GL90, TY91]. We skip the anni-
hilation of ag;) when a,(,’;) < &, because the reduction in off(A) is not worth the
cost. This leads to the algorithm which is called the Jacobi threshold method.
To save computing time, one chooses a definite order for the rotations. One can
use for instance the raw- (or column-) cyclic method [Mod88, Wil65]. In the

raw-cyclic scheme, we simply pick (p, ¢) in raw-by-raw fashion. For instance in
the case n = 4 the following rotations

(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)

are made in a complete sweep [GL90, TY91]. We present the corresponding
sequential algorithm on Figure 1.

While Iterations < NBMAXITER and off(A) > ¢ do
Choose indices p and ¢ with 1 <p<g¢<n
if (apq > €) then Execute Jacobi rotation(p, q)
Update columns p and ¢
Copy columns p and ¢q on rows p and ¢
Iterations = Iterations + 1

endwhile

Figure 1: General form of a sequential Jacobi algorithm for a n x n matrix

5 Parallel Jacobi Algorithm

5.1 Parallel Jacobi rotations

From the previous subsection we note that a Jacobi rotation affects only the
elements in the p,q columns and rows for annihilating the element (p,q) of

A. Furthermore one can easily prove that JpqJpigr = JpigrJpq if p, ¢, 7', ¢’ are all
distinct. These features of the Jacobi method make it possible to annihilate more
than one element at a time. Since each rotation affects two columns and rows,
the maximum number of the rotations which can be performed simultaneously
is 3. Our parallel Jacobi method consists in doing concurrent Jacobi rotations
at each of the processors of our computing system.

We resume our parallel Jacobi algorithm for each processor in Figure 2.

As noted in [Sam71], all the processors in a parallel machine can and should
do their own Jacobi rotations at the same time. In concurrent rotations the
transformations are done on the original columns. Each rotation (p, q) affects the
columns and rows p, q. One must therefore correct for the elements in the rows
p, q on the other processors. Because of the commutativity of Jacobi rotations
mentioned above, the corrections may be done after each set of concurrent
rotations. We just have to store the parameters and the indices of the rotations
done to update the data located in the other processors at the end of a sweep.

In our parallel implementation, we store the matrix by entire columns dis-
tributed in each processors. It is obvious that we can gain half of the memory
space by storing only half of the symmetric matrix. But this would cause an ex-
tra amount of communications at each column update to find out the necessary
elements distributed in other processors. With our parallel implementation,
there is two times more update computations and memory use compared to the
sequential implementation. But we do not have any constraints for memory size
with the range of matrix treated. Furthermore, as a computation operation is
far more cheaper than a communication operation, we prefer the increase in the
computation operations than an increase in communication operations. This
choice is valid for small size problems (N < 512) where the §(N?) communica-
tions cost the same as the (N3) computations.

While Iterations < NBMAXITER and off(A) > ¢ do
for stage =1to n do
for i=1to 35 do
if (ap,q; > €) then Execute Jacobi rotation(i)
endfor
Communicate the 3 rotation parameters
Update columns
Shuffle columns
endfor
Iterations = Iterations + 1
endwhile

Figure 2: Parallel Jacobi algorithm for each processor.

5.2 Shuffling of matrix columns

In this subsection, we show how to shuffle the matrix columns during each

sweep in order to complete it. We have seen in the previous subsection that it is

necessary to annihilate every off diagonal element of the matrix. This requires

to do the rotations between all possible pairs of columns in the matrix. Thus

we have to permute the various columns so that with a complete sequence of

shuffling of columns and concurrent rotations, we complete a full Jacobi sweep.
We give a definition of the parallel ordering:

n(n—1)
2

is a parallel ordering of the set {(i,j)|]1 <i<j<n}iffors=1:n-1 the
rotation set

(ilijl)i (i2)j2)) ey (iq;jq) wlthq =

Rot(s) = {(ir, jr)Ir = 1+ n(s — 1)/2: ns/2}

consists of non conflicting rotations [GLY0].

