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Abstract

One issue that SIMD compilers must address is
generating code to change the machine context; ie.,
disabling processors not involved in the current com-
putation. We present two compiler optimizations that
reduce the cost of context changes. The first optimiza-
tion, context partitioning, reorders the Fortran 90
code so that as subgrid loops are generated, as many
statements as possible that require the same context
are placed in the same loop nest. The second opti-
mization, context splitting, splits the iteration space
of the subgrid loops into sets that have invariant con-
texts. This allows us to hoist the code that sets the
machine contezt out of the subgrid loops.

1 Introduction

SIMD machines offer impressive cost/performance
ratios, and they are very well suited for a large body of
engineering and scientific applications. However, cur-
rent compilers for SIMD machines do not come close
enough to exploiting the full potential of these ma-
chines. Within the Fortran D project, we are devel-
oping a compiler to study advanced compilation tech-
niques for SIMD machines. This paper describes one
facet of the project.

With SIMD machines there is a need to explicitly
turn processors on and off. This is due to the fact that
there is only a single instruction stream and not all
processors are to execute each instruction. Only pro-
cessors containing data related to the current instruc-
tion should execute it. If a processor is not to execute
a set of instructions, it must be explicitly “masked
out”. However, changing the machine state, or con-
tert, is an expensive operation. Setting the machine
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context is an overhead that one must pay to execute
on a SIMD architecture. The work presented here ad-
dresses this overhead by reducing the number of times
that the machine context must be set.

The next section gives an overview of a SIMD archi-
tecture and a general SIMD compilation framework. It
introduces the concepts that motivate this work. Sec-
tion 3 describes our strategy for reducing the cost of
setting the machine context. We present some prelim-
inary results in Section 4. Section 5 discusses related
work by others.

2 Machine and compiler overview

In this section we will give a brief overview of the
target SIMD architecture and our Fortran 90D SIMD
compilation strategy. For a description of the For-
tran D language see the paper by Fox et al. [9].

2.1 A distributed-memory SIMD archi-
tecture

A SIMD computer contains many data processors
operating synchronously, each executing the same in-
struction, using a common program counter. Each
data processor is a fully functional ALU (Arithmetic
Logical Unit). The SIMD architectures in which we
are interested associate some local memory with each
data processor. The data processor, along with its as-
sociated memory, is referred to as a processing element
(PE). The collection of all PEs is called the PE array.

Each PE has an execution flag which can be set
on or off to indicate whether the PE should execute
the current instruction. When taken as a whole, the
execution flags of all the PEs are said to determine
the contert of the PE array. )

There is also a serial front end (FE) processor. The
FE has three responsibilities. The first is to drive
the PE array by broadcasting instructions and related
data to all PEs. The second is to perform all scalar
computations and control flow operations. Third, the
FE is the system interface to the external world.







poiock(i) = ([i/Eztent,], (i — 1) mod Eztent; +1)
Briek(iproc,j) = (iproc — 1) + Extent; +
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Boyaic(iproc,j) = (3 —1)* Py +iproc

Figure 1: Distribution functions and their inverses.

REAL x(256), Y(20,20)
DECOMPOSITION A(256), B(20,20)
ALIGN x(I) WITH A(I)

ALIGN Y(1,J) WITH B(1,J)
DISTRIBUTE A(CYCLIC)
DISTRIBUTE B(BLOCK,BLOCK)

Figure 2: Fortran D code declaring two distributed
arrays.

2.2 SIMD compilation

This section describes our overall compilation strat-
egy. It describes the steps necessary in translating a
Fortran 90D program for execution on a SIMD ar-
chitecture. For a comparison, Albert et al. give an
overview of compiling for the Connection Machine in
Paris mode [2], and Sabot describes compiling for the
Connection Machine in Slicewise mode [16].

2.2.1 Array distribution

To exploit parallelism, the Fortran 90D SIMD com-
piler distributes the data arrays across the PE array
so that each PE has some of the data to process. The
manner in which arrays are distributed is very impor-
tant for maximizing parallelism while minimizing ex-
pensive communication operations. When arrays are
distributed across the PE array, each PE will locally
allocate an equal-sized subgrid to hold its portion of
the distributed array. The rank of the subgrid matches
the rank of the distributed array. The extent of the
i-th subgrid dimension is Eztent; = [N;/P;|, where
N; and P; are the extents of the distributed array di-
mension and the PE array dimension, respectively.

