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Abstract. The efficiency of numerically solving time-dependent partial differential equations
on parallel computers can be greatly improved by computing the solution on many time-levels si-
multaneously. The theoretical properties of one such method, namely the discrete-time multigrid
waveform relaxation method, are investigated for systems of ordinary differential equations obtained
by spatial finite element discretisation of linear parabolic initial boundary value problems. The
results are compared to the corresponding continuous-time results. The theory is illustrated for
a one-dimensional and a two-dimensional model problem and checked against results obtained by
numerical experiments.
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1. Introduction. We consider the numerical solution of a linear parabolic initial
boundary value problem, spatially discretised by a conforming Galerkin finite element
method. This leads to a linear system of ordinary differential equations (ODEs), see
e.g. [5, 14],

(1.1) Bu+Au=f, u(0)=up, t>0,

with B the symmetric positive definite mass matrix, A the stiffness matrix, and
u(t) = (u1(t), u2(t), . .., uq(t))! the unknown solution vector.

In [5] we considered solving (1.1) with the continuous-time multigrid waveform
relaxation method. This method is based on waveform relaxation, a highly parallel
technique for solving very large systems of ODEs, [7, 10]. It is accelerated by using
multigrid, a very efficient method for solving elliptic partial differential equations, see
e.g. [2, 17]. The continuous-time waveform relaxation method differs from standard
ODE-solvers in that it computes a solution along a continuous time-interval. It re-
quires the analytical solution of certain ODEs and the exact continuous representation
of certain functions. The method is therefore mainly of theoretical interest. In an
actual implementation of the method, the algorithm is replaced by a discrete-time al-
gorithm. That is, functions are represented discretely as vectors defined on successive
time-levels, and the ODEs are solved by using standard time-stepping techniques.

In this paper, we continue our study of the multigrid waveform relaxation method
for systems of the form (1.1). In particular, we analyse the effect of time-discretisation
when linear multistep formulae are used. The structure of this paper is similar to the
structure of [5]. In §2, we analyse the spectral properties of certain operators that
arise in the formulation of the waveform relaxation methods. After a brief review of
some definitions and properties of linear multistep methods in §3, we investigate the
convergence of the discrete-time standard waveform relaxation method (§4) and of its
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two-grid acceleration (§5), both on finite and infinite time-intervals. For systems of the
form (1.1) with B == I, the discrete-time waveform method and its multigrid variant
have been investigated in [9, 11, 12, 15]. Our results are qualitatively very similar,
and generalise the ones found in these references. Finally, in §6, extensive numerical
results are reported for a one-dimensional and two-dimensional model problem.

2. Spectral properties of a special operator. We will show in §4 and §5
that the discrete-time waveform relaxation method and its two-grid acceleration can
be written as successive approximation schemes of the form

(2.1) ul) = H,ul D 4o,

We use subscript 7-notation to denote vectors or sequences, e.g. ug) = {ugy)}f_gl ,
where N is the (possibly infinite) number of components. Each component is a d-
vector, and will typically approximate the solution of the system of d differential
equations (1.1) at a given time-level. Operator H, is a linear discrete convolution
operator with matrix-valued kernel A,

J
(Hrur)j =(h-r*u'r)j :Zh"_,’u,’ , j=0,...,N—1.

1=0

The convergence properties of operator H, will be analysed in the spaces of C9-valued
p-summable sequences of length N, I,(N;C?), or I(N) for short. These are Banach
spaces with norms given by

Q/z{gl lullP 1<p<oo

(2.2) llurlle =9 “sup {lluill} p=0c0
0<i<N

with ||.|| any usual C? vector-norm. Recall that the iterative scheme (2.1) is convergent
if and only if the spectral radius of M., denoted by p(H.), is smaller than one. The
spectral radius is defined as the largest value p for which |A| > p implies that A — H,
has a bounded inverse. When N is finite, it equals the magnitude of the largest
eigenvalue of H,.

2.1. Spectral radius on finite time-intervals.
LEMMA 2.1. Consider H, as an operator in l,(N), with 1 < p < co and N finite.
Then, H, is a bounded operator and

(2.3) p(M,) = p(ho) = p(H-(0)) ,

with H,.(z) = Zﬁgl hiz™* the discrete Laplace-transform of the kernel of Hr.

Proof. Since H, is a linear operator in a finite-dimensional space, boundedness
of H, follows. The operation H,u, can be represented in a standard linear algebra
notation as a matrix-vector product,

hg U
hy ho uy

(2.4) ’1'2 h'l h'o

hn-1 - - ha hy ho uUN-1



WAVEFORM RELAXATION ON FINITE ELEMENT MESHES 3

The spectral radius of operator H, equals the spectral radius of the N x N block
lower triangular Toeplitz matrix in (2.4). By consequence, p(H.) = p(ho). The
second equality follows immediately. O

2.2. Spectral radius on infinite time-intervals.
LEMMA 2.2. Suppose h, € l;(0), and consider H, as an operator in l,(c0), with
1 <p<oo. Then, H; is bounded and

(2:5) p(MH:) = Ij;l)lolp(Hf(z))
(2.6) = li'fflp(H’(Z))’

with H,(2) = Y o, hiz™* the discrete Laplace-transform of h..

The outline of our proof is very similar to the one given in [11, Th. 3.1], yet it
is phrased in terms of general convolution operators. A similar line of arguments is
implied in the proof of [9, Prop. 9]. The proof is based on the discrete version of
the Paley-Wiener Theorem, [8]. This theorem states that the solution of a discrete
Volterra convolution equation z, + h, * £, = fr with f; € I,(00) and h, € I;(00)
is bounded in I,(co) if and only if det(I + H(2)) # 0 for |z| > 1, with H.(z) the
discrete Laplace-transform of A..

