Integrating Task and Data
Parallelism with the Collective
Communication Archetype

K. Mani Chandy, Rajit Manohar
Berna L. Massingill, Danniel I. Meiron

CRPC-TR94459
June, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

This work was supported in part by the AFOSR and by
the NSF.

Integrating Task and Data Parallelism with the
Collective Communication Archetype*

K. Mani Chandy, Rajit Manohar, Berna L. Massingill, Daniel I. Meiron
California Institute of Technology

Pasadena, CA

Abstract

A parallel program archetype aids in the develop-
ment of reliable, efficient parallel applications with
common computation/communication structures by
providing stepwise refinement methods and code li-
braries specific to the structure. The methods and li-
braries help in transforming a sequential program into
a parallel program via a sequence of refinement steps
that help maintain correctness while refining the pro-
gram to obtain the appropriate level of granularity for
a target machine. The specific archetype discussed
here deals with the integration of task and data par-
allelism by using collective (or group) communication.
This archetype has been used to develop several appli-
cations.

1 Introduction

Archetypes. Many parallel applications share com-
mon features in design, testing, debugging, perfor-
mance tuning, and program structuring. A paral-
lel program archetype is an abstraction that embod-
ies common features shared by parallel applications
within a domain. An archetype aids the development
of reliable, efficient applications within a domain by
providing design methods and code libraries appro-
priate for the domain, with specific emphasis on step-
wise refinement and selection of the appropriate degree
of granularity. Archetypes are language-independent;
they allow application developers to continue to use
the sequential languages and program development en-
vironments with which they are familiar.

Reuse of design methods. The design methods
and refinement techniques provided by a parallel pro-
gram archetype can be reused for many applications

*This work was supported in part by the AFOSR under grant
number AFOSR-~91-0070, and in part by the NSF under Coop-
erative Agreement No. CCR-9120008. The government has
certain rights in this material.

91125

with a common computation/communication struc-
ture, improving productivity.

Use of familiar tools. The methods and tech-
niques provided by an archetype are also language-
independent; the code libraries associated with an
archetype can be implemented using different parallel
languages and libraries (for example, Fortran M [12]
and PVM [3]). Stepwise refinement allows much of the
work of developing a parallel program to be done in a
sequential environment, using familiar tools and tech-
niques; the choice of a particular parallel language or
library can be deferred until the last step of the refine-
ment process. This contributes both to productivity,
by allowing developers to do most of their work in a
familiar environment, and to portability, by minimiz-
ing the work required to convert an application to use
a different parallel language or library.

Integration of task and data parallelism. The
archetype presented in this paper is the collective com-
munication archetype, which we use to integrate task
and data parallelism and which is appropriate for a
variety of applications including mesh, spectral, and
splitting computations. The archetype is helpful in de-
veloping programs structured as task-parallel compo-
sitions of SPMD (single program, multiple data) pro-
grams. Task-parallel compositions of SPMD programs
are appropriate in a number of situations. Total sys-
tem (e.g., global climate) simulations are composed of
different kinds of subsystems (e.g., ocean, land, and
atmosphere simulations). Similarly, computer-aided
design tools used in the design of total systems re-
quire the integration of programs dealing with differ-
ent disciplines—for example, design of a satellite sys-
tem involves thermal vibration, optimum trajectory,
and costing calculations.

Compositionality. The collective communication
archetype focuses on organizing processes into groups
and on defining collective communication between and

within these groups. A key feature of archetypes is an
emphasis on compositionality: defining ways to com-
bine units into larger units such that the internal de-
tails of each unit are hidden. Compositionality facili-
tates code reuse.

Organization of this paper. The remainder of
this paper is organized as follows: §2 presents two mo-
tivating examples of integrating task and data paral-
lelism. §3 through §6 describe the collective communi-
cation archetype: §3 describes how the archetype or-
ganizes collections of processes into process groups and
process networks; §4 describes the archetype’s model
of distributed data; §5 discusses communication be-
tween process groups; and §6 discusses communica-
tion within process groups. §7 describes a method for
program development based on the archetype. §8 de-
scribes implementation experiments. §9 discusses re-
lated work. §10 summarizes results so far and suggests
directions for future work.