The compiler uses a distribution function [11] to cal-
culate the mapping of an array element to a subgrid lo-
cation within a PE. Given an array A, the distribution
function g4 (7) maps an array index 7 into a pair con-
sisting of a PE index iproc and a subgrid index j. An
inverse distribution function, pzl(iproc, 7), gives the
reverse mapping. Figure 1 shows examples of distribu-
tion functions and their inverses for one-dimensional
arrays with either BLOCK or CYCLIC distributions. In
this paper all arrays, whether a user array or the PE
array, use one-based indexing.

The Fortran D code in Figure 2 illustrates the con-
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Figure 3: A one-dimensional array with 256 elements
mapped in a CYCLIC manner onto a 16 PE machine.
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Figure 4: A 20 x 20 two-dimensional array mapped in
a BLOCK fashion onto a 16 PE machine configured as
a 4 x 4 matrix.

cepts of data distribution. Given a SIMD machine
with P = 16 PEs, the compiler would distribute ar-
ray X as shown in Figure 3. Each PE would allocate
a local subgrid X’(16). On the same machine, array
Y would be distributed by the compiler as shown in
Figure 4. Notice how the PE array is now treated as
a 4 x 4 matrix of PEs; i.e., P, = P, = 4. Thus
Eztent; = Exztent, = 5 and each PE would allocate
Y’(5,5) as the local subgrid.

2.2.2 Computation partitioning

After the compiler maps distributed arrays onto the
memory of the PE array, it must map parallel com-
putations to the processors. Our philosophy is to
use the “owner computes” rule, where every proces-
sor only performs computations that update data it
owns [7, 22]. :

2.2.3 Communication generation

Once data and computation distributions are finalized,
the compiler must insert any necessary communication
operations to move data so that all operands of an ex-
‘pression reside on the PE which will perform the com-



putation. These communication operations can often
be optimized by exploiting efficient collective commu-
nication routines; e.g., CSHIFT. The exact details of
how the required communication operations are de-
termined and generated are beyond the scope of this
paper. Interested readers are referred to the work by
Li and Chen [15].

After the communication operations have been in-
serted, all computational expressions reference data
that are strictly local to the associated PEs. For ex-
ample, the statement:

X(2:255) = X(1:254) + X(2:255) + X(3:256)

would be changed into the following three statements,
where TMP1 and TMP2 are arrays that match the size
and distribution of X:

TMP1 = CSHIFT (X,-1)

TMP2 = CSHIFT (X,1)
X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)

Notice that in the third statement all the operands
are perfectly aligned with one another and that there
is no further communication required to compute the
expression or store the result.

2.2.4 Subgrid looping

Finally, the compiler translates the parallelism that
is explicit in the Fortran 90 array syntax into code
that manipulates the arrays that have been distributed
across the PEs. Since each PE is in fact a serial pro-
cessor, the array expressions must be scalarized, i.e.,
translated into serial code [4, 21]. The serial code
operates on the data local to a PE. If an array is dis-
tributed such that the subgrid allocated to each PE
has several elements, then the serial code is placed in
a loop (or loop nest as required) that iterates over the
subgrid. This is known as the subgrid loop. For a de-
tailed description of the issues involved in generating
correct subgrid loops for SIMD architectures, see the
paper by Weiss [20].

As an example, if the array assignment statement:

X(1:256) = X(1:256) + 1.0

is performed on array X in Figure 3, the following sub-
grid loop will be generated:

DO I = 1, Extent; ! Extent; = 16
X'(I) = X'(I) + 1.0
NDDO

Subgrid looping is very closely related to sectioning
used for allocating vector registers [5]. In this case, the
PE array can be thought of as a multidimensional vec-
tor register. Just as in vector register allocation, loop
fusion [3] can be a powerful optimization. It is useful

for reducing loop overhead and improving data local-
ity. Unfortunately, loop fusion is not always safe. A
data dependence between two adjacent loops is called
fusion-preventing if after fusion the direction of the
dependence is reversed [1, 19]. The existence of such
a dependence means that fusion is not safe. In our
case however, no such fusion-preventing dependences
can exist between adjacent subgrid loops. This is due
to the fact that the generation of communication, as
described in the preceding section, causes all subgrid
loops to operate on “perfectly aligned” data.