Proof. The boundedness of H, follows from the fact that I} x{, C [,. Indeed,
applying Young’s inequality for discrete convolution products, [4, p. 198], yields

Hrurllp < llhrlly lurllp -

By definition, the spectral radius of H, is the smallest value of p for which [A| > p
implies that A — H, has a bounded inverse in {,(c0). Consider

Aur — Hrur = Aup — he xur = fr
with f; € l,(c0). Suppose A # 0, then this can be rewritten as a convolution equation

1 1
Uy — Xh-,- * Uy = Xf,- .

By the Paley-Wiener Theorem, it follows that u, is bounded if and only if

det (1 - %H,(z)) £0 for |o|>1,
or, equivalently,

p(Hr) = sup p(H,(2)) .
lz121

Note that H,(z) is analytic for |z| > 1, including z = 0o, and, since h, € {;(o0) it is
continuous for |z| > 1 . As the spectral radius satisfies the maximum principle, we
obtain equality (2.6). O

REMARK 2.1. In the case of d = 1, this lemma corresponds to a well-known
spectral property of semi-infinite Toeplitz operators, [13, Th. 2.1].

In l3(o0), an analogous result holds for the norm.
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LEMMA 2.3. Suppose h, € l;(c0), and consider H, as an operator in I3(c0).

Denote by ||.||2 the lz-norm and by ||.|| the standard Euclidean vector norm. Then,
(2.7) Hrll2 = sup ||H-(2)]|

lz121
(2.8) = sup |[H,(2)l,

zZ|=

with H,(z) the discrete Laplace-transform of hr.
Proof. The proof is based on Parseval’s relation for l2-sequences, [18, p. 42],

(o]
llurllz = [{ui}2ollz = 1) wiz" |l
=0
where || - || g, is the norm in the Hardy-Lebesgue space of square integrable functions

analytic outside the unit disk,

1/2

1 27 X
1@l = sup (o [ lrtee)iPan).
r>1 2w 0
By definition of operator norm and by Parseval’s relation, we have

[Hrurllz [H, (2)dr (2)||a
H, = sup ————— = su =
[I#r]|2 = sup Tl P ()l

]

with #,(z) the discrete Laplace-transform of u.. The latter can be seen to be equal
to sup,;>1 [|[H(2)|| . (For the technical details of this last step, we refer to the proof
of a very similar theorem, [1, Th. 2.2], which deals with operator-norms of Fourier
multipliers.) O

REMARK 2.2. From (2.3) and (2.5), it follows that the spectral radius of H,
on finite time-intervals is smaller than the spectral radius of M, on infinite time-
intervals.

3. Some linear multistep formulae. For the reader’s convenience, we recall
the general linear multistep formula for calculating the solution to the ODE y = f(t, y)
with y(0) = yo, see e.g. [6, p. 11],

k k
1
(3.1) ;Zajynﬂ' = Bjfati -
j=0 Jj=0

In this formula, a; and J; are real constants, and 7 denotes a constant step-size. We
shall assume that k starting values yo, y1,- - ., Ye—1 are given.

DEFINITION 3.1. The characteristic polynomials of the linear multistep method
are given by

k k
a(z) = Zajzj and b(z) = Zﬁjzj .
j=0 j=0

Throughout this paper we adhere to some common assumptions. The linear multistep
method is irreducible: a(z) and b(z) have no common roots; the linear multistep
method is consistent: a(1) = 0 and a/(1) = b(1); the linear multistep method is zero-
stable: all roots of a(z) are inside the closed unit disk and every root with modulus
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one is simple. For future reference, we also define the stability region of a linear
multistep method, and the related notion of A(a)-stability, see e.g. [3, 6].
DEFINITION 3.2. The stability region S consists of those u € C for which the
polynomial a(z) — pb(z) (around p = oo: p~la(z) — b(z)) satisfies the root condition:
all roots satisfy |z;| <1 and those of modulus 1 are simple.
DEFINITION 3.3. A multistep method s called
i) A(a)-stable, 0 < a < %, if § D Eq = {z: |[Arg(—2)| < @, z # 0}
i1) A-stable if S contains the left half complez plane.

4. The waveform relaxation method. The continuous-time waveform re-
laxation method for solving initial value problem (1.1) is defined by the splittings
B =Mpg— N, A= M4 — N4, and the iteration scheme

(4.1) Mpa® + Mau® = Npa=D 4 Nyu=D 4 £

with u(¥ )(0) = up. We assume the splitting is such that Mp is invertible. This iterative
scheme can be written in explicit form as u(*) = Ku(*=1 4 ». The convergence
properties of iteration operator K, the continuous-time waveform relazation operator,
have been studied in [5]. They are expressed in terms of the waveform relaxation
matrix

(4.2) K(z) = (zMp + Ma)"'(zNp + Na) .
It was shown that, respectively on finite and infinite time-intervals, and with i = /-1,

(43)  p(K)=p(K()) and p(K)= sup p(K(z)) = sup p(K(i)) -
Re(z)>0 £ER

4.1. The discrete-time waveform relaxation operator. Application of lin-
ear multistep formula (3.1) to the continuous-time iteration scheme (4.1) leads to

k k
1 ) W _
p E OanB"nV-H + E OﬁjMAuﬂﬂ' =
J: =

(4.4) L& ! k k
- ZajNBuf,':jl) + ZﬂjNAuf,".,__jl) +> Bifasi, n20.
j=0 j=0 j=0
We do not iterate on the k starting values, i.e., ug") = ug-""l) =u;, for j < k. In

the remainder of the text we shall concentrate on the use of implicit methods, i.e.,
Br # 0. Equation (4.4) can then be solved uniquely for every n if and only if the
following condition is satisfied:

g -
(4.5) — &0 (—TMBIMA) )

Br
where o(-) denotes the spectrum. Further on we shall refer to this condition as the
discrete solvability condition.