I)

1 s ot s o 135] [[ed sk
[2] L[] Lo [&]-- Bpa Pl B a Y o8

Figure 3: Communication schema for caterpillar-track parallel ordering

Most of the empirical results for parallel Jacobi-type algorithms that are
found in the literature use odd-even ordering. Convergence has been proved on
some cases, but, only for odd-even orderings or the orderings equivalent to odd-
even one. The use of various orderings does make a difference in convergence
rates, which in some instances is quite striking [ME93]. But, quadric conver-
gence is always observed in real symmetric cases. Convergence for symmetric
matrices has been proven by Forsythe and Henrici [FH60] for column-cycling
ordering. Luk and Park [LP89b] proved the convergence for odd-even Jacobi
sets by proving it is equivalent to column-cycling orderings. The odd-even or-
dering, however, is not optimal for parallel computation in that it completes a
sweep in n sweeps instead of (n — 1).

We use the caterpillar-track ordering [Ebe86, EP90] which which is identical
to the odd-even ordering [LP89a]. In Figure 4, we show this parallel ordering
for n = 8. We embed a ring in the hypercube and do the communications
through this ring. At each stage k of the ordering, a processor p, according
to k, sends a column to a neighbor (p+ 1 or p — 1 whether k is even or odd)
and receives a column from the another neighbor [EP90]. The communication
schema is shown in Figure 3. Each block represents a processor. The numbers
in each block are the column numbers housing in this processor and the arrows
indicate the communication at each stage. We only consider the case with an

even number of matrix columns. The case with odd number of columns follows
trivially by adding a dummy column to obtain the even case. Thus we need n
stages to complete the sweep because half of the stages are performing p — 1
rotations.

stage 1 (1,2)(3,4)(5,6)(7,8)
stage 2 2(1,4)(3,6)(5.8)7
stage 3 (2,4)(1,6)(3,8)(5,7)
stage 4 4(2,6)(1,8)(3,7)S
stage 5 (4,6)(2,8)(1,7)(3.5)
stage 6 6(4,8)(2,7)(1,5)3
stage 7 (6,8)(4.7)(2,5)(1,3)
stage 8 8(6,7)(4,5)(2,3)1

Figure 4: One sweep of caterpillar-track ordering for n = 8.

5.3 Gossiping

We define the gossiping! as the communication procedure which sends from each
processor a distinct message of length L to every other processor and receives
messages of length L respectively from all the other processors.

At each sweep we execute at most 2 rotations. Each processor executes 75
or # — 1 rotations at every stage (each processor owns % or § — 1 columns
and there are two columns necessary to execute a rotation). Before beginning
the following sweep, we have to update the matrix with the 3 — 35 rotations
executed in the other processors.

Each processor sends the informations about its rotations to all other pro-
cessors, receives the informations about other rotations from all the other pro-
cessors and updates its columns. Hence, at each sweep we have to do a all-to-
all communication procedure. This is the communication procedure with the
biggest cost in our algorithm. In the next subsections, we show how we de-
crease this communication cost by overlapping the gossiping communications

with computations.

5.4 Parallel version using Intel gossiping procedure

Figure 2 shows the algorithm on a hypercube network. This schema is the same
for all the studied versions. The difference between these versions is essentially
the gossiping communication procedure. Henceforth, we will discuss only these
differences in the following subsections.

1The gossiping communication procedure is also referred as all to all or total exchange.

In the first version we use the Intel gossiping procedure (gcolz) for gossiping?.
We obtain very good performances. We believe that it is due to the efficient use
of machine low level characteristics.

Hereafter, we use this version as a reference to show the gain provided by
the overlapped communication procedures.

5.5 Parallel version with hand coded gossiping procedure

Our motivation was a hand coded gossiping procedure which would be more
efficient than the vendor gossiping procedure and that could be overlapped with
computation. We follow the works of [Fra90, JH89] for the implementation of
our gossiping procedure on a hypercube network.

me = mynode()
fori=0toddo

Destination = me xor 2

Exchange message of length L 2 with the Destination processor
endfor

Figure 5: Gossiping algorithm for a message of length L on a hypercube network
of dimension d.

The gossiping procedure for hypercubes is described in Figure 5. Its cost for
messages of length L through a d = log;(P) dimension hypercube, takes into
account that the length of the messages exchanged double at each step:

d-1
Teomm = da + Z?Lﬂ =da+ (24 - 1)LB = log2(P)a + (P - 1)LB

1=0

5.6 Parallel version with overlapped gossiping procedure

In this subsection we describe how the execution time decreases while we overlap
the communications by the computations.

