Nexus: An Interoperability Layer
for Parallel and Distributed
Computer Systems

Ian Foster, Carl Kesselman
Robert Olson, Steven Tuecke

CRPC-TR94456
May, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

This work was supported in part by the Office of Scientific
Computing, U.S. Department of Energy, and the CRPC.

Nexus: An Interoperability Layer for
Parallel and Distributed Computer Systems*

Ian Foster
Carl Kesselman
Robert Olson
Steven Tuecke

version 1.10
May 6, 1994

Abstract

Nexus is a set of services that can be used to implement various task-parallel lan-
guages, data-parallel languages, and message-passing libraries. Nexus is designed to
permit the efficient, portable implementation of individual parallel programming sys-
tems and the interoperability of programs developed with different tools. Nexus sup-
ports light-weight threading and active message technology, allowing integration of
message passing and threads.

1 Introduction

Nexus is a set of services that can be used to implement many different parallel program-
ming tools, including task-parallel languages such as Fortran M and CC++; data-parallel
languages such as pC++ and High Performance Fortran (HPF); and message-passing li-
braries such as Message Passing Interface (MPI), p4, and PVM. Nexus is intended as a
compiler target or as a basis for a higher-level library, not for direct use by an end-user
programmer.

Nexus services provide direct support for light-weight threading, address space manage-
ment, communication, and synchronization. A computation consists of a set of threads, each
executing in an address space called a contezt. An individual thread executes a sequential

*This work was supported in part by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38, and in part by the National Science Foundation’s Center for Research in
Parallel Computation under Contract CCR-8809615.

program, which may read and write data shared with other threads executing in the same
context. It can also generate asynchronous remote service requests, which invoke procedures
in other contexts. In a heterogeneous system, arguments to a remote service request are
automatically translated to a machine-independent format.

Nexus is currently being used as a compiler target for Fortran M and CC++ compilers.
These compilers generate an initial program and a set of handler routines, which can be
invoked by using remote service requests. The main program and handler routines are com-
piled and linked with the Nexus library to produce an executable program. HPF compilers
and message-passing libraries can also be modified to use Nexus services. Hence, Nexus
makes it possible to combine, in a single application, programs developed with different
tools.

2 Basic Abstractions

Nexus supports five basic abstractions: the node, contezt, thread, global pointer, and remote
service request.

Node. A node represents a physical processing resource. It is distinguished by its loca-
tion (machine name and, in a multicomputer, processor number). A node may variously
correspond to a physical processor, a shared-memory multiprocessor, or a Unix process.

Context. A contezt is an address space plus an executable program. A context is located
within a node; more than one context can be allocated to a node. The address space consists
of one or more data segments. An initial data segment is created when a context is allocated,
and additional segments can be added as needed. A data segment can be part of only one
context. The program associated with a context defines a NexusBoot() routine, which is
invoked when the context is created; a NexusExit() routine, which is invoked when the
context is destroyed; and any handlers that may be invoked by using remote service requests
(see below).

Thread. A thread is a thread of control. A thread is located within a context; more than
one thread can be allocated to a context. Hence, the mapping of computation to physical
processors is determined by both the mapping of threads to contexts and the mapping of
contexts to nodes. The relationship between nodes, contexts, and threads is illustrated in
Figure 1.

Global Pointer. A global pointeris a {Node,Context,Address} triple. A thread can access
data within its context as local data. To access data within a different context (on the same
or different node), it must be provided with a global pointer.

Remote Service Request. A thread can request that an action be performed on a remote
node by issuing a remote service request. This takes a handler identifier, a global pointer,
and a message buffer as arguments and causes the specified handler to be executed on the

2

T | T T T |T||T
Y ¥ Y NY VX
Context Context Context

Y Y Y

N O D E N O D E

Figure 1: Nodes, Contexts, and Threads

node and within the context of the global pointer. The handler is passed the local address
component of the global pointer and the message buffer as arguments.

These abstractions can be used to implement a variety of programming language concepts.
For example, a Fortran M process corresponds to a context (used to hold process common)
plus a thread (the thread of control); a Fortran M send statement may be translated into a
remote service request that places a message in a remote message queue in the appropriate
process’s context. A CC++ processor object corresponds to a context; CC++ statements
called in parallel blocks execute as threads (if local) or as remote service requests (if remote).

3 Nexus Runtime Library

The Nexus runtime library provides primitive functions for node management, context man-

agement, thread management, and communication. In the following sections, threads and

global pointers are represented by the C-language typedefs nexus_thread._t and nexus_global_pointe:
respectively.

Any program that uses Nexus functions must include “nexus.h”.

3.1 Initialization and Argument Handling

Nexus is intended to be both portable and usable by diverse programming packages. There-
fore, initialization and argument handling in Nexus must be able to deal with a wide variety
of situations.

Definitions.

e package: The system using Nexus, such as Fortran M or CC++.

e application: The end-user program that uses a package which is implemented upon
Nexus.

e package designator: The string (i.e., “~fm”) used to separate command line arguments
destined for the application from those destined for Nexus and the package. Arguments
before the first package designator are for the application, and those after it are for
Nexus and the package.

e process: An address space and set of associated resources that will be used by Nexus
to implement its node and context abstractions. Normally this corresponds to a Unix
process.

e master node: One of the Nexus nodes is designated the master node. This node has
the special task of initiating execution of the application program.

Initialization Model. Nexus initialization is designed to handle various combinations of
the following situations:

e A single process is created, which starts additional processes during Nexus initializa-
tion. This is a common approach for starting a parallel program on a network of
workstations. A variety of methods may be used to start the other processes, including
rsh, special startup daemons, etc. Each process represents a separate node. The first
process is designated as the master node.

e All processes are started simultaneously by operating system tools. This is a common
approach on massively parallel processing machines. Again, each process represents a
separate node. One process is designated the master node.

e Processes are added to the parallel program dynamically through either context cre-
ation (§ 3.3.1) or node creation (§ 3.2.1).