Due to this perfect alignment of data within array
operations, our SIMD compiler can directly generate
a single subgrid loop nest for adjacent Fortran 90 ar-
ray statements if they have the same distribution and
cover the same iteration space. We call such array
statements congruent. Such subgrid loop generation
precludes the need for loop fusion.

2.2.5 Context switching

Given the Fortran D declarations in Figure 2, let
us assume that we now encounter the array assign-
ment statement X(2:242) = X(2:242) + 1.0, which
increments 241 elements of X starting with the sec-
ond element. As illustrated in Figure 3, PE 1 holds
15 of these elements in X'(2:16), PE 2’s full subgrid
is involved, and PEs 3 through 16 each have affected
elements in X’(1:15). The subgrid loop for this state-
ment must enable and disable different sets of PEs
depending upon which subgrid element is being pro-
cessed. The inverse distribution functions described in
Section 2.2.1 determine which sets of PEs to enable.
The subgrid loop generated for this statement is:
DO I =1, Extent; ! Extent; = 16

Set_Context (((I-1)*P+iproc > 2) .AND.
((I-1)#*P+iproc < 242))

X'(I) = X'(I) + 1.0

ENDDO

P is the number of processors, while iproc is a unique
number assigned to each PE and corresponds to its po-
sition in the PE array. The function Set_Context will
cause each PE to evaluate the logical expression and
enable its execution flag if the result is true, otherwise
the execution flag is disabled.

In a similar manner, operations on arrays which do
not “evenly” fill the machine require context switching
code to be inserted into the subgrid loop. Compare the
Fortran D declarations in Figure 5 to those in Figure 2.
On the same 16 processor machine, array Y2 would be
distributed as seen in Figure 6.

Since different PEs contain data in different sub-
grid locations, the subgrid loop must contain code to
change the context depending upon which subgrid el-



REAL Y2(17,19)
DECOMPOSITION B2(17,19)
ALIGN Y2(1,J) WITH B2(1,J)

DISTRIBUTE B2(BLOCK,BLOCK)
Figure 5: Fortran D code declaring an odd-shaped

array.
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Figure 6: A 17 x 19 two-dimensional array mapped in
a BLOCK fashion onto a 16 PE machine configured as
a 4 x 4 matrix.

ement is being processed. Again, the inverse distri-
bution functions determine the active set of PEs. For
example, the Fortran 90 statement Y2 = ABS( Y2 )
would generate the following subgrid loop nest:

DO J = 1, Extent: ! Extenty =5
DO I =1, Extent, ! Extent; = 5
Set_Context (((iproc;-1)#*Extent;+I < 17)
.AND. ((iprocz-1)#*Extentz+] < 19))
Y2'(1,J) = ABS ( Y2'(1,J) )
ENDDO
ENDDO

Extent; and iproc; are the subgrid extent and PE
index, respectively, along the i-th dimension.

It should be obvious by now that the code required
for changing the context can be quite complex. If
the previous example had only operated on a sub-
range of the array Y2, for example, then the call to
Set_Context would also have required a lower bound
check for each dimension. This would double the num-
ber of logical operations.

We do have one mitigating factor. When a single
subgrid loop nest is generated for a set of adjacent con-
gruent array statements, we do not need to change the
context for each individual statement in the subgrid
loop; i.e., they all operate under the same context.
This is true by our definition of congruent array state-
ments: they have the same iteration space and operate
on arrays that have identical distributions.

3 Context optimization

As can be seen in the two simple examples given in
Section 2.2.5, the code required to set the context of
the PE array can include multiple logical and arith-
metic operations. This code can be a significant por-
tion of the work performed within a subgrid loop. It
is our goal to reduce the impact of this overhead for
programs compiled for SIMD machines.

Our Fortran 90D SIMD compiler strategy has a
two-pronged approach to minimize the expense of con-
text switching. First, we rearrange the program state-
ments so that as subgrid loops are generated, as many
statements as possible that execute under the same
context are placed within the same subgrid loop. We
call this optimization contezt partitioning. Second, we
alter the order in which subgrid elements are processed
by performing loop transformations on the subgrid
loops. These transformations will allow us to hoist
the calls to Set_Context out of the loops and thus re-
duce the number of context changes. We call this op-
timization contexrt splitting. These optimizations are
described in detail in the following subsections.