2 Examples of integrating task and
data parallelism

In this section, we present two examples of problems
that can be structured as task-parallel compositions of
SPMD programs; these examples illustrate some com-
putation and communication structures encompassed
by the collective communication archetype.

2.1 Climate simulation

Consider a climate-model simulation consisting of
two coupled simulations, an ocean simulation and an
atmosphere simulation, that exchange boundary data
periodically, as shown in figure 1.

atmosphere

ocean

simulation simulation

Figure 1: Climate simulation.

Such a simulation can be refined into a task-parallel
composition of two SPMD calculations, as shown in
figure 2. Observe that exchanging boundary data
between the two simulations requires communication
paths between boundary processes in the ocean sim-
ulation and corresponding boundary processes in the
atmosphere simulation.

e meecmmsscceecccscsnaa e eeemmecccmeccacee———a

..

ocean atmosphere
simulation

Figure 2: Climate simulation (refinement).
2.2 Pipelined computation using FFT

A number of computations (such as convolution,
correlation, and filtering) can be represented by the
following sequence of steps: (1) Perform a fast Fourier
transform (FFT) on the data (assumed to be one-
dimensional); (2) manipulate the result of the trans-
form elementwise; and (3) perform an inverse FF'T on
the result of the manipulation.

To perform this sequence of steps on many sets of
data, we can use a pipeline, with one stage for each of
the above steps, as shown in figure 3.

elementwise

operation

Figure 3: FFT pipeline.

This computation can be refined into a composition
of three SPMD computations, one for each stage of the
pipeline, as shown in figure 4.

P Y e eceamean, ,emmmmemmm—eaa

N ececccccceccccencmmnaae

............................

elementwise
operation FFT

Figure 4: FFT pipeline (refinement).

3 Process structures
3.1 Overview

The collective communication archetype organizes
collections of processes using two constructs: process
groups, whose members are identical, and process net-
works, whose members need not be identical. These
constructs are analogous to the array and record con-
structs used in defining composite data types.

The process group is analogous to the array con-
struct: An array is a composition of data items of
the same type, in which each data item can be ref-
erenced by an index. Similarly, a process group is a
composition of identical processes, in which each pro-
cess can be referenced by an index (relative to the
process group).

The process network is analogous to the record con-
struct: A record is a composition of data items of dif-
ferent types, in which each data item can be referenced
by a name or other non-numeric handle. Similarly,
a process network is a composition of non-identical
processes or process groups, in which each process or
group can be referenced by a name or other handle.

Like the array and record constructs, process
groups and networks can be used to define nestings
of arbitrary complexity. However, in this paper we
focus on simple one- and two-level nestings: single
process groups (effective for representing SPMD com-
putations) and networks of process groups (effective
for representing task-parallel compositions of SPMD
computations). 4

For example, the climate-model simulation of §2.1 is
organized as a network of two process groups, as shown
in figure 5. (We defer consideration of communication
until §5.)

,eeeceececcmcenmencenana, yeemeeccecmccecccmanacen,

..

process group for
ocean simulation

process group for

atmosphere simulation

process network for
climate simulation

Figure 5: Two-level nesting for climate simulation.

3.2 Details

In a one- or two-level nesting, a process group repre-
sents an SPMD computation—a collection of identical
processes executing the same program. We can create
a process group thus:

create_group(
group_handle,
executable_file_name,
number_of_processes,
number_of_processors,
array_of_processors,
processes_to_processors_map,
number_of_sending_ports,
array_of_sending_ports,
number_of_receiving_ports,
array_of_receiving_ports

)
where:

e group.handle (output) uniquely identifies this
process group.

e executable file name (input) is the name of the
program to be executed by each process.