In Figure 6, we show the principles of our overlapped gossiping communica-
tion procedure. We remark that this procedure can be used for other applica-
tions requiring a gossiping as a communication procedure during their execution.
The user just has to change the Update procedure by any computation procedure
to take advantage of the pipeline overlap effect.

This procedure does not have any consequences on the convergence speed of
our parallel algorithm, because, there is no change on the computation sequence

2We use the name gossiping for the Intel procedure (gcolz) because it has the same func-
tionality. This name is not used in the Intel documentations.

me = mynode()
Destination = me xor 2°
Exchange message of length L with the Destination processor
fori=1tod—-1do
Destination = me xor 2
Do Parallel
Exchange asynchronously a message of length L * 2
with processor Destination
Update columns for the message received at step i — 1
enddo
endfor
Update columns for the message received at step d — 1

Figure 6: Gossiping procedure with overlapping of some Jacobi update compu-
tations.

nor on the ordering but only a decrease of the communication overhead at each
sweep.

6 Theoretical study of the complexities

In this subsection we study the complexity of our algorithm. Remark that if
we use the Intel gossiping procedure for reference version in our experiments,
we do not know the algorithm that is used by Intel in its gcolx communication
procedure, hence, it is impossible for us to give its communication complexity.

Notice also, that the computation part is the same for all the parallel versions
implemented, so the computation complexity study is valid for all the parallel
versions described.

6.1 Serial algorithm

There is a part of computation independent from n concerning the computation
of rotation angle ©,4 and the update of the elements a,q, app, and aqq at each
rotation. As in [GL90], we assume this amount of computation is constant, let
it be C*® flops (for our implementation C* =~ 53 flops). As we mentioned in
subsection 4, when executing the rotation (p, q), only rows and columns p and ¢
are altered. Then the update A = J(,,_q)AJ(T,;’ q) €30 be implemented in 6n flops if

the symmetry is exploited for every rotation. There are 3 0_; Y05 j = ol
rotations in each sweep to annihilate all non-diagonal elements. In our algorithm
(see Figure 2), we define the of f(A) to find out the convergence of the algorithm.

9

It costs about 2n flops. As we see on Figure 2, we execute the rotation only
when a,q is greater than ¢. This is not always the case, specially for the last
sweeps. Therefore the maximum computation complexity for each sweep k is:

maz(Tfomp) = 9_(115:_1_)(611 +C*)+2n
te te
= 3113-l-n2(c2 —3)+n(2—c2)

There is no rigorous theory that enables one to predict the number of sweeps
[GL90]. But Brent and Luk have argued heuristically that the number of
sweeps is proportional to loga(n). Therefore the total computation complex-
ity is O(logz2(n)n3) flops.

6.2 Parallel algorithm
6.2.1 Computation Complexity

We remind that the computation complexity for the sequential version is the half
of the parallel version (see subsection 5.1), because the sequential version profits
of the matrix symmetry which is not the case for the parallel versions. The
computation load is the same for each processor because at the end each one will
have done the same number of updates. Therefore the maximum computation
complexity, for each sweep k and for each one of the p processors is:

3

k n n2 te q
muz(Tcomp) = 673- + F(C - 6) +

n
—(4 - Ct*
P(c*)
Hence the total execution time for parallel algorithm is O(‘22242 ﬂ3) flops.

6.2.2 Communication Complexity

As one can see in Figure 2, there are two main parts needing communications
with other processors at each step. First, when we shuffle columns across the
processors and second when we gossip the informations concerning the rotations
through all processors. Then the communication time is Teomm = Tshusfie +
Tyossip- In the shuffle case, each processor communicates only with its neighbors
(see subsection 5.2). It sends a column to the next neighbor on the ring and
receives asynchronously another column from the preceding neighbor on the
ring. So the communication time ¢,y e for each step is the time to send a
column to the next neighbor (the overcost of the asynchronous receive during
the send is neglected). Then, for each step, tshursie = a + nf (see subsection
3). There are n steps at each sweep k, so Tk, f1e = an+ n?B3. The other part

10

requiring communication is the gossiping of the rotation parameters through
the hypercube.