In each case, the application is assumed to start execution as a single thread of control on
the master node. It can then create additional threads of control by making remote service
requests, create new processes using nexus_acquire.nodes(), etc.

Initialization is performed in two phases: nexus_init () begins initialization and nexus_start ()
completes it. In Fortran M, the main routine simply calls nexus_init() followed immedi-
ately by nexus_start(). In contrast, CC++ requires that Nexus be initialized before the
first global constructor is called, which is long before main() is called. The split initialization
allows nexus_init () to be called from the first global constructor, followed by the execution
of the remaining constructors, followed by a call to nexus_start() from within main().

4

System Configuration. The system can be configured at runtime using arguments pro-
vided using one or more of three mechanisms: an environment variable, command line argu-
ments (if they are accessible), and a parameters string. The third mechanism is used when
a process is created by a pre-existing Nexus node. Redundant arguments in the parameters
string override arguments in the environment variable, and arguments in the command line
override both.

Because nexus_init () may be called prior to main(), the command line arguments cannot
simply be extracted from the argument list (argc/argv) that is normally passed to main().
(Of course, Fortran does not have argc/argv, which is another problem with that approach.)
Instead, Nexus must find the command line arguments through some other method, such as
the environ variable on most Unix machines. If Nexus succeeds, nexus_init () will

1. retrieve the command line arguments (from the environ variable),

2. combine the command line arguments with the environment variable arguments and
the parameters string,

3. make the application destined arguments available through nexus_user_iargc(),nexus.user.ge
and nexus._get_argc_and_argv(), and

4. parse the Nexus and package arguments. The package is allowed access to any argu-
ments following the package designator that Nexus does not recognize through function
callbacks provided by the package in the nexus_init() call.

If Nexus cannot retrieve the command line arguments (or if a particular startup method
does not allow the use of command line arguments), then only the environment variable and
parameters string can be used.

3.1.1 nexus_init()

void nexus_init(char *args_env_variable,
char *package_designator,
void (*package_args_init_func) (),
int (*package_args_func) (int,int),
void (*usage_message_func) (),
int (*new_process_params_func) (char *,int)
nexus_global_pointer_t **node_gps,
int *n_node_gps)

Initialize a process for Nexus. The args_env_variable argument holds the name of the envi-
ronment variable to check for configuration information. The package designator argument
_holds the package designator string,. The

5

package args_init_func, package_args_func, usage message _func, and
new_process_params_func arguments are pointers to package callback functions as described
below, or NULL pointers to designate no callback.

This routine should be the first one called on any new process that will be used within
a Nexus computation. Depending on the particular Nexus implementation, a new process
is created when a node and/or when a context is created; arguments automatically passed
to this process by the Nexus run-time system will allow nexus_init() to distinguish these
cases.

nexus_init () first parses the environment variable, the parameters string, and command
line arguments. This process consists of the following steps:

1. The command line arguments are split (using the passed package designator) and
combined with the environment variable and parameters string, as described above.

2. The package_args_init_func package callback function is called. The package can use
this to initialize variables that will be used to hold configuration information extracted
from the arguments.

3. Nexus invokes the package_args_func package callback function once for each argu-
ment that is not recognized by Nexus, passing the current argument number and the
total number of arguments. Using these in conjunction with nexus_package.getarg(),
it can decide whether a particular argument is meant for the package. If so, it should
extract all relevant information into its own variables. It should return a new current
argument that is greater than or equal to the current argument it was passed.

4. If an error occurred during argument parsing (an argument was recognized neither by
Nexus nor by the package), the usage message func package callback is called. It
should print a usage message for its arguments to stdout.

Nexus is now initialized. A subsequent call to nexus_start () should now be made to com-
plete the initialization. Package initialization can be performed between the nexus_init ()
and nexus_start() calls.

On machines which start a set of processes simultaneously, such as on many parallel com-
puters, nexus_init () will be called simultaneously in each of these processes. One of these
processes will be designated the master node. On other machines, such as workstations,
command line arguments to the master node process may cause nexus_init() to create
other nodes, perhaps on other workstations.

All nodes, including the master, will automatically have a default context created on them.
On the master node, nexus_init () sets its node_gps argument to an array of global pointers
to these contexts, and n_node_gps to the number of global pointers in this array. The master
node’s global pointer is always the first in this array. Subsequent context creations and

6

remote service requests may be used to run threads on those nodes or on additional nodes
created by nexus_acquire nodes() (see § 3.2.1). On processes other than the master node,
nexus_init() sets node_gps to NULL and n_node_gps to zero.

The array of global pointers returned in nodes_gps by this function is allocated using
nexusmalloc(). Therefore, when it is no longer needed each global pointer should be
destroyed using nexus_destroy.global pointer(),and the array freed using nexus_free().

The new_process_params._func package callback function is saved by Nexus for future use.
Whenever a new process is created for a node and/or context, this routine is called with a
character buffer and the buffer size. This callback function should fill in the buffer with any
(space separated) package arguments that need to be passed to the new process; it should
return the number of characters that it wrote into the buffer, up to the passed buffer size.

3.1.2 nexus_start()

void nexus_start()

This must be called after nexus_init(). On the master node, nexus_start() returns. In
all other cases, nexus_start () does not return; program execution on these nodes is invoked
by subsequent context creations and remote service requests to these nodes.