Iteration (4.4) can be rewritten as o) = Kol 4+ ¢r. Because we do not

iterate on the starting values, we use a slightly different subscript 7-notation here
than the one in (2.1); that is,

(4.6) ur = {ursi g -
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(Alternatively, we could have used negative indices to denote the time-levels associated
with the k starting values, as is done in [8, 9]. This, however, would require some
shifting in the indices of formulae (3.1) and (4.4).) The precise expression for ¢, can be
calculated following the lines of [12, p. 536-537]. It depends on the values of f,,n > 0
and on the starting values u,, n < k. In order to determine the nature of K, the
discrete-time waveform relazation operator, we rewrite (4.4) using e = ul) — u,,.
Here, u, is the exact solution of ODE (1.1) when discretised using the linear multistep

method. This gives

1y R v _1y -1, o (v-1)

v v V- v—
;ZajMBe"+i +ZﬂjMAen+j = ;ZajNBeﬂ+j +Z,3jNAen+j , n>0.
Jj=0 =0 j=0 j=0
With Cj = La;Mp + B; M4, and D; = La;Np + BjNa, this becomes
k k
-1
(4.7) Y Cield; =S DielY , n>0.
j=0 =0

Note that eg") = eg-""l) =0, j < k. When we combine the first N equations, i.e.,
the equations for the unknowns on time-steps k, ..., N +k — 1, and after introducing

vector E(*) = [ei")ei"ﬁl ...e%‘,’lk_l]‘, we get
(4.8) E® =c D E¥-Y

Matrices C and D are N x N block lower triangular matrices with k 4+ 1 constant
diagonals. The blocks on the j-th diagonal are given respectively by Cr—; and Dg—;.
It follows immediately that matrix C~1D is a N x N block lower triangular Toeplitz
matrix. Hence, K, is a discrete linear convolution operator on the I,-space of vectors or
sequences of length N. The j-th component of the matrix-valued discrete convolution
kernel k. equals the (constant) submatrix on the j-th lower block diagonal of C~1D.

In the theory we shall need the discrete Laplace-transform of the convolution
kernel. It can be found by discrete Laplace-transforming equation (4.7). If E(T")(z)

denotes the transform of e(f"), we obtain

E&)(2) = K ()80 (),
with the discrete-time waveform relaxation matrix given by
(4.9) K, (z) = (a(z)Mp + 7b(2)M4) " (a(z)Np + 78(z)Na) -

By comparison to (4.2) the following relation results,
la

Note that (4.10) still holds when $(2) is set to oo in the case of b(z) = 0. (In this
case a(z) # 0, since the characteristic polynomials have no common roots.)

4.2. Convergence analysis.
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4.2.1. Convergence on finite time-intervals.
THEOREM 4.1. Assume that condition (4.5) is satisfied, and consider K. as an
operator in l,(N), with1 < p < oo and N finite. Then, K, is bounded and

(4.11) oK) =p(K (l%)) .

Proof. The theorem follows from Lemma 2.1 and the observation that
. T la _ 1 a
Jm Kr(2) = im K (;3(’)) =K (;ﬁ) -

4.2.2. Convergence on infinite time-intervals. The following lemma deals
with the boundedness of the discrete-time waveform relaxation operator K,. It is
proved using a matrix-valued version of Wiener’s inversion Theorem, [8, p. 446] and
[11, p. 577], which is stated here for the reader’s convenience.

THEOREM 4.2 (WIENER’S INVERSION THEOREM). Given a matriz valued se-
quence A, such that A, € l1(0), and assume that

det EA,-z" #0
1=0
for |z| > 1. Setting 3 oy Biz™F = (XCie, Aiz=))™}, we have B, € Iy(c0) .
LEMMA 4.3. If o(—~TMz'M,) C intS, then K, is bounded in [,(c0) .
Proof. 1t is sufficient to prove that the kernel k, of the discrete convolution
operator K, is an l;-sequence. To this end, consider first the l;-sequence

arMp + e My, ag—1Mp + -1 Ma, ..., aoMp+ 7B My, 0, 0,...

Its discrete Laplace-transform equals the matrix function z=% (a(2)Mp + 7b(z)M4).
By Wiener’s Theorem, we have that the inverse, (a(z)Mp + 7b(2)M4)”~" ¥, is the
transform of another [;-sequence, say 7, if

(4.12) det (a(2)Mp + Tb(2)M4) #0 for |z|> 1.
Next, consider the l;-sequence
sy = agNp + 70k Na, ag-1Ng +7Bk-1Na, ..., aoNp +7BNa, 0, 0, ...,

the discrete Laplace-transform of which is given by z~*(a(z)Ng + 7b(z)Na4). The
convolution of r; and s, is another /;-sequence, which can be seen to be equal to the
kernel k,. Indeed, the discrete Laplace-transform of 7, % s, is identical to K, (2). As
a result, it follows that K, is bounded if (4.12) is satisfied.