With our hand coded algorithm for gossiping on a hypercube, the cost for
a message of length L is logz(P)a + (p — 1)LB (see subsection 5.5). In our

Jacobi algorithm, the length of the message to gossip is -2-?3 which leads to

tgossip = logz2(P)a + 2n£-}=,'—1ﬂ for each step. There are n steps at each sweep &,
so T* . =logy(P)na+2n2E514.

gossip
Then the total communication time for each sweep k is:

-1
Tckomm =na+ nzﬂ + logz2(p)na + 2n2p > Jéj

which leads to:
Tt pmm = na(l+loga(p)) +n? (1 + 2’—'—;—1) B

As we have seen in subsection 6.1, there are heuristically logz(n) sweeps
before convergence. So the total communication complexity for the parallel
version without overlapping is Teomm = O(3n2loga(n)B+nlogz(n)(1+log2(p))a)-

The shuffle time Ty uuy 1 stays the same in both versions, overlapped and no
overlapped. But the gossiping time Tyossip decreases dramatically in the over-
lapped version. Roughly, we have Touer . = Tshusste and To 22" = Tonugyste +
Tgouiy-

7 Experimental results

In this subsection, we comment our experimental results that have been done
on an iPSC/860 hypercube. We use the level 1 BLAS subroutines [DCHH88]
to update the columns on sequential and parallel versions. In general, the
performances of these subroutines increase with the size of the data treated.
This implies some performance gain for longer vectors.

In Figure 7, we present the speedup for all versions. Remark the the com-
putation time for the sequential version is the half of the parallel version but as
the computation routines perform better on longer vectors, the computation effi-
ciency is better in the parallel case where the vector are two times longer. Thus,
speedup results better than P/2 are obtained before the full speed is attained
by the sequential version and then they decrease to the P/2 asymptote.

As we see in Figure 9, the efficiency is always better for the overlap ver-
sion. Since the computation complexity is the same in all cases, the explanation
is the gain on the communication time, realized by the overlapping the com-
munications by the computations. The efficiency is a decreasing function of
the number of processors because the gossiping communication time increases

11

T T
....... Overlap —
No Overlap ——

1S P

10 b

N A i n n " "
so 100 150 200 250 300 3s50 400 450 500 550

Matrix Size

Figure 7: Speed up for the overlap, the no overlap and the Intel versions of the
Jacobi procedure according to the matrix size, using 32 processors.

- when the number of processors grows (see subsection 5.5). Notice that the dif-
ference between overlapped and the non-overlapped version also increases with
the number of processor.

In Figure 10, we present the percentage of the gain for the overlap version
compared to the no overlap version. We obtain this percentage with the ratio
W where Toyer and TiNoover are respectively the total execution
time on the overlap and the no overlap versions. When the size of the matrix
is small (< 120) the number of columns per processor is too small to allow
the overlapping of the communications by the computations. In this case, the
overhead that the overlapping induces results in a longer execution time for the
overlap version compare to the no overlap version.

The percentage of the gain increases with the matrix size. There are several
reasons for this. The first one is that the performances of the level 1 BLAS
subroutines increase with the matrix size. As Tcomp is decreasing, the ratio
%.?::n augments. This leads to a relative greater importance of the overlapped
part of T.omm versus the total execution time. The second one is explained in
subsection 6.1. After several sweeps the number of non diagonal elements greater
than the threshold decreases and becomes very small when the convergence
approaches Thus the computation time diminishes while the commumca.tlon

time remain the same, so this results in another increase of the ratio —T“-M
mp

12

T
Overlap ——

No Overlap ===

140 b Intel Pr% e

120 P

100 P

80

60 P

Time on seconds

40 ¢

20 p

° A i " i A A i i
50 100 150 200 250 300 aso 400 450 500 550

Matrix Size

Figure 8: Execution times in seconds for the overlap, the no overlap and the
Intel versions of the Jacobi procedure according to the matrix size, using 32
processors.