3.1.3 nexus_user_iargc()

int nexus_user_iargc()

Return the number of user arguments (number of arguments up to, but not including, the
package designator argument).

3.1.4 nexus_user_getarg()

char *nexus_user_getarg(int i)

Return a pointer to the string that represents the i’th user argument. This string should
not be modified.

3.1.5 nexus_get_argc_and_argv()

void nexus_get_argc_and_argv(int *argc,
char ***argv)

Store at the locations referenced by argc and argv the number and location of the user
arguments.

3.1.6 nexus_package_iargc()
int nexus_package_iargc()

Return the number of package arguments (number of arguments after the package designator
argument).

3.1.7 nexus_package getarg()

char *nexus_package_getarg(int i)

Return a pointer to the string that represents the i’th package argument. This string should
not be modified.

3.2 Node Management

Three primitive functions are provided for manipulating the set of nodes in a Nexus compu-
tation:

e nexus_acquirenodes: bring additional nodes into the computation
e nexus_releasenodes: release nodes from the computation

e nexus_current.node: obtain the current node’s node descriptor (see §3.7)

3.2.1 nexus_acquiremnodes()

void nexus_acquire_nodes_on_host(
char *host_name,
nexus_path_name *path_name,
int count,
nexus_global_pointer_t **node_gps,
int *n_node_gps)

void nexus_acquire_nodes_of_type(
nexus_arch_type_t type,
nexus_path_name *path_name,
int count,
nexus_global_pointer_t **node_gps,
int *n_node_gps)

Both of these functions introduce count new nodes into the computation. The first call
obtains those nodes from the machine specified by host name. The second version of the
call allocates nodes of a specific architecture type.

The path name argument specifies the path of the Nexus node server executable (i.e., an
application compiled with Nexus, or a generic Nexus node server). If path name is NULL,
then the path to the current executable on this node is used. If host.name is NEXUS_MY_HOST,
count nodes are allocated on the same host as the current node. If type is NEXUS_TYPE_ANY,
count nodes of any type are allocated. Each routine returns an array of global pointers in
node_gps, one for each allocated node, and the size of this array in n.node_gps. If not node
can be acquired, node_gps is set to NULL and n_node._gps is set to 0.

The array of global pointers returned in nodes_gps by these functions is allocated using
nexus.malloc(). Therefore, when it is no longer needed each global pointer should be
destroyed using nexus_destroy global pointer(),and the array freed using nexus_free().

3.2.2 nexus.releasemnodes()
int nexus_release_nodes(nexus_global_pointer_t *node_gps,

int n_node_gps)

Remove a set of nodes from the computation. The nodes to be released are specified by the
global pointer array node_gps, which has n_node_gps elements. All contexts and threads that
are active on the specified nodes will be destroyed. Returns 0 if the nodes are successfully
released, or -1 otherwise.

3.3 Context Management

Primitive functions are provided for context operations:

e nexus_init_create_context handle: initialize context creation handle
e nexus_create_context: create a context
e nexus_create_context wait: wait for context creation(s) to complete

e nexus_destroy current_context: destroy a context

A context, when created, consists of an initial data segment (a block of memory in the
context which is requested during context creation) and an executable program.

Data segments can be manipulated with the operations:

¢ nexus_context_initial_segment: retrieve the initial data segment of the current con-
text

e nexus.malloc: allocate a data segment in the current context

¢ nexus_free: free a data segment from the current context

The executable program is loaded from a user-specified location. This program may contain
the following functions:

* NexusBoot: a function that is invoked upon creation of the context (required)
® NexusExit: a handler that is invoked upon termination of the context (optional)

o NexusUnknownHandler: a handler that is invoked if a remote service request is made
to this context with an unknown handler (optional)

See § 4 for more information on these functions.

3.3.1 nexus_create_context()

void nexus_create_context(nexus_global_pointer_t *node_gp,
char *executable_path,
int size,
nexus_global_pointer_t *new_context_gp,
int *return_code,
nexus_create_context_handle_t *contexts)

Create a context on the same node as the context pointed to by the node_gp argument. The
context is allocated an initial data segment of size bytes and loads the executable specified

by executable path.

A global pointer to the new context’s initial data segment is placed in new_context_gp, and
a return code is placed in return_code, once the context has been initialized. A non-zero
return code indicates that the context creation failed. NexusBoot () (§ 4.1) is automatically
invoked in the new context when it is created, and that context does not complete initial-
ization until NexusBoot () has returned. If NexusBoot() returns non-zero in this context,
then the context creation fails and that return value is placed in return_code.

If contextsis NULL, then this call waits for the new context to be initialized, and new_cont ext_gp
is valid immediately upon return of this call. If contextsis a valid nexus_create_context_handle_t
that was initialized by nexus_init_create_context_handle(), then this call will return be-
fore the new context is initialized, and new_context_gp is not valid until after the subsequent
nexus_create_context_wait() call using this contexts handle.

10

3.3.2 nexus_init_create_context_handle()

void nexus_init,create_context_handle(
nexus_create_context_handle_t *contexts,
int n_contexts)

Initialize the context handle, contexts, to be used by n_contexts subsequent calls to
nexus._create_context.

Use of a context handle when creating multiple contexts allows the context creations to
overlap with each other, and to overlap with work by the package.

3.3.3 nexus_create_context_wait()

void nexus_create_context_wait (nexus_create_context_handle_t *contexts)

Wait for the contexts created using the contexts handle to be initialized.

3.3.4 nexus_destroy.current_context()

void nexus_destroy_current_context()

Deallocate the current context by freeing all data segments acquired during its execution.
The thread that calls this function is terminated. The behavior is undefined if other threads
executing on the current context have not terminated.