3.1 Context partitioning

As explained in Sections 2.2.4 and 2.2.5, a single
subgrid loop nest is generated for adjacent Fortran 90
array statements that are congruent, and these state-
ments all execute within the same context. However,
unless an effort is made to make congruent array state-
ments adjacent, many small subgrid loops may still
be generated. Sabot has recognized this problem, and
recommends that users of the CM Fortran compiler re-
arrange program statements, when possible, to avoid
the inefficiencies of such subgrid loops [17]. In order
to alleviate this problem automatically, our compiler
has an optimization phase, called context partition-
ing, that reorders the statements within a basic block.
The reordering attempts to create separate partitions
of scalar statements, communication statements, and
congruent array statements.

To accomplish context partitioning, we use an al-
gorithm proposed by Kennedy and Mc¢Kinley [12].
Whereas they were concerned with partitioning par-
allel and serial loops, we are partitioning Fortran 90
statements. The algorithm works on the data depen-
dence graph (DDG) [14] which must be acyclic. Since
we are working with a basic block of statements, our
dependence graph will contain only loop-independent
dependences [4] and thus meets that criteria. Besides
the DDG, the algorithm takes two other arguments:
the set of congruence classes contained in the DDG,
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Figure 7: A context partitioning class conflict.

and a priority ordering of the congruence classes. We
create congruence classes for scalar statements, com-
munication statements and each set of congruent array
statements.

The priority ordering is required to handle class
conflicts. A class conflict occurs when there exist de-
pendences such that a pair of statements from one
class may be merged during partitioning or a pair from
another class, but not both since that would introduce
a cycle in the DDG and thus make it unschedulable.
The following contrived code segment, whose DDG is
shown in Figure 7, gives an example of a class conflict:

s1: A(1:100) = A(1:100) + 1.0
s2: B(2:99) = B(2:99) * C(2:99)

88: C€(1:100) = B(1:100)
s4: D(2:99) = A(2:99)

It is possible to merge nodes s! and s3 or nodes s2
and s4, but we cannot merge both pairs. The prior-
ity ordering is used to determine which pair should be
merged. The algorithm will merge pairs with a higher
priority before those with a lower priority. Kennedy
and Mc¢Kinley have shown that choosing an optimal
ordering of classes is NP-hard in the number of classes.
However, since class conflicts are considered rare, a
good heuristic for choosing an order should be effec-
tive. The heuristic that we have chosen is to order
the array statement congruence classes by their size,
largest to smallest for the given basic block, and to
give the scalar and communication classes the lowest
priority.

Given the chosen priority ordering, the algorithm
is incrementally optimal; i.e., for each class ¢, given a
partitioning of classes with higher priority, the parti-
tioning of ¢ results in a minimal number of partitions.
The algorithm will partition the bDG in O((N + E)C)
time, where N is the number of statements, E is the
number of dependence edges and C is the number of
congruence classes. For details on the algorithm, we
refer interested readers to their paper.

During subgrid loop generation, all statements in
a partition will be placed in the same subgrid loop.
The number of subgrid loops which operate over state-
ments with the same context is thus minimal, given

the chosen priority ordering.

It should be noted that context partitioning is not
a SIMD-only optimization. It is useful for Fortran 90
compilers that target MIMD and scalar architectures
as well. Even though such architectures do not require
setting a machine context, context partitioning can re-
duce the overhead of loops generated during scalariza-
tion and can increase the possibilities of data reuse.

3.2 Context splitting

In the first example in Section 2.2.5, which incre-
mented X(2:242), the PE array has the same context
for iterations 2 through 15 of the subgrid loop; during
these iterations all the PEs are active. To take ad-
vantage of this invariance, context splitting will mod-
ify the subgrid loop by performing loop splitting, also
called indez set splitting [6, 21]. By splitting the iter-
ation space into disjoint sets, each requiring a single
context, we can safely hoist the context setting code
out of the resulting loops.

Unlike context partitioning, context splitting is a
SIMD-only optimization. Compilers for MIMD ma-
chines can often side-step the issue that is addressed
by context splitting. Since each PE in a MIMD ma-
chine also has control logic, a compiler can generate
a program such that each PE determines the loop
bounds for its own subgrid loop. By reducing the
loop bounds, the compiler can often avoid iterations
for which the PE has no work and thus does not need
to introduce any guard statements into the subgrid
loop body in those cases [10, 18].