8 Conclusion and future works

We presented the overlap of the gossiping communications by the computations
in the Jacobi algorithm. The cost of this type of global communication scheme
increases with the matrix size and the number of processors and is thus very
important to overlap from the scalability point of view.

We showed that the overlapping implementation can lead to non-negligible
improvements. Moreover, this is achieved on our target hardware which has only
one asynchronous communication port. Regarding the communication strategy
employed, we guess on better improvements if the hardware were able to handle
multi-ports asynchronous communications.

We intend to overlap the shuffle communications and try to take advantage
of the matrix symmetry to reduce the computation time. Finally, we are working
on a more general version of our gossiping procedure to include it in the LOCCS
library [DT92].

We run several tests on the Paragon machine. These first experiments are
encouraging but we will have to redesign our hand coded gossiping procedure
to squeeze the most out of the grid topology.

13

0.7 T T T T T T

Overlap ——
No Overlap ===
Intel Proc ===
0.6 g
0.5 | ~— J
-
s 0.4 1
E 0.3 P 9
)
-
kel
-
-
0.2 f 1
0.1 b
° i s A n L i
o s 10 15 20 25 3o 3s

Number of processors

Figure 9: Efficiency for the overlap, the no overlap and the Intel versions of the
Jacobi procedure according to the number of processors on a 512 x 512 matrix.

8 T T T T y T T T T
Gain on % of the total time ——
6pF 4
g
]
-
H oF 4
2
-
M
.
8 2 b 4
2
C]
§
M]
=
-
L3
~
°
- 2 F 4
.. . 2 s i N 2 L " A

50 100 150 200 250 300 aso 400 450 500 550

Size of the matrix A

Figure 10: Percentage of the gain on the Overlap version compared to the No
overlap version of the Jacobi procedure, using p = 32 and according to the
matrix size. '

14

References

[DCHHS88] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An

[DS86]

[DT92]

[Dun90]

[Ebe86]

[Ebe8T]

[EP90]

[FH60]

[Fou89]

[Fra90]

[GL90]

[Int90]
[Jac46]

Extended Set of Fortran Basic Linear Algebra Subroutines. ACM
Transaction on Mathematical Software, 1(14):1-17, March 1988.

J. Dongarra and DC. Sorensen. Linear algebra on high performance
computers. Parallel Computing, 85:221-236, 1986.

F. Desprez and B. Tourancheau. LOCCS: Low Overhead Commu-
nication and Computation Subroutines. Technical Report 92-44,
Laboratoire d’Informatique du Parallélisme-ENSL, December 1992.

T.H Dunigan. Performance of the intel iPSC/860. Technical Report
TM-11491, Oak Ridge National Laboratory, June 90.

P. J. Eberlein. Comments on some parallel Jacobi orderings. Tech-
nical Report 86-16, Dept. Comp. Sci., State University of New York
at Buffalo, 1986.

P. J. Eberlein. On one-sided Jacobi methods for parallel computa-
tion. SIAM J. ALG. DISC. METH., 8(4):790-796, October 1987.

P. J. Eberlein and H. Park. Efficient implementation of Jacobi algo-
rithms and Jacobi sets on distributed memory arrchitectures. Jour-
nal of Parallel and Distributed Computing, (8):358-366, 1990.

G. E. Forsythe and P. Henrici. The cyclic Jacobi method for com-
puting the principal values of a complex matrix. Trans. Amer. Math.
Soc., 94:1-23, 1960.

David E. Foulser. A blocked Jacobi method for the symmetric eigen-
problem. Technical Report RR-680, Dept. of Computer Science, Yale
University, February 1989.

P. Fraigniaud. Comrmunications intensives dans les architectures a
mémoires distribuées et Algorithme paralléle pour la recherche de
racines de pélynomes. PhD thesis, Ecole Normale Superieure de
Lyon, December 1990.

G. H. Golub and C. F. V. Loan. Matriz Computations. Johns
Hopkins University Press, 1990. 2nd edition.

Intel Corporation. iPSC/860 User’s Guide, June 1990.
C.G.J. Jacobi. Uber ein leichtes Verfahren. 1846.