Before Nexus services have been deallocated, a user-defined function
NexusExit () is called. This can be used to free package data structures, etc. NexusExit ()
returns a void and takes no arguments.

3.3.5 nexus_context_initial_segment()
void *nexus_context_initial_segment()
Return a pointer to the initial data segment of the context of the calling thread.

3.3.6 nexus-malloc()

void *nexus_malloc(size_t size)

Allocate a data segment with size bytes and add it to the current context. Return a pointer
to this newly allocated data segment, or NULL if it cannot be allocated.

11

3.3.7 nexus_free()

void nexus_free(void *data_segment)

Free the data segment pointed to by data_segment from the current context. This operation
may be applied to the context’s initial data segment.

3.4

Thread Management

Nexus threads are modeled after a subset of POSIX threads (IEEE standard P1003.4a).

Primitive functions are provided for basic thread operations:

nexus_thread_create: create a thread

nexus_thread_exit: terminate the current thread

nexus_thread_yield: yield the processor to another thread
nexus_thread_self: return the thread ID of the calling thread
nexus_thread_equal: coﬁlpare two thread IDs

nexus_thread_once: for dynamic module initialization
nexus_thread key create: create a thread specific data key
nexus_thread_setspecific: associate a value with a thread specific data key

nexus.thread getspecific: retrieve the value associated with a thread specific data
key

Mutual exclusion and synchronization between threads is provided by the operations:

nexus_mutex_init: initialize a mutuaﬂ exclusion lock
nexus_mutex.destroy: destroy a lock

nexus_mutex_lock: obtain a mutually exclusive access to lock
nexus_mutex_unlock: release a lock

nexus_cond_init: initialize a condition variable

nexus_cond_destroy: destroy a condition variable

12

e nexus_cond_wait: wait for a condition
e nexus_cond_signal: signal a condition

e nexus_cond_broadcast: signal to all waiting for a condition

3.4.1 nexus_thread create()

typedef void *(*nexus_thread_func_t)(void *user_arg);

int nexus_thread_create(nexus_thread_t *thread,
nexus_thread_attr_t *attr,
nexus_thread_func_t func,
void *user_arg)

Create a new thread in the current context which invokes the supplied function func with
one argument user.arg. The thread ID for the newly created thread is placed in thread.
Return zero if the thread is successfully created, or non-zero otherwise.

The attr argument for specification of attributes for the thread. However, this is not yet
implemented.

Note: There are no equivalents to pthread detach() and pthread_join() in Nexus. All
Nexus threads are automatically detached when they are created.

3.4.2 nexus_thread_exit()

void nexus_thread_exit(void *status)

Terminate the calling thread. Returning from the user thread function will implicitly termi-
nate the thread.

The status argument is currently not used.

3.4.3 nexus_thread_yield()

void nexus_thread_yield()

Yield the processor to another thread.

3.4.4 nexus_thread self()

nexus_thread_t nexus_thread_self()
Return the thread ID of the calling thread.

13

3.4.5 nexus_thread_equal()

int nexus_thread_equal (nexus_thread_t t1,
nexus_thread_t t2)

Compare the two thread IDs, t1 and t2. If they are the same then this returns non-zero,
otherwise it returns zero.

3.4.6 nexus_thread_once()

nexus_thread_once_t once_control = NEXUS_THREAD_ONCE_INIT;

int nexus_thread_once(nexus_thread_once_t *once_control,
void (*init_routine) ())

The first call to nexus_thread_once() by any thread in a context, with a given once_control,
will call the init_routine() with no arguments. Subsequent calls of nexus_thread_once()
will not call the init_routine(). On return of nexus_thread_once() it is guaranteed that
init_routine() has completed. The once_control parameter is used to determine whether
the associated initialization routine has been called.

This returns 0 upon successful completion, otherwise -1.

3.4.7 nexus_thread key.create()

typedef void (*nexus_thread_key_destructor_func_t)(void *value);

int nexus_thread_key_create(
nexus_thread_key_t *key,
nexus_thread_key_destructor_func_t func)

Create a thread specific data key that is visible to all threads in the context, and place that
key in the key argument. Although the same key value may be used by different threads, the
values bound to the key by nexus_thread setspecific() are maintained on a per-thread
basis.

The value associated with a new key is NULL in all active threads, and will be initialized to
NULL in all threads that are subsequently created.

If func is not NULL, then upon termination of the thread if the value for this key is not NULL
the function pointed to by func is called with the current value for the key as its argument.

This function returns zero upon successful completion, or non-zero otherwise. A -1 return
indicates that the key name space is exhaused.

14

3.4.8 nexus_thread setspecific()

void nexus_thread_setspecific(nexus_thread_key_t key,
void *value)

Set the value associated with the thread specific data key to value. Different threads may
bind different values to the same key.

3.4.9 nexus_thread getspecific()

void nexus_thread_getspecific(nexus_thread_key_t key,
void **value)

Get the thread specific data value associated with key, and return it in the value argument.

3.4.10 nexusmutex_init()

void nexus_mutex_init(nexus_mutex_t *mutex,
nexus_mutexattr_t *attr)

Initialize the mutual exclusion lock, mutex. The attributes for the mutex are specified by
attr. Default attributes will be used if attr is NULL.

The result of calling nexus mutex lock() or nexusmutex_unlock() on a mutex that has
not been initialized is undefined.

3.4.11 nexus_mutex_destroy()

void nexus_mutex_destroy(nexus_mutex_t *mutex)

Destroy the mutex that was initialized with nexus mutex_init(). The result of calling

nexus_mutex_lock() or nexusmutex_unlock() on a mutex that has been destroyed is un-
defined.