¢ number_of processes (input) is the number of
processes in the group.

e number_of _processors (input) is the number of
processors to be used.

e array.of_processors (input) identifies the pro-
cessors to be used for the group.

e processes_to_processorsmap (input) indicates
how processes are mapped to processors—e.g., by
blocks or cyclically.

e number_of_sending ports (input),
array.of _sending. ports (in-
put), number of receiving ports (input), and
array_of _receiving ports (input) define how
this process group communicates with other pro—
cess groups, as described in §5.2.

We combine process groups into networks as fol-
lows:

begin_network() ;
create_group(groupl,) ;
create_group(group2,) ;

end_network() ;

For example, the network for the climate simulation
of figure 5 would be defined thus:

begin_network() ;
create_group(ocean,
"oceansinm", 4,
4, processor_array_ocean, BLOCK,
S I
create_group (atmosphere,
"atmosim", 2,
2, processor_array_atmosphere, BLOCK,

S I

end_x'l.e;'work() H
4 Distributed data structures

In the collective communication archetype, data
structures can be distributed over process structures
(networks and groups), with the members of a particu-
lar data structure distributed among the members of a
particular process structure. In this paper, we restrict
attention to distributing arrays over process groups, in
much the same manner as arrays are distributed over
SPMD computations in Fortran D [13] and HPF [14].

In our model, a distribution of a data structure
over a process structure can be completely specified
by a one-to-one map from global indices onto {process-
number, local-indices} pairs. Thus, each element of a
distributed array corresponds to exactly one element
of one process’s local section.

5 Communication between groups
5.1 Overview

Communication between groups is collective and
based on transmitting all or part of a distributed data
structure from one process group to another. Our
model of group-to-group communication is intended
to meet two goals: flexibility and compositionality.

Our model of group-to-group communication is
flexible in that it allows transmitting all or part of
a data structure from one group to another. It sup-
ports both the transmission of whole data structures
needed for the FFT pipeline example of §2.2 and the
transmission of partial data structures needed for the
climate simulation example of §2.1.

Our model is compositional in that it allows two
process groups to communicate without knowing the
details of each other’s internal structure and data dis-
tribution. If process groups A and B are composed in
a process network, the distribution of data structures
in process group A can be varied without requiring
code changes in process group B.

For simplicity, we define communication between
groups in terms of group sends and group receives.

In a group send, the sending group collectively sends
part or all of one of its distributed data structures; in
a group receive, the receiving group receives into all
or part of one of its distributed data structures. The
sending group and the receiving group can be differ-
ent groups, or they can be the same group (in which
case group communication is equivalent to intragroup
collective communication). The data being sent need
not be distributed in the same way in the sender as
in the receiver, nor need the sending group and the
receiving group have the same structure or number of
processes, though the total amount of data to be sent
must be the same as the total amount of data to be
received.

This intergroup communication problem is a spe-
cial case of the interoperability problem of interfacing
different types, as shown in figure 6.

type A | typeB

interface

Figure 6: The interoperability problem.

In our case, types A and B are each defined by
two functions—a distribution function from global to
local indices, and a restriction (or subsetting) function
on the global index set—and the interface is defined
as a mapping from one (restricted) index set to the
other. Figure 7 illustrates this for the climate-model
simulation example of §2.1.

atmosphere
data

Figure 7: Interoperability for the climate simulation.

While support for the general case (any combina-
tion of distribution, restriction, and interface map-
pings) is possible in principle, it may be cumbersome

to implement, so we restrict attention to a few com-
mon types that suffice to cover many applications.
As an additional simplification, we require that
all group-to-group communication take place over
explicitly-defined typed communication paths or chan-
nels, analogous to the typed process-to-process chan-
nels of Fortran M [12]. A group-to-group channel is
typed with the distribution and restriction functions
of both the sender and the receiver as well as the in-
terface mapping. This information makes it possible
to translate each group-to-group channel into a set
of process-to-process communication paths, as illus-
trated in the refinement steps in §2.1 and §2.2.