Suppose there is a z with |z| > 1 such that

(4.13) det (a(2)Mp + Tb(2)M4) =0 .
Then necessarily b(z) # 0. (If b(z) = 0 then a(z) # 0, because a(z) and b(z) have no

common roots. Since Mp is assumed to be invertible, equality (4.13) can not hold.)
Hence, we obtain

det (%(z)MB +7Ma) =0,
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and therefore $(z) € o(—TMg*M,). Since |z| > 1, it follows that —Mz' M4 has
an eigenvalue which is not an interior point of S. This contradicts the assumption of
the lemma. Hence, (4.12) is satisfied. O

REMARK 4.1. Condition o(—7Mg'M4) C intS implies the discrete solvability
condition (4.5). Indeed, since g+ = $(00) , it follows that Z& ¢ int.S , and, therefore,
5= o(—TMg'My,).

REMARK 4.2. Condition o(—7Mg'M,) CintS implies that all poles of K(z)
are in the interior of the scaled stability region LS.

THEOREM 4.4. Assume o(—TMg'My4) C intS, and consider K, as an operator
in lp(c0), with 1 < p < co0. Then,

(4.14) p(K;) = sup{p(X(z))|rz € C\ intS}
(4.15) = nggs p(K(2)) .

Proof. As a(—fMElMA) C int S, it follows that k, € l1(00). Lemma 2.2 yields
la
plK:) = sup p(1: () = sup p (K (152)) )
2121 2121 T

By definition of the stability region,

- . a

C\intS = {z(z) 2] > 1} .
and thereby (4.14) follows. Equality (4.15) is obtained by the maximum principle. O

In I3(o0), a similar result holds for the norm by application of Lemma 2.3.
THEOREM 4.5. Assume o(—TMg'M,) C intS, and consider K. as an operator

in I3(00). Denote by ||.||2 the lz-norm and by ||.|| the standard Euclidean vector-norm.
Then,
(4.16) [IK-|l2 = sup{||K(2)||: 7z € C\ intS}

(4.17) sup ||K(z)|| .
TZ€3S

In analogy to the discussion in [12, Th. 4.2] we can make the following note.

REMARK 4.3. When the assumption in the above theorems is violated, a weaker
condition may be satisfied: o(—7Mg'M,) C int Sy,, where S,, consists of all u for
which a(e™77z) — ub(e™772) (around g = oo: p~la(e™?7z) — b(e~77z)) satisfies the
root condition. The analysis then can be redone using an exponentially scaled norm,

(4.18) llurlly = {us}ly = [[{e™ " u:}l -

The norm in the right-hand side is a standard p-norm (2.2). With this change of
norm, the suprema in Theorems 4.4 and 4.5 have to be taken over all 7z in C\intS,.,
or, after application of the maximum principle, over 8S,.

4.3. Discrete-time versus continuous-time results. The continuous-time
results (4.3) are regained when we let 7 — 0 in the convergence formulae for op-
erator K,. For finite time-intervals, we have

1 ap

tim p(C7) = tim p (¢ (£52) ) = plac(o0)) = p(K)
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A similar result is found for infinite time-intervals. Note that the tangent to S in the
origin of the complex plane is the imaginary axis, for any consistent linear multistep
method. As such, the boundary of the scaled stability region 8(1S) tends to the
imaginary axis when 7 — 0. Consequently,

lim p(K-) = lim sup p(K(z)) = sup p(K(i€)) = p(K) .
Lind TV rz€8S8 £ER

Furthermore, for a fixed time-step 7, we can prove the following theorem for A(a)-
stable linear multistep methods (see Definition 3.3). The theorem is closely related to
[9, Prop. 9], where multigrid waveform relaxation on finite difference grids is analysed.
We reformulate the proof, using our notations, for completeness.

THEOREM 4.6. Assume U(—TMElMA) C X4. Consider K, as an operator in
l,(00) and K as an operator in Ly(0,00), with 1 < p < co. Then,

i) if the linear multistep method is A-stable, then p(K;) < p(K).
i1) if the linear multistep method is A(c)-stable, then

(4.19) p(K+) < sup p(K(2)) = sup p(K(2)) ,
2€X8 2€9X¢,

with £¢ = C\ B4 = {2 : |Arg(2)| < 7 — a}.

Proof. Part 1) is a special case of ii) with o = /2, combined with the sec-
ond equality of (4.3). For part ii), we notice that we may apply Theorem 4.4 since
o(—TMg'M,) C £4 C int S. Therefore,

(4.20) p(Kr) = sup P (K (%%(Z))) :

If the multistep method is A()-stable, then $(z) € I for [z| > 1. Combining the
latter with (4.20) yields the inequality of (4.19). The equality is obtained by the
maximum principle. O

5. The multigrid waveform relaxation method. The splittings of matrices
B and A used in actual computations typically correspond to Gauss-Seidel or weighted
Jacobi splittings. Each iteration defined by (4.1) can then be computed as the solution
of d ordinary differential equations, each in a single unknown. The resulting iteration
can be accelerated by using the multigrid principle, in a very similar way as the
standard point-wise relaxation methods are accelerated when solving elliptic partial
differential equations.

The continuous-time two-grid waveform relaxation scheme is sketched below. We
refer to [5] for a more elaborate description. The algorithm uses two nested grids,
a coarse grid Qy and a fine grid Q4. Grid functions are mapped from the one grid
to the other by a prolongation (or interpolation) operator (p : Qg — Q4) and a
restriction operator (r : Q5 — Qpg). The discretisation on the fine grid is defined by
the matrices By and Ap, the discretisation on the coarse grid by By and Ag. One
iteration transforms iterate u(*~1) into u(*) in three steps.