We will now discuss the details of context split-
ting. To simplify the discussion, we will first discuss
one-dimensional CYCLIC and BLOCK distributions, and
then show how to combine one-dimensional splitting
to handle multidimensional cases. Due to space con-
straints we will not address BLOCK_CYCLIC distribu-
tions; interested readers are referred to our technical
report [13].

Our canonical example in the following presenta-
tion will be the statement X(N:M) = X(N:M) + 1.0.
Context splitting of subgrid loops for full arrays that
do not evenly fill the machine is treated simply as a
special case, where N = 1.

3.2.1 Context splitting a CYCLIC distribution

With a standard CYCLIC distribution, element X(N)
may reside on any processor relative to the proces-
sor holding element X(M). However, the offset of X(N)
within the subgrid X’ must be less than or equal to
the offset of X(M). Le., given px(N) = (iprocn, jn),
px(M) = (iprocm,jm), and N < M, then jn < jm



must hold. We cannot make any statement regarding
the relationship of iprocy and iprocyr, except that
jN = jum implies iprocy < iprocys.

Using this information and our knowledge of
CYCLIC distributions, we know that all PEs should be
enabled for the subgrid iterations jy + 1 to jpr — 1.
This naturally divides the iteration space into three
sets: {jn}, {in + L:jm — 1}, and {jm}. Figure 8
depicts this situation. When jy = ju, the second
iteration set is empty and the first and third set are
merged into a single set. The subgrid loop after con-
text splitting now looks like this:

IF (j~ = ju) THEN
Set_Context (iproc>iprocy.AND. iproc<iprocu)
X'Ga) = X'(GN) + 1.0
ELSE
Set_Context (iproc > iprocy)
X'(Ga) = X'(jn) + 1.0
Set_Context (.TRUE.)
DO I = jn+1, jm-1
X/(I) = X'(I) + 1.0
ENDDO

Set_Context (iproc < iprocm)

x’(f'M) =X'(Gm) + 1.0
ENDIF

The code can be simplified if N and/or M are known
constants. When N and M are both constants, the IF-
test can be evaluated at compile-time and only the
code for the appropriate branch needs to be generated.
In the case where the operation is over the full array
but the array does not evenly fill the machine, we know
that N = 1. In this situation the IF-test is unneces-
sary and the pre-loop statements can be merged into
the DO-loop. This is equivalent to peeling off the last
iteration of the subgrid loop and hoisting the context
setting code accordingly. The result is:

Set_Context (.TRUE.)

DOI=1, jmM-1

X'(I) = X'(I) + 1.0

ENDDO
Set_Context (iproc < iprocm)

X'Gm) = X' (Gm) + 1.0

3.2.2 Context splitting a BLOCK distribution

Given a BLOCK distribution, element X(N) will al-
ways reside on a processor that has a number less
than or equal to the processor holding element
X(M); i.e., iprocy < iprocy. Figure 9 shows
the affected elements of array X for the assignment
X(N:M) = X(N:M) + 1.0 when X has a BLOCK dis-
tribution. As can be seen, all processors between
iprocy and iprocpys are enabled for all subgrid ele-
ments, whereas all processors outside that range are
disabled for all subgrid elements. Processor iprocy
is enabled at iteration jy and subsequent iterations.
Processor iprocys is enabled only for iterations up to

iprocy iprocy
Figure 8: X(N:M) when X has a CYCLIC distribution.

iprocy iproc,,
Figure 9: X(N:M) when X has a BLOCK distribution.

and including ja.

The difficulty in context splitting a BLOCK dis-
tribution comes from distinguishing the case where
jn < jm from the case where jy > ju. If we let LO
= min(jy,jm + 1) and BI = max(jn — 1,jpm), then
the iteration space is naturally split into the following
three sets: {1:L0—1}, {LO:HI}, and {HI+1:Extent}.
The context for the first iteration set will be the pro-
cessor set {iprocy + 1 : iprocar}. The processor set
for the second iteration set will include both iprocy
and iprocys if v < jm holds, otherwise it will exclude
both. The context for the third iteration set will be
processors {iprocy : iprocyr — 1}. The subgrid loop
after context splitting is now:

IF (jv < jm) THEN

L0 = i~

HI = jm

MASK = iproc>iprocy .AND. iproc<iprocm
ELSE T ooF proc=ip

L0 = jm + 1

HI = jn - 1

MASK = iproc>iprocy .AND. iproc<iprocm
ENDIF P P P P
Set_Context (iproc>iprocy .AND. iproc<iproca)
DOI=1, LO-1

X'(I) = X'(I) + 1.0
ENDDO
Set_Context (MASK)
DO I =1Lg, HI

X'(I) = X(I) + 1.0
ENDDO
Set_Context (iproc>iprocy .AND. iproc<iprocas)
DO I = HI+1, Extent

X'(I) = X'(I) + 1.0
ENDDO
This code can be greatly simplified if both N and M
are compile-time constants, in which case the IF ex-
pression can be eliminated. In addition, if LO = 1 or

HI = Extent then the body of the first or last DO-loop,
respectively, will not be executed. That DO-loop and




its associated call to Set_Context can then be safely
eliminated.

3.2.3 Context splitting a multidimensional
distribution

To perform context splitting on a multidimensional
distribution, we use loop splitting on each dimension
-separately. This produces a set of imperfectly nested
DO-loops. We then use loop distribution [14] to pro-
duce a set of perfectly nested DO-loops, each of which
operates under a single context. The context for each
loop nest is the intersection of the contexts produced
for each dimension.

Let’s consider again the array Y2 as declared and
distributed in Figures 5 and 6. Performing context
splitting on the statement Y2 = ABS( Y2 ), we first
perform loop splitting on each dimension. For the
first dimension, the iteration space is divided into the
sets {1:2} and {3:5}, while the second dimension pro-
duces the sets {1:4} and {5}. After splitting the loops
we use loop distribution, which produces these sets of
two-dimensional iteration spaces: {1:2,1:4}, {3:5,1:4},
{1:2,5}, and {3:5,5}. The result is the following code
which sets the context only four times compared to
the 25 times of the naive subgrid loop presented in
Section 2.2.5:

%et.Context (.TRUE.)

0J=1, 4
DO1=1, 2
Y2'(1,J) = ABS ( Y2'(I,)))
ENDDO
ENDDO
Set_Context (iproc; < 4)
DOJ=1, 4
DO1=3,5
Y2'(1,J) = ABS ( Y2'(I,0) )
ENDDO
ENDDO
Set_Context (iprocz < 4)
DOI1=1, 2
Y2'(1,5) = ABS ( Y2'(I1,5) )
ENDDO

Set_Context (iproc; < 4 .AND. iproc; < 4)
DOI=3,5

¥2'(1,5) = ABS ( Y2'(I,5) )
ENDDO

3.2.4 Discussion

A close evaluation of the context splitting optimiza-
tion reveals two possible concerns: loop overhead and
code growth. Both of these occur because context
splitting takes a single subgrid loop nest and gener-
ates multiple loop nests (with reduced loop bounds)
each with a copy of the loop body (minus context set-
ting code). We will address each of these concerns
separately.

The additional loop overhead generated by context
splitting is really not a concern at all. Recall that all

the control flow operations related to the looping con-
structs are executed on the FE processor. Since the
FE processor is usually much faster than the PE pro-
cessors, and is executing asynchronously from them, it
is able handle the extra loop overhead while still keep-
ing the PE array busy. In essence, we have increased
the workload executed on the FE, but this has allowed
us to decrease the workload sent to the PE array.

Since context splitting produces several copies of
the loop body for each loop level which is split, code
growth is exponential in the number of nested subgrid
loops which are split. If this growth is a concern, we
have two alternatives that can be used to address it.
First, the loop body could be encapsulated as an in-
ternal subroutine, which is branched to and returned
from. Since the subroutine is internal, the interface
simply requires that the return address be saved. Al-
ternatively, by limiting context splitting to only the in-
nermost one or two subgrid loop levels, one can keep
code growth bounded by a linear amount. Our ex-
periments have shown that this small limitation still
retains most of the performance gains achieved when
splitting all subgrid loop levels.

4 Results

To verify the effectiveness of these optimizations,
we performed them by hand on two sections of code.
The first section of code was taken from a Fortran 90
version of the ARPS weather prediction code [8]. It
initializes 16 two-dimensional arrays. We chose this
section of code since context partitioning would not
benefit additionally from data reuse nor would it be
penalized for generating excessive register pressure.
Thus all performance improvements are directly at-
tributable to the elimination of redundant context
changes and the reduction of loop overhead.