5.2 Details

Group-to-group channels are declared at the level of
the enclosing nesting; each path establishes two ports,
a sender and a receiver, which are passed to the process
groups. A group-to-group channel is defined thus:

channel (
sending_group_handle,
receiving_group_handle,
sending_group_distribution,
sending_group_restriction,
receiving_group_distribution,
receiving_group_restriction,
interface_map,
sending_port,
receiving_port

)
where:

¢ sending group_handle (input)
and receiving group_handle (input) are group
handles defined by create_group operations, and
can be identical.

e sending group.distribution

(input) defines the distribution of the data
structure from which data to be sent is ex-
tracted. sending.group.restriction (input)
defines what part of the data structure is to be
sent. Similarly, receiving group distribution
(input) and receiving group_restriction (in-
put) define the distribution of the data structure
into which data is to be received and indicate
what part is to be received into.

e interface.map indicates how the subset of data
sent is to be mapped into the subset of data to be
received—e.g., normal or transposed.

¢ sending port (output) and receiving port
(output) can then be included in sending and

receiving groups’ array_of_sending ports and
array.of_receiving ports.

Group sends and group receives are then performed
SPMD-style by all processes in the process group us-
ing the sending and receiving ports defined by this
channel() operation, thus:

group_send(
sending_port,
data_location,
)

group_receive(
receiving_port,
data_location,

)

where:

¢ sending port (input) and receiving port (in-
put) are the result of a channel() operation.

e data_location (input for group_send and out-
put for group.receive) is the array from which
data is to be sent or into which data is to be re-
ceived. Observe that the channel, and thus the
port, specifies what parts of the data are to be
sent or received.

To exchange boundary information between the
coupled simulations of §2.1 requires two channels, one
in each direction. We expand the process-network def-
inition of §3.1 thus:

begin_network() ;
create_group(ocean,
"oceansinm", 4,
4, processor_list_ocean, BLOCK,
1, (ocean_send_port),
1, (ocean_receive_port)) ;
create_group(atmosphere,
"atmosinm", 2,
2, processor_list_atmosphere, BLOCK,
1, (atmosphere_send_port),
1, (atmosphere_receive_port)) ;
channel (ocean, atmosphere,
BLOCK(2,2),
EAST_BOUNDARY(1),
ROW(2),
WEST_GHOST_BOUNDARY(1),
NORMAL,
ocean_send_port,
atmosphere_receive_port) ;
channel (atmosphere, ocean,
ROW(2),
WEST_BOUNDARY(1),
BLOCK(2,2),
EAST_GHOST_BOUNDARY(1),

NORMAL,

atmosphere_send_port,

ocean_receive_port) ;
end_network() ;

6 Communication within groups

Some collective communication operations within
a process group can be defined as intergroup com-
munication actions in which the sending and receiv-
ing groups are identical. However, there are also
collective-communication operations that make sense
when applied within a process group but not when
applied to two process groups. (Extending the data
types analogy of §3.1, there are operations that make
sense when applied to arrays but not when applied
to records.) Within a group, therefore, the col-
lective communication archetype permits intragroup
collective communication operations based on point-
to-point communication with other members of the
group. Such operations include internal boundary ex-
change (the exchange of local section boundaries be-
tween neighboring processes) and global reduction op-
erations (e.g., global maximum or sum).

7 Stepwise refinement
7.1 Stepwise refinement for correctness

Parallel program archetypes are particularly useful
in guiding both stepwise development of new paral-
lel programs and stepwise parallelization of existing
sequential programs. Starting with a sequential algo-
rithm or program, the application developer can ap-
ply a sequence of small semantics-preserving transfor-
mations (refinements) to produce a parallel version of
the original algorithm or program. All intermediate
stages of this process are sequential programs and can
thus be developed, tested, and debugged using famil-
iar tools and techniques. The last intermediate stage
is a sequential simulated-parallel program that can be
transformed into an equivalent real-parallel program
in a simple, mechanical way.