15

[JH89)

[LP89a]
[LP89b]
[ME93]

[MM91]

[MMMO91)

[Mod8s8]

[PT93)

[Sam71]

[SB77)

[TMLZ93]

[TY91]

[Wil65]

S. Johnsson and C. T. Ho. Optimum broadcasting and personalized
communication in hypercubes. [EEE Trans. Comp., 38(9):1249-
1268, 1989.

F. T. Luk and H. Park. On parallel Jacobi orderings. SIAM J. SCIL.
STAT. COMPUT., 10(1):18-26, January 1989.

F.T.Luk and H. Park. A proof of convergence for two parallel Jacobi
SVD algorithms. IEEE Trans. Comput., 38(6):806-811, June 1989.

M. Mantharam and P. J. Eberlein. New Jacobi-sets for parallel
computations. Parallel Computing, 19:437-454, 1993.

C.L. McCreary and M.E Mcradle. Modeling communication delay
on the iPSC/2 and iPSC/860 hypercubes. Technical Report CSE-
91-12, Aubran University, September 1991.

C.L. McCreary, M.E. Mcardle, and J.D. McCreary. Broadcast com-
munication delay metric for iPSC/2 and iPSC/860 hypercubes. July
1991.

1. J. Modi. Parallel Algorithms and Matriz Computation. OXFORD:
CLARENDON Press, 1988.

M. Pourzandi and B. Tourancheau. Overlapping in Gaussian elimi-
nation on iPSC/860. In M. A. Yaghoubi, editor, Proceeding of Inter-
national Congress on Computational Methods in Engineering, vol-
ume 4, pages 183-193, University of Shiraz, Iran, May 1993.

A. Sameh. On Jacobi and Jacobi-like algorithms for a parallel com-
puter. Math. Comp., (25):579-590, 1971.

H. Sulivan and T.R. Bashkow. A large scale, homogeneous, fully
distributed parallel machine. In Proceeding of the fourth Symposium
on computer architectures, pages 105-117, 1977.

C. Trefftz, P. K. McKinley, T. Y. Li, and Z. Zeng. A scalable eigen-
value solver for symmetric tridiagonal matrices. In R. Sincovec, D.E.
Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, editors, Proceed-
ings of the sizth SIAM Conference on Parallel Processing, volume 2,
pages 602-609, 1993.

P. Tervola and W. Yeung. Parallel Jacobi algorithm for matrix diag-
onalization on transputer networks. Parallel Computing, (17):155-
163, 1991.

J. H. Wilkinson. The Algebric Eigenvalue Problem. OXFORD:
CLARENDON Press, 1965.

16

9 Appendix : Impact of the threshold

In this appendix, we discuss the decrease in the number of rotations computed
during each iteration of the Jacobi method. Notice that there are little theo-
retical results concerning the number of rotations at each iteration before con-
vergence with the threshold Jacobi method. We try to give some hints to gain
time on the gossip procedure.

We treat only the dense matrices which elements are randomly chosed and
so they have not any particular structure. Hence, our experiences are not repre-
sentative of the class of dense matrices. However, we found out that the number
of rotations decrease dramatically in the last iterations before convergence.

The data gossiped at each step concern only the rotations angles. One can
use the decrease on the number of rotations to diminish the amount of data
gossiped. Remark this is very difficult to predicate the number of elements
superior than the threshold which will be rotated and the processors holding
them. This implies practically a stage of pre-treatment in the beginning of
the gossip procedure to inform each processor about the amount of data to be
received (it consists mainly of a gossip-type communication procedure). The
problem now is to know if the gain on the gossip procedure justify the cost of
the pre-treatment ?

In Figure 11, we show the number of rotations per iteration on a 256 x 256
test matrix. As one can remark the number of rotations decreases dramatically
only in the last iterations. We conclude that it is not necessary to pre-treat the
gossip procedure in the first iterations. Unfortunatly, in our knowledge, there
is no theoretical results to indicate exactly how many iterations have to be
computed before convergence. Therefore, it is very difficult to determine which
iterations have to be pre-treated. Empirically, with our test matrices (random,
of order 64 < n < 512), the pre-treatment of the gossip procedure is worthwhile
after the (log,(n) — 2)t# iteration.

mumber of —

zetations

1 3 3 1 s ’

. s .
mber of itecaticas

Figure 11: Number of rotations according to the number of iterations.

17