We generated five versions of this code segment and
timed each on a dedicated DECmpp 12000. The first
version was simply the Fortran 90 segment as taken
from the ARPS program. The second version was a
translation of the Fortran code into MPL, the Mas-
Par Parallel Application Language. We optimized this
version by performing the following optimizations by
hand: common subexpression elimination, strength
reduction, and loop-invariant code motion. We then
took this MPL version and generated three new ver-
sions by applying our context optimizations; one ver-
sion for each of the optimizations, and one version
which combined both optimizations. All five versions
used a (CYCLIC,CYCLIC) distribution, the standard dis-
tribution of the MasPar Fortran compiler.
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Figure 10: Time for ARPS weather code to initialize
sixteen 2-D arrays.

The version combining context partitioning and
splitting reduced the execution time by 45% when
compared to the original MPL code (which itself re-
duced the execution time by approximately 10% com-
pared to the Fortran code). See Figure 10 for a com-
parison of execution time versus subgrid size for these
three versions of the code. Individually, context par-
titioning and context splitting reduced the execution
time by 35% and 45%, respectively. The reason that
the combination of the two optimizations did not out-
perform context splitting is that, once splitting elimi-
nated the costly context setting code from the subgrid
loops, the loops became memory bound. For subgrid
loops that are more computationally intensive, we ex-
pect these two optimizations to have an additive ef-
fect, although the total effect may be less than the
improvement experienced with this code.

To consider something more computationally inter-
esting, we looked at a five-point difference computa-
tion:

RESULT = (A + CSHIFT(A,1,1) + CSHIFT(A,-1,1)
+ CSHIFT(A,1,2) + CSHIFT(A,-1,2))/5
RESULT and A were both two-dimensional arrays dis-
tributed in a (CYCLIC,CYCLIC) manner. We generated
three versions of the code: a Fortran 90 version, a
hand-optimized MPL version, and an MPL version
which had context splitting applied (since there was
only a single statement, context partitioning was not
applicable). We then timed the subgrid loops. In all
cases, the communication time to set up the computa-
tion was excluded from the measurements. The results
are shown in Figure 11.

Since the time to compute and set the context is
a smaller portion of the total work performed in this
subgrid loop, the performance gain is not as impres-
sive as that obtained on the array initialization code.
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Figure 11: Time for 5-point difference computation.

But the 13% reduction in the execution time from the
hand-optimized MPL version is still significant.

As a final point of interest, we took the above five-
point difference computation and performed context
splitting only on the innermost subgrid loop as dis-
cussed in Section 3.2.4. Code growth was minimal,
adding only two statements to the MPL code: a call
to Set_Context and a replication of the loop body
(a single assignment statement). In comparison, the
original split version, in which context splitting was
applied to both loops in the subgrid loop nest, slightly
more than doubled the amount of code. Additionally,
the performance difference between the two split ver-
sions was minimal. The new split version reduced the
execution time of the hand-optimized MPL version by
12%, compared to the 13% reduction of the original
split version.

5 Related work

Work at Compass by Albert et al. describes
the generation and optimization of context setting
code [2]. They avoid redundant context computations
when adjacent statements operate under the same con-
text. They also perform classical optimizations on the
context expressions, such as common subexpression
elimination. They mention the possibility of reorder-
ing computations to minimize context changes, but
they do not discuss such transformations.

While giving some optimization hints for the slice-
wise CM Fortran compiler, Sabot describes the need
for code motion to increase the size of elemental code
blocks (blocks of code for which a single subgrid loop
can be generated) [17]. He goes on to state that the
compiler does not perform this code motion on user
code, and thus it is up to the programmer to make



them as large as possible. In a later paper describing
the internals of the compiler, he describes how it at-
tempts to perform code motion so that subgrid loops
may become adjacent and thus fused [16]. However,
the code motion performed is limited to only moving
compiler-generated scalar code from between subgrid
loops, not in moving the loops themselves. It was this
work that motivated us to investigate the context par-
titioning problem.

6 Summary

We have developed a double-edged sword to com-
bat the cost of context switching in codes for SIMD
machines. The first edge of the sword reduces the
number of subgrid loops which operate over the same
context. The second edge reduces the number of con-
text changes per subgrid loop from O(N) to O(1) for
unmasked array assignment statements.
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