The role of an archetype in this process is twofold.
First, it guides the process by providing a framework
for the simulated-parallel and real-parallel versions.
Second, it provides a program skeleton and collective
communication routines that encapsulate the details
of both simulated and real parallelism.

7.1.1 Simulating parallelism

A key feature of our approach to the stepwise devel-
opment of parallel programs is the simulated-parallel

version of the program. The simulated-parallel ver-
sion of the program under development addresses all
of the difficulties of the real parallel program (inter-
leaved execution, distributed memory, and interpro-
cess communication and synchronization) in the con-
text of a sequential program that can be developed
and debugged with familiar tools. Transforming this
simulated-parallel program into an equivalent “real-
parallel” program is straightforward and preserves cor-
rectness.

In the general case, simulating the operation of a
parallel program is a problem in discrete-event simu-
lation, and producing and debugging such a simula-
tion can be difficult. However, the collective commu-
nication archetype restricts interprocess interaction to
collective communication operations, which simplifies
the simulation, since the computation of each process
can be expressed as a sequence of local-computation
sections and collective communication operations.

In the simulated-parallel version of the program,
processes are represented by simulated processes, and
parallel execution is simulated by looping sequen-
tially over all simulated processes, for each local-
computation section or collective communication op-
eration. Distributed memory is simulated by giving
each simulated process a unique copy of program vari-
ables; each simulated process has access only to its
own copy of the variables. Communication operations
are simulated using simulated channels (implemented
as queues), in which an attempt to receive from an
empty channel is an error. (This restriction allows us
to claim that if the simulated-parallel version is cor-
rect, its real-parallel equivalent is also correct.)

The details of this simulation—looping over sim-
ulated processes and simulating communication—are
provided as part of the archetype implementation.

7.1.2 Example

As an example, consider a spectral-methods computa-
tion, in which data is organized as a two-dimensional
array, and the required calculations are composed of
row operations (in which an operation is applied inde-
pendently to each row of the array) and column oper-
ations (in which an operation is applied independently
to each column of the array). Such computations arise
in some computational fluid problems, in which the
row and column operations are fast Fourier transforms
or vectorized matrix solves. An effective way of par-
allelizing such computations is based on alternately
distributing the data by rows and by columns; for row
operations, the data is distributed by rows, and all
rows can be operated on in parallel, while for col-

umn operations, the data is distributed by columns,
and all columns can be operated on in parallel. The
required communication operations consist of row-to-
column and column-to-row redistributions—group-to-
group communications in which the sending and re-
ceiving groups are the same.

We can abstract from such computations a spe-
cialized version of the collective communication
archetype, the spectral-methods archetype. We now
describe how this archetype can be used to guide de-
velopment of a parallel program.

We begin with a sequential version of the program,
as illustrated by figure 8.

array A array A

apply
row
operation

b

bttt

apply
column
operation

Figure 8: Spectral-methods archetype, step 1.

We next observe that column operations on the
original matrix are equivalent to row operations on
its transpose, so an equivalent sequential program is
the one illustrated by figure 9.

array A array transpose(A)
apply — opply
row - -— column
operation - franspose - operation

Figure 9: Spectral-methods archetype, step 2.

Since row operations operate on all rows indepen-
dently, they can be performed in parallel; similarly for
column operations. Thus, we can partition the rows
of A among processes and perform row operations in
parallel; similarly, we can partition the rows of AT
(columns of A) among processes and perform column
operations in parallel, as shown in figure 10.

array transpose(A)
(EE =eR)
\ oparanon ,f
in parallel } { in parallel
- (coumm - Py 3
e s P e
opcmdon = operation /

Figure 10: Spectral-methods archetype, step 3.