3.4.12 nexus_mutex_lock()

void nexus_mutex_lock(nexus_mutex_t *mut ex)

Block until the mutual exclusion lock, mutex, is acquired. This may or may not be imple-
mented as a spin lock (i.e., busy wait).

15

3.4.13 nexus_mutex_unlock()

void nexus_mutex_unlock(nexus_mutex_t *mutex)

Unlock the mutual exclusion lock, mutex, enabling another thread to acquire the mutex.
Fairness in locking is not guaranteed; that is, a thread is not guaranteed to acquire a lock if
other threads are also attempting to acquire the same lock.

3.4.14 nexus_cond_init()

void nexus_cond_init(nexus_cond_t *cond,
nexus_condattr_t *attr)

Initialize the condition variable, cond. The attributes for the condition are specified by attr.
Default attributes will be used if attr is NULL.

The result of calling any other nexus_cond_*() function on a condition that has not been
initialized is undefined.

3.4.15 nexus_cond_destroy()

void nexus_cond_destroy(nexus_cond_t *cond)

Destroy the specified condition. The result of calling any other nexus_cond_*() function on
a condition that has been destroyed is undefined.

3.4.16 nexus_cond_wait()

void nexus_cond_wait(nexus_cond_t *cond,
nexus_mutex_t *mutex)

Atomically release mutex and wait on cond. When the function returns, mutex has been
reacquired.

If the thread executing the function has not acquired mutex, the result is undefined.

3.4.17 nexus_cond_signal()

void nexus_cond_signal(nexus_cond_t *cond)

Signal the specified condition, waking up one thread that is suspended on this condition. If
no threads are suspended on this condition, this call will have no effect.

16

3.4.18 nexus_cond_broadcast()

void nexus_cond_broadcast(nexus_cond_t *cond)

Unsuspend all threads suspended on the specified condition.

3.5 Communication

Functions are provided for issuing remote service requests:

e nexus_init_remote_service_request: initiate a remote service request

e nexus_sizeof TYPE: determine the amount of message buffer space needed to send
data values of a special TYPE

e nexus_put_TYPE: place a data value of a special TYPE in a message buffer

e nexus_check buffer_size: check the message buffer for overflow, and, if necessary,
resize the buffer

e nexus_send.remote_service_request: issue a remote service request

When a remote service request is executed by a handler, primitive functions are provided
for handling it:

e nexus_get_TYPE: extract a data value of a special TYPE from a message buffer

e nexus_stash buffer: stash the buffer so that it is accessible outside of the message

handler

e nexus_get_stashed TYPE: extract a data value of a special TYPE from a stashed message
buffer

e nexus_free_stashed buffer: free a stashed buffer
Other handler related primitives include the following:

e nexus_register handlers: register handlers
e nexus_substitute_handler: change a handler registration

e nexus_poll: handle any outstanding messages

17

Handlers can be either threaded or non-threaded. A threaded handler executes in a thread
created specifically for it, is passed a stashed buffer of type nexus_stashed buffer_t, and
has no restrictions on what it may do. A non-threaded handler executes in an existing
thread, is passed a buffer of type nexus_buffer_t, and has some restrictions on what it may
do. The following are noteworthy items regarding handler design and behavior:

e Remote service requests between any two contexts using non-threaded handlers are
performed in sequence. No other constraint is placed on the order in which remote
service requests are executed; in particular, they can be executed concurrently with
other non-threaded handlers requested from other contexts, and with other threaded
handlers from any context. There is no ordering of threaded handlers.

e The buffer that is passed to a non-threaded handler is automatically freed upon exit
from the handler. If it is required that the buffer persist after the completion of
the handler, then it must be stashed using nexus_stash buffer() and later freed by
nexus_free_stashed buffer().

e The stashed buffer that is passed to a threaded handler must be explicitly freed by a
call to nexus_free_stashed buffer().

e The nexus get TYPE() routines can be wused to operate only on
nexus_buffer_t buffers, and only within non-threaded handlers. The nexus_get_stashed TYPE(,
routines must be used to access stashed buffers, either from threaded handlers or from
other threads.

e A non-threaded handler must not suspend indefinitely. In some implementations of
Nexus, all non-threaded handlers may be called in sequence from within a single thread.
Therefore, if a non-threaded handler suspends, it will indefinitely postpone the execu-
tion of other handlers. If the behavior of a handler requires suspension, that handler
must either create a thread using nexus_create_thread() in which to implement that
behavior, or must be a threaded handler.

e Any data that is put in a buffer (using nexus_put_TYPE() must not change between the
nexus_init_remote_service request() and the nexus_send remote_service request().
This allows some implementations of Nexus to optimize away a data copy when sending
remote service requests.

e Some care must be taken to avoid deadlock between the thread sending a remote
service request and the non-threaded handler for that remote service request. For
example, when sending a remote service request from a context to the same context,
the non-threaded handler may be invoked from the same thread that sent the remote
service request. Thus, the non-threaded handler must not try to lock a resource which
the sending thread already has locked and will not release until after the send has
completed.

18

3.5.1 nexus_init_remote servicerequest()

void nexus_init_remote_service_request(
nexus_buffer_t *buffer,
nexus_global_pointer_t *gp,
char *handler_name,
int handler_id,
int force_translation)

Allocate and initialize a message buffer to be sent to the node specified by gp. gp is used
to determine what sort of data translation is needed, if any. If the force_translation flag
is set to a nonzero value, data placed in the buffer will always be translated to a machine-
independent format.

The handler invoked to service the request is specified by the value of the handler.id
and handler name arguments. Handler names and identifiers are local to a context. The
handler will be invoked in the context specified by gp with two arguments: the local address
corresponding to gp, and a local pointer to a buffer with the same contents as buffer.