(i) Pre-smoothing. Set z(®) = «(*~1) and perform v, fine-grid waveform relax-
ation steps: for v = 1,2,...,14, solve

(5.1) Mp, 2" 4+ M4, ) = Np, 21 4 Ny 2~V + fi , with z(*)(0) = uo .
(if) Coarse grid correction. Calculate the defect

dp = B&{"™ + Apz{) — £, .
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Solve the coarse-grid defect equation
Byvyg + Agvyg = rdy, with vg(0) =0,
and correct,
7=z — puy .

(iii) Post-smoothing. Set z(°) = # and perform v, fine-grid waveform relaxation
steps (5.1). Set u(*) = z(v2),

This two-grid cycle can be written as u() = Mu(*~1) 4, where M is called the
continuous-time lwo-grid waveform relazation operator. The convergence formulae
of M as an iteration operator resemble those of the standard waveform relaxation
method. More precisely, in [5] we find respectively for the finite and for the infinite
time-interval case

(52) p(M)=p(M(0)) and p(M)= sup p(M(z)) = supp(M(i£)) .
Re(2)20 1433

M(z), the continuous-time two-grid waveform relaxation matrix, is given by
M(z) = K“2(2)(I — p(2Bg + Agr)~'r(2Bn + Ar))K"' () ,

with K(2) the fine-grid matrix given in (4.2).

5.1. The discrete-time two-grid waveform relaxation operator. We dis-
cretise the equations of the continuous-time two-grid cycle using a linear multistep
method with a fixed time-step 7. As before, we assume that we do not iterate on k
given starting values. The discrete-time two-grid cycle defines a linear operator M.,
which satisfies

(53) u(Tu) = M‘ru-(ry_l) + Pr and es-”) = Mres-y_l) )

where e{*) is the error of the v-th iterate. Our notation is again similar to (4.6). M,
is called the discrete-time two-grid waveform relazation operator.
The second equation of (5.3) can be reformulated in a similar way as we arrived

at (4.8),
(54) E®™ = (C;'Dy)*(I — PFg'RF,)(Cy ' Dy) E¢™Y) .
Here, E(*) = [egc”)egc”-zl .- -eg\‘rllkq]t' Matrices Ch, Dn, Fg and Fj are N x N block

lower triangular matrices with k+1 constant diagonals. The blocks of the j-th diagonal
equal respectively (Ch)k—j, (Dn)k—j, (Fr)k-j and (Fp)g-j, with

1 1
(Ch); = Zj M, + B;Ma, , (Dn); = —ajNp, + B Na, »

and

1 1
(Fu)j = —ojBr + BjAn , (Fn); = —ajBn + fjAn .

Matrices P and R are block diagonal with constant diagonal blocks respectively equal
to matrices p and r. I is the identity matrix of dimension d x N. The resulting
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discrete-time two-grid cycle is well-defined, if and only if the following conditions
hold,

(5.5) %f ¢ o(-rMz'My,) and % ¢ o(~rB5' Ax) .

We shall refer to (5.5) as the discrete solvability conditions for the two-grid algorithm.

It can be seen that the matrix pre-multiplying E(*=1) in (5.4) is block lower
triangular of dimension N. This implies that M, is a discrete linear convolution
operator. The discrete Laplace-transform of its matrix-valued kernel can be found
by transforming the equations of the discrete-time two-grid cycle. It is denoted by
M- (z), the discrete-time two-grid waveform relaxation matrix, and equals

M- (z) = K" (2) C;(2) K, (2) ,
with K (2) given by (4.9) and C,(2) given by
I —p(a(2)By + 7b(2)Ag) "' r (a(2) By + 7b(2) An) .

Matrix M, (z) satisfies as similar relation as K, (z) does in (4.10),

(5.6) M, (z) = M (%%@)) .

5.2. Convergence analysis. The convergence analysis of operator M, is very
similar to the convergence analysis of the standard waveform relaxation operator K.

5.2.1. Convergence on finite time-intervals.
THEOREM 5.1. Assume that conditions (5.5) are satisfied, and consider M, as
an operator in I,(N), with 1 < p < oo and N finite. Then, M. is bounded and

(5.7) (M) =p(M (33)) -

Proof. The theorem follows from Lemma 2.1 and (5.6),
1 1
s s () - (53))

5.2.2. Convergence on infinite time-intervals. We first prove the bounded-
ness of M, i.e, we prove the two-grid equivalent of Lemma 4.3.

LEMMA 5.2. Assume U(—TME:MAh) Uo(—TBg'Ay) C intS. Then, M, is
bounded in l,(0).

Proof. 1t is sufficient to prove that the kernel of M, belongs to I;(c0). We shall
analyse each of the factors in the formula for M, (2) separately.

We have, from the proof of Lemma 4.3, that K,(z) is the discrete Laplace-
transform of an [;-sequence, say ¢, if

(5.8) det (a(2)Mp, + 7b(2)Ma,) #0, 2|2 1.
Consider the [;-sequence

ayBy + 70k Al, ag-1Bg + T8k-1AH, ..., 0By + TBoAH, 0, 0,...
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Its transform is given by z=¥(a(z)Byg + 7b(2)An). By Wiener’s inversion Theorem,
(a(z)Bmg + Tb(z)AH)‘lzk is the transform of an [;-sequence, say w;, if

(5.9) det(a(z)By + 7b(2)Ag) #0, |z|>1.
Next, consider the [-sequences
i, = I1,0,...,0,0,0,
vy = apBp+TBkAn, @k-1Br + TPk-14h ,..., @oBn +TPBoAs, 0, 0,...