This figure illustrates the operation of both the
simulated-parallel version and the real-parallel ver-
sion. The difference is that the simulated-parallel ver-
sion is a sequential composition of simulated-parallel
compositions:

repeat
for all simulated processes P
for all rows J in local section P
perform rov operation on rov J
endfor
endfor
perform simulated transpose
for all simulated processes P
for all rows J in local section P
perform column operation on row J
endfor
endfor
perform simulated transpose
endrepeat

while the real-parallel version is a parallel composition
of sequential compositions:

repeat
parallelfor all processes P
for all rows J in local section P
perform row operation on row J
endfor
perform transpose
for all rows J in local section P
perform column operation on row J
endfor
perform simulated transpose
endparallelfor
endrepeat

7.2 Stepwise refinement for efficiency

Parallel program archetypes can also be helpful in
refining an initial parallelization to improve its effi-
ciency. For example, if the archetype parameterizes
the quantities that determine granularity (e.g., num-
ber of processes and size of messages), the application
developer can easily experiment with using different
values for these quantities to improve performance.

Archetype-based performance models can also help ap-
plication developers in tuning for performance.

8 Implementation experiments

In this section, we describe a number of implemen-
tation experiments, in which work on one or more
real applications was used to guide development of
an archetype implementation (code library and pro-
gram skeleton). The archetypes discussed here are
specialized versions of the collective communication
archetype; the implementations are based on a variety
of parallel languages and libraries — Fortran M [12],
p4 [5]) with Fortran, PVM [3] with Fortran, and PVM
with C.

8.1 Single-group implementation experi-
ments

8.1.1 Mesh-computation archetype

In this archetype, data is distributed over a two- or
three-dimensional mesh. The basic structure of the
computation is a time-step loop, at each step of which
new values are computed for each point in the mesh,
with a point’s new values being computed as a function
of the old values at the point and at its neighbors.

This computation parallelizes readily; the mesh is
distributed among processes, and the required commu-
nication operations consist of an exchange of bound-
ary values with neighboring processes and (for some
computations) a global reduction operation.

This archetype has been used with two applications.
A two-dimensional version was used to parallelize a
computational fluid dynamics code that simulates high
Mach number compressible flow using a conservative
and monotonicity-preserving finite difference scheme
(18]. In addition, a three-dimensional version was used
to parallelize a computational electromagnetics code
that performs numerical simulation of electromagnetic
scattering, radiation, and coupling problems [2].

8.1.2 Spectral-methods archetype

In this archetype (described also in §7.1.2), data is a
two-dimensional array, and the computation consists
of a sequence of alternating row operations (operations
applied to each row) and column operations (opera-
tions applied to each column).

As described in §7.1.2, an effective way of paral-
lelizing such computations is based on alternately dis-
tributing the data by rows and by columns; for row
operations, the data is distributed by rows, and all
rows can be operated in parallel, while for column

operations, the data is distributed by columns, and
all columns can be operated on in parallel. The re-
quired communication operations consist of row-to-
column and column-to-row redistributions—group-to-
group communications in which the sending and re-
ceiving groups are the same.

Program skeletons and communication routines for
this archetype have been implemented, but have not
yet been used to develop application programs. Ex-
amples of spectral-methods computations are found
in computational fluid dynamics, where the row and
column operations are fast Fourier transformations or
vectorized matrix solves.

8.1.3 Linear-algebra archetype

This archetype is based on the parallel algorithms for
matrix and vector operations described in [21]. Data
consists of one-dimensional arrays (vectors) and two-
dimensional arrays (matrices), and the computation
consists of vector and matrix operations.

Parallelization is based on distributing arrays across
a grid of processes; required communication opera-
tions are for the most part based on recursive dou-
bling.

This archetype has been implemented and used to
develop code for some of the vector and matrix algo-
rithms in [21].

8.2 Multiple-group implementation ex-
periments

8.2.1 Splitting archetype

In this archetype, data is based on a two-dimensional
grid, and computation is a sequence of operations of
the following types: reading data from a (sequential)
input file; performing a row operation (an operation
applied to each row); performing a column operation
(an operation applied to each column); performing lo-
cal calculations on each cell; and writing data to a
(sequential) output file.