Return a buffer in buffer that can be packed using nexus_put_TYPE calls, or NULL if a
buffer cannot be successfully initialized.

Invoking init_remote_service request() on a NULL global pointer results in a fatal run-
time error.

3.5.2 nexus_sizeof TYPE()

size_t nexus_sizeof _TYPE(nexus_buffer_t xbuffer,
int count)

Return the size in bytes required to encode count items of data type TYPE into buffer. This
can be used to calculate the precise size of the message buffer needed for a given message.

3.5.3 nexus_sizeof_global_pointer()

int nexus_sizeof_global_pointer(nexus_buffer_t *buffer,
nexus_global_pointer_t *gp,
int count,
int *n_elements)

Return the size in bytes required to encode the first count elements of the global pointer
array, gp. Set n_elements to the number of nexus_put_TYPE() operations that will be used
by nexus_put_global_pointer() to put these global pointers into the buffer; this is for use
with nexus_set buffer_size().

19

The size of a global pointer varies, depending upon the context to which it points; thus the
extra gp argument. Global pointers that point to the same context have the same size.

3.5.4 nexus_set_buffer_size()

void nexus_set_buffer_size(nexus_buffer_t *buffer,
int size,
int n_elements)

Sets buffer to be able to hold size bytes of data and n_elements of data. n_elements
should be the number of nexus_put_TYPE() operations that will subsequently be invoked on
this buffer, or -1 if that number is not known.

This procedure does not have to be called. If it is not called, the number of nexus_put_TYPE()
operations is assumed to be unknown, and nexus_put_TYPE() and nexus_check buffer_size()

will be used to fill in the buffer.

3.5.5 nexus_put_TYPE()

void nexus_put_TYPE(nexus_buffer_t *buffer,
TYPE *data,
int count)

Copy count data elements from address data to the message buffer referenced by buffer.

Convert data to a machine-independent form if necessary. These operations do not check for

buffer overflow; the compiler must either allocate a buffer of adequate size using nexus_set_buffer_size
or generate calls to nexus_check buffer_size.

Valid TYPE values include float, double, short, ushort, int, u.int, long, u_long, char, u_char,
and global_pointer.

Notes It is not clear how 64-bit integers will be handled. Are these longs? Are they long
longs?

3.5.6 nexus_check buffer_size()

int nexus_check_buffer_size(nexus_buffer_t *buffer,
size_t slack,
int increment)

Check that the message buffer has at least slack bytes remaining. If no resizing is necessary,
leave buffer unchanged and return non-zero. If resizing is necessary, increase the size by

20

increment byte increments until the buffer has at least slack bytes remaining. If resizing
is successful, modify buffer to a new, larger buffer and return non-zero. Otherwise, if
increment is equal to zero and slack bytes are not available in the buffer, then leave
buffer unchanged and return zero. Note that buffer must be a buffer structure previously
allocated by a call to nexus_init_remote service request.

The slack argument should be calculated by using nexus_sizeof_TYPE().

3.5.7 nexus_send remoteservicerequest()

void nexus_send_remote_service_request(
nexus_buffer_t *buffer)

void nexus_send_urgent_remote_service_request(
nexus_buffer_t *buffer)

Generate a remote service request message to the node and context referenced by the
global pointer gp used in the nexus_init_remote_servicerequest() call used to create
the buffer. After the message is generated, the buffer is freed.

Ounly two constraints are placed on when remote service requests are executed. First, an
urgent remote service request executes within a bounded time (i.e. no indefinite postpone-
ment). Second, two remote service requests sent from one context to another are executed
in order and in sequence. (Therefore, if two threads each send a remote service request to
the same context, they can guarantee the order in which those requests will be handled by
guaranteeing the order in which they are sent.)

3.5.8 nexus_get TYPE()

void nexus_get_TYPE(nexus_buffer_t *buffer,
TYPE *dest,
int count)

Copy count elements from the message buffer to location dest. Convert data from a
machine-independent form if necessary.

These routines can be used only within a handler. To save and access a buffer outside a han-
dler, nexus_stash_buffer(), nexus._get_stashed TYPE(), and nexus_free_stash buffer()
must be used.

See nexus_put_TYPE() for a list of the valid TYPE values.

21

3.5.9 nexus_stash buffer()

void nexus_stash_buffer(nexus_buffer_t *buffer,
nexus_stashed_buffer_t *stashed_buffer)

When a remote service request is handled, the buffer that is passed to the handler is valid
only for the duration of that handler and is automatically freed upon completion of the
handler. It cannot, for example, be copied into a user data structure, to be accessed later
from outside of the handler.

nexus_stash buffer() saves the passed buffer so that it can be accessed later via the
nexus_get_stashed TYPE() calls, and then freed by
nexus_free_stashed buffer(). This stashed buffer is placed into stashed buffer.

It is legal to stash a buffer from which some data has already be retrieved using nexus_get_TYPE()
calls. Subsequent nexus_get_stashed TYPE() calls will continue retrieving data where the
nexus_get _TYPE() calls left off.

This mechanism means that an implementation of Nexus need not buffer data received in
a remote service request, if that data can be used immediately. Yet it also allows selective
buffering where it is advantageous to do so (for example, to enqueue a buffer for later pro-
cessing). If a Nexus implementation is not buffering messages, this operation must allocate a
buffer and stash the message in that buffer. But if a Nexus implementation is already buffer-
ing messages, this procedure can efficiently convert the buffer to a stashed buffer without
doing an extra copy of the buffer contents.

3.5.10 nexus_get_stashed TYPE()

void nexus_get_stashed _TYPE(nexus_stashed_buffer_t *stashed_buffer,
TYPE *dest,
int count)

Same as nexus_get_TYPE but obtains values from a stashed buffer.