I is the d x d identity matrix. Their transforms are given respectively by
I and 27¥ (a(2)Bn + Tb(2)An) .

Now, consider the sequence

(5.10) Qr¥xqrx...%xqrk( iy —PWr *Tqr ) *Xqr*qr k... %qr .
e, e L L
vs times v, times

If conditions (5.8) and (5.9) are satisfied, it follows that this sequence is in ;. (I
is closed under convolution and addition. The multiplication of an [/;-sequence by a
matrix is an l;-sequence.) The discrete Laplace-transform of sequence (5.10) equals
M, (z), hence the sequence equals the kernel of M,. To conclude, M, is bounded
under conditions (5.8) and (5.9).

Suppose one of these conditions is violated. That is to say, there is a z with
|z] > 1 such that det(a(2)Mp, +'rb(z)N3,‘) = 0 or det(a(2)Bug +7b(2)An) = 0. That
would mean that $(z) € 0’(-TMB Ma,) UO’(—TBHlAH) Since |z| > 1 this violates
the assumption of the lemma. O

REMARK 5.1. The assumption of Lemma 5.2 1mphes the two-grid discrete
solvability conditions (5.5).

REMARK 5.2. The assumption of Lemma 5.2 implies that all poles of M(z) are
inside the scaled stability region }S .

THEOREM 5.3. Assume a(—ngjMAh) Uo(—TBg'Ag) C intS, and consider
M as an operator in lp(00), with 1 <p < oo. Then,

(5.11) p(M;) = sup{p(M(z))|rz € C\ intS}
(5.12) = ng;a)s p(M(2)) .

Proof. The proof is a direct consequence of Lemma 2.2, and is similar to the proof
of Theorem 4.4. O

Application of Lemma 2.3 yields the following result for the l;-norm of M.

THEOREM 5.4. Assume U(—TME:MAh) Uo(—TBg'Ag) C intS, and consider

M. as an operator in l3(c0). Denote by ||.||2 the Iz-norm and by ||.|| the standard
FEuclidean vector-norm. Then,

(5.13) IM:llz = sup{|[M(2)||: 7z € C\ intS}

(5.14) = sup [IM(2)]] -

REMARK 5.3. If the assumption of the former theorems is violated, but the
weaker condition o(—7Mg5'Ma,) Uo(—7Bg' Ag) C intS,, holds, then we can for-
mulate an analogous remark to Remark 4.3.



WAVEFORM RELAXATION ON FINITE ELEMENT MESHES 13

5.3. Discrete-time versus continuous-time results. The relation between
the two-grid operators M, and M is similar to the relation between K, and K. More
precisely, both for finite and infinite intervals:

}1_1}}) p(M:) = p(M) .

We also state the two-grid equivalent of Theorem 4.6, without proof.

THEOREM 5.5. Assume 0’(—TME:MAh) Uo(—TBg'Ar) C Z4. Consider M,
as an operator in ly(co) and M as an operator in L,(0,00), with 1 < p < co. Then,
i) if the linear multistep method is A-stable, then p(M.) < p(M).
i1) if the linear multistep method is A(a)-stable, then

(5.15) p(M:) < sup p(M(2)) = sup p(M(2)) ,
F13%3 2€9L¢

with £, = C\ By = {2 : |Arg(2)| < 7 — a}.
6. Model problem analysis and numerical results.

6.1. Analysis of a model problem. In order to clarify the convergence be-
haviour of the waveform relaxation methods, we shall start with a very simple and
small model problem, the one-dimensional heat equation on the unit interval,

(6.1) %—':—Alu:O, ze[0,1], tel0,1].

We impose Dirichlet boundary conditions and an initial condition such that the an-
alytical solution becomes u(z,t) = sin(wz)exp(—w2t). The problem is discretised
using linear finite elements on a mesh Q4 with mesh-size A = 1/16. We shall study
the convergence of the waveform algorithms and the dependence of the convergence
on the nature of the time-discretisation method.

6.1.1. Dependence on the time-discretisation method. We consider the
Gauss-Seidel waveform relaxation algorithm and the two-level method, with one
red/black Gauss-Seidel pre-smoothing step, one similar post-smoothing step, stan-
dard coarsening (H = 2h) and linear interpolation. The restriction is defined in the
standard way for finite element multigrid methods, i.e., r = p'. For both waveform al-
gorithms, we analyse the use of different time-discretisation formulae, with a constant
time-step 7 = 1/100. In particular, we consider the trapezoidal rule or Crank-Nicolson
(CN) method, and the backward differentiation formulae (BDF) of order 1 up to 5,
[3, 6]. The spectral radii of the finite and infinite time-interval operators for the stan-
dard and for the two-level algorithm are reported respectively in Table 6.1 and 6.2.
The results were computed by numerical evaluation of formulae (4.11) and (4.15), and
(5.7) and (5.12).

These results can be understood by looking at the spectral picture, [15, p. 107],
which enables a graphical inspection of convergence. In the spectral picture a set of
contour lines of the function p(XK(z)) or p(M(z)) is plotted for z in a region of the
complex plane close to the complex origin. On top of this picture, the scaled stability
boundary of the linear multistep methods can be plotted. Figures 6.1 and 6.2 display
contour lines of p(K(z)) and p(M(z)) (respectively for values 0.8, 1.0, 1.2, 1.4, 1.6,
1.8, 2.0 and for values 0.1, 0.3, 0.5, 0.7, 0.9, 1.1) for the model problem, together with
the scaled stability region boundaries of the CN and BDF methods.
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TaABLE 6.1
Values of p(K+) for model problem (6.1).