One approach to parallelizing this computation in-
volves creating four process groups: a single host-
process group for reading and writing sequential files; a
group of row processes for performing row operations;
a group of column processes for performing column op-
erations; and a group of local processes for performing
local calculations on grid cells. Row and column op-
erations and local calculations can then be done in
parallel; the required communication consists of redis-
tribution operations (e.g., from the row distribution
of the row-process group to the two-dimensional block
distribution of the local-process group).

This archetype has been used to parallelize the CIT
airshed model, which models smog in the Los Angeles
basin [10].

8.2.2 General
archetype

collective communication

We have also implemented a preliminary version of the
general collective communication archetype described
in §3.2; this implementation allows the user to define
networks of process groups and perform point-to-point
communication between processes in different groups.
Channel-based group-to-group communication as de-
scribed in §5.2 has not yet been implemented.

9 Related work

A great deal of research has been done on software
reuse [15] and templates [22]. A difference between
our work and much of this previous work is that our
archetype includes stepwise-refinement design meth-
ods, and our focus is on design reuse as much as code
reuse, particularly for parallel computing targeted to
different architectures. Much of our research deals
with capturing design steps in a concrete form so that
the design process can be reused, whereas other work
on templates (e.g., [1]) is more concerned with reuse
of programming skeletons. In this emphasis on design
methods based on stepwise refinement, we follow the
work of Eric Van de Velde [21].

Another difference between our work and much of
the earlier work is that we deal with the integration of
task and data parallelism in a language-independent
and environment-independent manner. Programmers
can use our archetypes with languages and tools with
which they are familiar. Many of the ideas on com-
positionality described here are based on ideas in For-
tran M [12]. The integration of Fortran M and For-
tran D [7, 11] is particularly relevant. Likewise, the
integration of pC++ [4] with CC++ [8, 6] provides
an object-oriented language that allows for integra-
tion of task and data parallelism. Merlin [9] also takes
an abstraction-based approach to integrating task and
data parallelism, but it uses monitors rather than
channel-based composition.

We differ from collective communication definitions
like MPI [16], Zipcode [20], and PARTI [17] and from
libraries of collective operations like pC++ [4] and the
Multicomputer Toolbox [19] in our emphasis on step-
wise refinement, abstraction, and the integration of
task and data parallelism.

10 Summary

The collective communication archetype aids in the
development of reliable, efficient parallel programs for
many applications by providing design methods based
on stepwise refinement and code libraries; it is particu-
larly effective for integrating task and data parallelism.
The archetype is language-independent; archetype im-
plementations based on different parallel languages
and libraries allow application developers to continue
to use the languages and program development envi-
ronments with which they are familiar.

Much work, however, remains to be done. The im-
plementation experiments described in this paper will
be extended and unified into a library of archetypes
and associated tools. The ideas about process struc-
ture presented here will be generalized from simple
one- and two-level nestings to arbitrary compositions
of process groups and networks, with definitions of dis-
tributed data structures and collective communication
extended to apply to these arbitrary compositions.

Acknowledgments

Many of the ideas here were motivated by the work
on paradigm integration by Ian Foster, particularly in
the context of Fortran M. The ideas about stepwise
refinement are based in large part on the work of Eric
Van de Velde.

In addition, we thank John Beggs and Donald Dab-
dub for their help in providing and explaining appli-
cations, Sharif Rahman for his help with implementa-
tion experiments, and Adam Rifkin for his construc-
tive criticism of this paper.

References

1] R. Barrett, M. Berry, T. Chan, J. Demmel,
J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, 1993.