3.5.11 nexus_free_stashed_buffer()

void nexus_free_stashed_buffer(nexus_stashed_buffer_t *stashed_buffer)

Free the stashed buffer that was created by nexus_stash_buffer().

3.5.12 nexus_register_handlers()
typedef void (*nexus_non_threaded_handler_func_t)(

22

void *address,
nexus_buffer_t *buffer);
typedef void (*nexus_threaded_handler_func_t)(
void *address,
nexus_stashed_buffer_t *buffer);
typedef enum _nexus_handler_type_t
{
NEXUS_HANDLER_TYPE_THREADED,
NEXUS_HANDLER_TYPE_NON_THREADED
} nexus_handler_type_t;

typedef struct _nexus_handler_t {
char * name;
int id;
nexus_handler_type_t type;
nexus_handler_func_t func; /* nexus_non_threaded_handler_func_t */
/* or nexus_threaded_handler_func_t */
} nexus_handler_t;

void nexus_register_handlers(nexus_handler_t *handlers)

A handler is a function that is executed in response to a remote service request. A
threaded handler executes in a thread created specificly for it, while a non-threaded han-
dler executes in an existing thread. The arguments to a handler are the address portion
of a global pointer and a pointer to a Nexus buffer. A handler must be registered by a
nexus_register handlers() call before it can be invoked. Handlers are local to a context.

The handlers variable is an array of nexus_handler.t structures, terminated by an ele-
ment with a NULL func field. This call associates a handler name and id with a function,
func. The type specifies whether the handler is threaded or non-threaded. A handler name
must be unique within a context. The handler id and function names need not be unique.

A handler is run in the context specified by the remote service request and has as arguments
the local address specified by the global pointer and a buffer. A non-threaded handler takes
a nexus_buffer_t buffer, which is automatically freed on exit from the handler. A threaded
handler takes a nexus_stashed buffer_t buffer, which must be freed explicitly by calling
nexus_free_stashed buffer().

In the current implementation, the handler id must be the hash value for the handler name,
as returned by nexus_handler_ hash() (or the equivalent value generated at compile time).
The problem addressed here is that of a global name space. Some sort of global name space
is needed for handlers: one must know the “name” of a handler in order to invoke it by a
remote service request. The string name of the handler function is a natural choice since
this information is already available to the compiler. Unfortunately, this means that every

23

remote service request handler invocation would require a string to function pointer lookup,
which would be fairly expensive. A more efficient global name for a handler would a unique
integer; however, this is much more difficult to implement without a special link step. In
the current implementation, our compromise is to use the string name of the handler as the
global name, but also to pass the hash value for that name along with it. And as long as
the hash function is well known, the hash value for a name can be generated at compile
time. This should greatly speed the name to pointer lookup, with only a small increase in
communication cost and little additional complexity beyond using just the string.

3.5.13 nexus_substitute_handler()

void nexus_substitute_handler(
char *name,
int id,
nexus_handler_type_t new_type,
nexus_handler_func_t new_func,
nexus_handler_type_t *old_type,
nexus_handler_func_t *old_func)

Replace the handler function for the handler designated by the name and id with new_func
which is of the specified new_type. Return a pointer to the current handler function in
old_func, and its type in old_type. If there is no handler is registered for the designated
name and id, then register this new handler and return NULL in old_handler _func.

In the current implementation, id should be the hash value for name, as returned by
nexus_handler_hash() (or the equivalent value generated at compile time).

3.5.14 nexus_handler_hash()

int nexus_handler_hash(char *name)

Return the hash value for the passed handler name.

The hash value is the sum of the ASCII values for the characters in name, modulo 1021.

3.5.15 nexus_poll()

void nexus_poll()

Handle any outstanding remote service requests to the context from which this function is
called. If none are outstanding, then return immediately.

24

This function is useful only in a Nexus implementation that does not automatically handle
remote service requests asynchronously as they arrive. Two such cases are a single threaded
implementation (§ 3.9.2), and a non-preemptive thread implementation. In an implementa-
tion that does handle remote service requests asynchronously (a preemptive multi-threaded
implementation), nexus_poll() does nothing.

3.6 Global Pointer Manipulation

3.6.1 nexus_global_pointer()

void nexus_global_pointer(nexus_global_pointer_t *new_gp,
void *address)

Place a global pointer that references the supplied address into new_gp.

3.6.2 nexus_convert.global pointer_address()

void *nexus_convert_global_pointer_address(nexus_global_pointer_t *gp)

Return the local address for the specified global pointer. This operation assumes that the
node and context of the global pointer are the same as the current node and context. If not,
the results are unpredictable.

3.6.3 nexus._destroy_global pointer()

void nexus_destroy_global_pointer(nexus_global_pointer_t *gp)

Destroy the specified global pointer, freeing its associated resources. The result of calling any
Nexus function with a global pointer that has been destroyed (or with a copy of a destroyed
global pointer) is undefined.

Any global pointers that are not explicitly destroyed using this function will be destroyed
when the context in which they reside is destroyed.

3.6.4 nexus.null_global pointer()

void nexus_null_global_pointer(nexus_global_pointer_t *gp)

Place a NULL global pointer into gp.

25

3.6.5 nexus_is.null _global pointer()

int nexus_is_null_global_pointer(nexus_global_pointer_t *gp)

Return non-zero if gp is a NULL global pointer, otherwise return zero.

3.7 Inquiry Functions

3.7.1 nexusnode_type()

nexus_arch_type_t nexus_node_type(nexus_global_pointer_t *gp)

Return the architecture identifier for node pointed to by the global pointer. Each different
type of machine has a unique architecture identifier.