CN__BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)
finite length 0.458 0.658 0.548 0.486 0.445 0.414
infinite length  0.962 0.962 0.962 0.976 1.149 1.865

TABLE 6.2
Values of p(My+) for model problem (6.1).

CN __ BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)
finite length _ 0.050 _ 0.050 __ 0.052 __ 0.051 __ 0.049 __ 0.047
infinite length  0.264 0.069 0.106 0.170 0.343 1.184

The values of the finite interval spectral radii can be estimated by checking the
values of the functions at the points on the real axis given by %%f (which are not shown
in the picture). With increasing order of the BDF methods, these points move to the
right. Indeed, we have that 3% equals 1 (BDF(1)), 3/2 (BDF(2)), 11/6 (BDF(3)),
25/12 (BDF(4)), and 137/60 (BDF(5)). A value of 2 is found for the Crank-Nicolson
method.

The values of the infinite interval spectral radii can be estimated by taking the
maximum of p(K(z)) or p(M(z)) over the plotted scaled stability region boundaries.
The infinite length discrete-time waveform methods are convergent for the CN method
and the low order BDF methods. Divergence is observed for some high order methods.
In general, the spectral radius increases with increasing order of the BDF method.
This was to be expected from Theorems 4.6 and 5.5, and the knowledge that the
BDF methods are A(a)-stable with « = 90° (BDF(1), BDF(2)), @ = 88° (BDF(3)),
a = 73° (BDF(4)) and a = 51° (BDF(5)). Note also that the maximum of p(K(z))
over 1S is found at the origin for CN, BDF(1) and BDF(2). Hence, the equality of

the cc:rresponding values in Table 6.1.

6.1.2. On the relation between finite time-interval and infinite time-
interval spectral radii. We would like to compare some observed experimental
convergence factors to the theoretical factors computed in the previous section. More
importantly, we want to clarify the relation between the finite time-interval and in-
finite time-interval spectral radii. To this end, we solve (6.1) using the Gauss-Seidel
waveform relaxation method with BDF(2) and BDF(5) time-discretisation and with
constant time-step 7 = 1/100. (Note that a similar analysis could be done with the
two-level method. It would lead to similar conclusions and insights.)

Let d(T") denote the discrete defect or residual in the v-th iteration. The conver-
gence factor of the v-th iteration is then defined by

(6.2) P = [1d]]2/]1d D)2

In Figure 6.3 successive convergence factors are plotted for the first 400 waveform
Gauss-Seidel iterations, when BDF(2) discretisation is used. These factors appear
to remain more or less constant for a large number of iterations. The height of the
plateau matches the value obtained in Table 6.1 for infinite time-intervals, i.e., 0.962.
(Note that the time-interval in the computation is, of course, finite.) Eventually, the
constant plateau in Figure 6.3 is left, and the factors start to decrease. Ultimately,
they start to rise again and reach the value 1. This is for purely technical reasons,
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FIG. 6.4. Convergence factor p(*) as a function of v (BDF(5) method).

because at that time the solution has converged within the finite-precision arithmetic
of the implementation.

A similar plot is given in Figure 6.4 for the BDF(5) discretisation. Here, the
evolution is much more erratic. The results clearly indicate divergence for a large
number of iterations. After sufficient number of iterations, the convergence factors
decrease below 1, and the iteration starts to converge rapidly.

This behaviour can be explained by examining the time-level convergence factors.
These factors are similar to the standard convergence factors (6.2), but are evaluated
for each time-level separately,

A = 1112/ 1l Pl

In Figure 6.5, we plotted such time-level convergence factors for the BDF(2)
method (for v = 10, v = 100, v = 200 and v = 300). The factor measured at the first
time-level equals 0.548, exactly equal to the value predicted by the finite time-interval
analysis in Table 6.1. The convergence factors at the next time-levels increase, and
eventually become constant. The height of the plateau matches again the spectral
radius value for infinite time-intervals. When more and more iterations are applied,
the plateau is forced out of the time-window and the corresponding convergence factors
decrease. (Later on, they increase again towards the value 1 because of convergence
in finite precision arithmetic.)

In Figure 6.6, we have plotted time-level convergence factors for the BDF(5)
method (for v = 1, v = 5, » = 50 and v = 100). Again, we observe that the factor
at the first time-level corresponds to the value predicted by the finite time-interval
analysis (0.445). The pictures illustrate the onset of oscillations which rapidly explode.
As more iterations are applied, the region of divergent behaviour moves to the right,
and is forced out of the time-window. From then on, the iteration converges rapidly,
as we observed in Figure 6.4.
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6.2. Numerical results. In the current section we shall present numerical re-
sults for a model problem that was also considered in [5], i.e., the two-dimensional

heat equation,

(6.3)

du

ot

-Au=0, (z,y)€(0,1]x[0,1], te(0,1],

with Dirichlet boundary conditions and an initial condition such that the analytical
solution equals u(z,y,t) = 1 + sin(7rz/2) sin(7y/2) exp(—r2t/2).

Problem (6.3) is discretised using linear basis functions (triangular finite ele-
ments) or bilinear basis functions (rectangular finite elements) on a discrete mesh
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TABLE 6.3
Averaged convergence factors for problem (6.3), linear basis functions, h = 1/32, 7 = 1/200.