[2] J. H. Beggs, R.J. Luebbers, D. Steich, H. S. Lang-
don, and K. S. Kunz. User’s manual for three-
dimensional FDTD version C code for scattering
from frequency-independent dielectric and mag-
netic materials. Technical report, The Pennsyl-
vanie State University, July 1992. ’

[3] A. Beguelin, J. Dongarra, A. Geist, and
B. Manchek. A user’s guide to PVM parallel vir-
tual machine. Technical Report ORNL TM-1126,
Oak Ridge National Laboratory, 1991.

(4]

(7]

(10]

(11]

[12]

(13]

(14]

(15]

F. Bodin, P. Beckman, D. Gannon, S. Narayana,
and S. X. Yang. Distributed pC++: Basic ideas
for an object parallel language. Scientific Pro-
gramming, 2(3):7-22, 1993.

R. Butler and E. Lusk. User’s guide to the p4
parallel programming system. Technical Report
ANL-92/17, Argonne National Laboratory, 1992.

P. Carlin, K. M. Chandy, and C. Kesselman. The
Compositional C++ language definition. Techni-
cal Report CS-TR-92-02, California Institute of
Technology, 1992.

K. M. Chandy, I. T. Foster, K. Kennedy, C. Koel-
bel, and C.-W. Tseng. Integrated support for task
and data parallelism. International Journal of Su-
percomputer Applications, 8(2), 1994. In press.

K. M. Chandy and C. Kesselman. CC++: A
declarative concurrent object oriented program-
ming language. Technical Report CS-TR-92-01,
California Institute of Technology, 1992.

B. Chapman, P. Mehrotra, J. Van Rosendale,
and H. Zima. Language extensions for multidis-
ciplinary applications. Unpublished document.

D. Dabdub and J. H. Seinfeld. Air quality model-
ing on massively parallel computers. Atmospheric
Environment, 1994. To appear.

I. T. Foster, B. Avalani, A. Choudhary, and
M. Xu. A compilation system that integrates
High Performance Fortran and Fortran M. In
Proceedings: 1994 Scalable High Performance
Computing Conference. IEEE, 1994. To appear.

I. T. Foster and K. M. Chandy. FORTRAN M:
A language for modular parallel programming.
Journal of Parallel and Distributed Computing,
1994. To appear.

G. C. Fox, S. Hiranandani, K. Kennedy, C. Koel-
bel, U. Kremer, C.-W. Tseng, and M.-Y. Wu. For-
tran D language specification. Technical Report
CRPC-TR90079, Center for Research on Parallel
Computation, December 1990.

High Performance Fortran Forum. High Perfor-
mance Fortran language specification, version 1.0.
Technical Report CRPC-TR92225, Center for Re-
search on Parallel Computation, Rice University,
1992 (revised Jan. 1993).

C. W. Krueger. Software reuse. ACM Computing
Surveys, 24(2):131-273, 1992.

10

(16]

(17]

(18]

(19]

[20)

21)

(22]

Message Passing Interface Forum. Document
for a standard message-passing interface (draft),
February 1994.

R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M.
Nicol, and K. Crowley. Principles of runtime sup-
port for parallel processors. In Proceedings of the
1988 ACM International Conference on Super-
computing, pages 140-152, 1988.

D. I. Pullin. Direct simulation methods for com-
pressible ideal gas flow. Journal of Computational
Physics, 34:231, 1980.

A. Skjellum. The Multicomputer Toolbox: Cur-
rent and future directions. In Proceedings: Scal-
able Parallel Libraries Conference, 1993.

A. Skjellum, S. G. Smith, C. H. Still, A. P. Leung,
and M. Morari. The Zipcode message-passing sys-
tem. In G. C. Fox, editor, Parallel Computing
Works! Morgan Kaufmann, 1992.

E. F. Van de Velde. Concurrent scientific com-
puting. Draft, California Institute of Technology,
1993. To be published by Springer-Verlag.

D. M. Volpano and R. B. Kieburtz. The templates
approach to software reuse. In T. J. Biggerstaff
and A. J. Perlis, editors, Software Reusability,
chapter 9, pages 247-255. ACM Press, Addison
Wesley, 1989.