3.7.2 nexus_node_class()

nexus_class_type_t nexus_node_class(nexus_global_pointer_t *gp)

Return the class identifier for the node pointed to by the global pointer. Each node type falls
within a node class. All nodes within a node class can communicate with each other without
performing any data conversion (i.e., they have the same byte ordering, word length, and
floating point representation).

3.7.3 nexus_same_context()
int nexus_same_context(nexus_global_pointer_t *gpi,

nexus_global_pointer_t *gp2)

Return non-zero if the two global pointers point to the same context on the same node, or
zero otherwise.

3.7.4 nexus_same_global_pointer()

int nexus_same_global_pointer(nexus_global_pointer_t *gpi,
nexus_global_pointer_t *gp2)

Return non-zero if the two global pointers point to the same address in the same context on
the same node, or zero otherwise.

26

3.7.5 nexus_global_pointer_to_current_context()

int nexus_global_pointer_to_current_context(
nexus_global_pointer_t *gp)

Return non-zero if the global pointer points to an address in the context of the calling thread.

3.8 Miscellaneous

3.8.1 nexus_master._node()

int nexus_master_node()

Return non-zero if the current node is the master node, or zero otherwise.

3.8.2 nexus_exit()

void nexus_exit(int rc,
int shutdown)

Terminate the computation with a return code of rc. All threads, nodes, and contexts
remaining in the computation are terminated. It is guaranteed that NexusExit() will be
called on all contexts.

If shutdown is not 0, then nexus_shutdown() is called by nexus_exit(). If shutdown is
0, then nexus_shutdown() is not called by nexus_exit(). Instead, it must be called from
the user program after the exit.

3.8.3 nexus_shutdown()

void nexus_shutdown()

Shut down Nexus. This function is called automatically by nexus_exit () if the shutdown
argument to nexus_exit () is not 0. In other situations, the user must call nexus_shutdown ()
explicitly after calling nexus_exit(). For example, the last global destructor in CC++,
which executes after nexus_exit (), calls nexus_shutdown().

3.8.4 nexus_abort()

void nexus_abort()

Terminate the computation. All threads, nodes, and contexts remaining in the computation
are terminated. NexusExit () may not be called on all contexts.

27

3.9 Defined Symbols

Several symbols are beneficial to an application that uses Nexus.

3.9.1 NEXUS_NON_PREEMPTIVE_THREADS

NEXUS_NON_PREEMPTIVE_THREADS is defined in nexus.h if the thread module being used by
Nexus is non-preemptive.

On such a system, nexus_poll() or any of the other Nexus communication routines must
be called sufficiently often to handler outstanding remote service requests.

3.9.2 NEXUS_SINGLE_THREADED

NEXUS_SINGLE_THREADED is defined in nexus.h if the thread module being used by Nexus
does not support multiple threads.

Much to our dismay, some machines do not support multithreading. In order to support
these machines, Nexus has been defined in such a way that a subset of the full Nexus
functionality can still work in this single-threaded environment:

e nexus_poll() will handle any outstanding remote service requests. It is assumed that
the application will call nexus_pol1() sufficiently often for this to be effective.

e Only a single thread can exist at a time. When a new context is created, there
are no threads executing in that context. A new thread can be created by using
nexus_create_thread() from a handler in the context. If an additional call is made to
nexus_create_thread() before the previous thread terminates (nexus_terminate_current_thre
this will generate a fatal error and cause the computation to abort (nexus_abort()).

NEXUS_SINGLE_THREADED allows the application using Nexus to adapt its behavior at com-
pile time for this special environment.

3.9.3 NEXUS_USE_MACROS

By default, all Nexus calls are function calls. This simplifies debugging and minimizes code
size. Many Nexus routines, however, may map trivially to underlying system routines. (For
example, the Nexus thread routines map to Posix thread routines.) In this case, it may be
more efficient to implement some Nexus functions as C macros which invoke the underlying
system routines.

If NEXUS_USE_MACROS is defined before nexus.h is included in an application, then C macros
are used where appropriate to avoid function call overheads for some Nexus routines.

28

4 Package-Supplied Functions

A package using Nexus must provide a small set of functions for use by Nexus:

e NexusBoot: a function that is invoked upon creation of the context (required)
o NexusExit: a function that is invoked upon termination of the context (optional)

e NexusUnknownHandler: a function that is invoked if a remote service request is made
to this context with an unknown handler (optional)

4.1 NexusBoot()

int NexusBoot()

NexusBoot () is automatically invoked when a context is created (see § 3.3.1). If may be
used, for example, to register handlers required by the context.

If NexusBoot () returns a non-zero value, then the creation of this context will fail (see
§ 3.3.1), and nexus_create_context () will use this value for its return code. If NexusBoot ()
returns zero, then context initialization will complete normally. It is recommended that
NexusBoot () return a positive value to indicate failure, since negative values are returned
by nexus_create_context () when context creation fails due to resource limitations.

4.2 NexusExit()

void NexusExit()

If there is a handler registered using the name NexusExit, that function will be called

immediately before a context is terminated (see § 3.3.4). This must be a non-threaded
handler.

4.3 NexusUnknownHandler ()

void NexusUnknownHandler(void *address,
nexus_buffer_t *buffer,
char *handler_name,
int handler_id)

If there is a handler registered using the name NexusUnknownHandler, that function will be
invoked in a context when a remote service request is made to the context using an unknown

29

handler. The address and buffer are the same as those of a normal handler: the global
pointer’s local address and the buffer used in the remote service request. The handler name
and handler_id arguments are those of the unknown handler specified in the remote service
request. This must be a non-threaded handler.

30