CN __BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)
Gauss-Seidel  0.990 0.990 0.990 0.998 - -

V-cycle 0.443 0.186 0.188 0.194 0.374 -
W-cycle 0.307 0.127 0.125 0.126 0.246 -

TABLE 6.4
Averaged convergence factors for problem (6.3), bilinear basis functions, h =1/32, 7 = 1/200.

CN _BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)
Gauss-Seidel _ 0.985 0985 __ 0.985 __ 0.996 N .

V-cycle 0.442 0.043 0.133 0.332 - -
W-cycle 0.295 0.038 0.038 0.040 0.558 -

with equal mesh-size in z-direction and y-direction. The resulting system of ODEs
of the form (1.1) is solved using the Gauss-Seidel and the multigrid waveform re-
laxation methods. In the latter we applied standard V-cycles and W-cycles, with
one pre-smoothing and one post-smoothing step of four-colour Gauss-Seidel wave-
form relaxation type. We use standard coarsening down to a mesh with size h = 1/2,
seven-point prolongation (linear basis functions) and nine-point prolongation (bilinear
basis functions). The restriction operator is defined as r = p*.

In Tables 6.3 and 6.4 we report averaged convergence factors. These are defined
as the average of p(*) over the region of nearly constant behaviour (see §6.1.2). The
dashes (”-”) in the tables indicate that the corresponding method showed divergence
over a large number of iterations. Both tables illustrate the dependence of the conver-
gence on the nature of the time-discretisation method. These numerical experiments
basically confirm the results of the analysis in §6.1.1.

In Tables 6.5 to 6.10, we report averaged convergence factors of the multigrid
W-cycle waveform relaxation method for different values of the mesh-size parameters,
and for different discretisation schemes. We observe a dependence of the actual con-
vergence factors on h and 7. Yet, for the Crank-Nicolson and BDF(2) methods, these
factors appear to be bounded by a constant, smaller than one, independent of the
mesh-size.

For a constant value of h, we expect the averaged convergence factors to con-
verge to the continuous-time results when 7 decreases, see §4.3 and §5.3. (In [5],
the continuous-time convergence factors are approximated by the results obtained
with the CN method with 7 = 1/1000). This behaviour is recognised clearly for the
CN method, in Tables 6.5 and 6.8. Due to the shape of the stability regions of the
BDF(2) and BDF(4) methods, it takes a much smaller value of 7 before the discrete-
time convergence factors tend to the continuous-time ones, see Tables 6.6, 6.7, 6.9
and 6.10.

For a constant value of 7, we observe an initial increase of the convergence factor
when h decreases. For sufficiently small h the convergence factor starts to decrease
again. This behaviour is similar to what is observed when the multigrid waveform
relaxation method is used to solved the ODEs obtained by spatial finite difference dis-
cretisation of a parabolic problem. We refer to [15, §3.5] for an intuitive explanation,
and to [16] for a discussion based on an exponential Fourier mode analysis.
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TABLE 6.5
Averaged convergence factors for problem (6.3), linear basis functions (CN method).

h, 7 || 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.103 0.135 0.133 0.135 0.134 0.134
1/8 0.121 0.234 0.304 0.303 0.303 0.302
1/16 |[ 0.105 0.128 0.282 0.357 0.357 0.355
1/32 || 0.104 0.105 0.135 0.307 0.370 0.371

TABLE 6.6
Averaged convergence factors for problem (6.8), linear basis functions, (BDF(2) method).

h, 7 || 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.057 0.056 0.056 0.055 0.056 0.056
1/8 0.094 0.098 0.094 0.093 0.093 0.092
1/16 || 0.123 0.124 0.125 0.126 0.122  0.122
1/32 |{ 0.127 0.127 0.127 0.125 0.125 0.126

TABLE 6.7
Averaged convergence factors for problem (6.3), linear basis functions, (BDF(4) method).

h, 7 || 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.054 0.072 0.060 0.057 0.056 0.057
1/8 0.146 0.170 0.338 0.444 0.374 0.269
1/16 || 0.182 0.236 0.261 0.257 0.475 0.586
1/32 || 0.127 0.126 0.127 0.246 0.242  0.315

TABLE 6.8
Averaged convergence factors for problem (6.3), bilinear basis functions, (CN method).

h, 7 || 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.074 0.133 0.134 0.137 0.137 0.137
1/8 0.136 0.179 0.283 0.293 0.294 0.294
1/16 || 0.080 0.179 0.273 0.330 0.341 0.343
1/32 || 0.038 0.078 0.202 0.295 0.343  0.355

TABLE 6.9
Averaged convergence factors for problem (6.3), bilinear basis functions, (BDF(2) method).

h, v || 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.052 0.071 0.084 0.088 0.107 0.124
1/8 0.063 0.090 0.130 0.178 0.222  0.240
1/16 || 0.046 0.048 0.050 0.104 0.167  0.247
1/32 || 0.038 0.038 0.038 0.038 0.038 0.128

TABLE 6.10
Averaged convergence factors for problem (6.3), bilinear basis functions, (BDF(4) method).

h, 7 || 004 0.02 0.01 0.005 0.0025 0.001

1/4 0.034 0.072 0.161 0.147 0.139 0.135
1/8 0.091 0.324 0.602 0.659 0.403 0.328
1/16 || 0.068 0.150 0.383 0.737 0.890 0.769
1/32 || 0.038 0.038 0.112 0.558  0.645 0.935
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