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ABSTRACT

In this paper we discuss the formulation of a simulator for groundwater flow
and transport with biodegradation kinetics that has been developed at Rice
University for massively parallel, distributed memory, message passing machines. The
numerical procedures employed are a mixed finite element method for flow and the
characteristics-mixed method for transport. Kinetics are treated by time splitting. The
linear solvers are based on domain decomposition. Application of this procedure to
a bioremediation problem as well as numerical experiments on the INTEL i860 and
INTEL Delta are discussed. Results indicate that the procedure is theoretically mass
conservative over each grid cell and is approximately so in implementation. Preliminary
tests indicate that the procedure is robust and applicable to realistic groundwater
problems. Moreover, the numerical model scales almost linearly with the number of
processors even for fairly coarse grids.

1. INTRODUCTION

Biorestoration techniques such as microbial biodegradation are part of an innovative,
emerging technology for handling subsurface water contamination [5-7,12,23,29,32].
The microbial biodegradation process involves the stimulation of indigenous
microorganisms to remove subsurface contaminants. U. S. Environmental Protection
Agency studies [31] have shown that this type of restoration strategy can result in
complete removal of contaminants, whereas other proposed restoration strategies have
not proven as effective.

Biological decontamination is physically and chemically complex. It involves the
transport and interaction of hydrocarbons, microbes, oxygen, nitrogen, and various
chemical compounds as well as the movement of water within the aquifer. Numerical
simulation of these processes is a critical step in understanding and designing
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biorestoration applications [1,9,14-16,24,34-36]. Indeed, without computational
science, in situ biodegradation of contaminants on a wide scale is impractical.

New parallel supercomputers, allowing simultaneous use of hundreds to thousands
of processors, have greatly expanded the potential for building detailed models of these
porous media processes. Parallel computing provides the capability of solving larger,
more realistic and practical problems faster and more economically. This includes
the ability to use an adequately refined discretization mesh, to incorporate complex
chemical and physical effects associated with the transport of both hydrocarbons
and organic contaminants in porous media, and to employ stochastic or conditional
simulation. The latter is essential for simulating a realistic geologic aquifer, since much
of the data needed to characterize it cannot be quantified accurately, and since often
the chemical and physical processes are not well understood. Conditional simulation
is ideally suited to parallel computation.

In this paper we will emphasize modeling of the flow and transport in the saturated
zone. Extensions to multicomponent, multiphase models in the unsaturated zone are
presently being considered, but because of page limitations, they will not be discussed
herein.

The outline of the paper is as follows. In §2 we describe the governing flow and
transport equations with biodegradation in a saturated porous medium. For simplicity,
we assume linear sorption and aerobic conditions. More general kinetics such as
Michaelis-Menton can be treated with the numerical techniques described in this
paper.

In §3, we first describe the mixed finite element method for an elliptic flow
equation [8,26]. We then formulate the characteristics-mixed method [3]. Theoretical
convergence estimates are stated for the characteristics-mixed method. Finally, we
briefly discuss the time-splitting scheme employed for treating advection-diffusion-
reaction problems.

In §4 we describe the parallel implementation of the procedure, and in §5 we present
three dimensional, parallel, bioremediation simulation results. Conclusions and current
directions on parallel implementation are given in §6.

2. CONTAMINANT TRANSPORT WITH BIODEGRADATION

The governing equations of transport with biodegradation in a saturated porous
medium are described by a coupled, nonlinear advection-diffusion-reaction system
consisting of m, electron donors (substrates) and m,, electron acceptors or nutrients,
and a system of m, ordinary differential equations involving microbial mass.
(Transport of microbes can be treated also if one assumes instead a system of
advection-diffusion-reaction equations for the microbes.) The governing equation of
flow is given by Darcy’s Law and the continuity equation.

These equations defined in a one, two, or three dimensional porous medium § can
be written as:

Electron Donor (Substrate)

d’RS;%—V‘(DV&—uS;)=¢Xsi+gs‘., i=1,...,m;, (1)
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Electron Acceptor

ON;

¢RN,.—6-{-—V-(DVN;—UN,')=¢XN'.+gN.., i=1,...,m,, (2)
Microbial Mass ax
W"=¢Xti) i=1;"*’mt) (3)

Darcy’s Law and Continuity
u=-KVp and V.u=f (4)

Here D = D(u) is a hydrodynamic diffusion/dispersion tensor, ¢ is porosity, and
R; is a retardation factor for component i due to adsorption. The x are possibly
nonlinear kinetic terms which account for biodegradation of contaminants, utilization
of nutrients, and growth and decay of microorganisms. The number and complexity
of specific metabolic pathways or chemical reactions varies with the application. The
source/sink terms f and g; represent production and injection wells. The hydraulic
conductivity K is a symmetric positive definite tensor. For convenience of exposition,
we will assume that
u-v=0,

DVN; -v=DVS;-v =0,

where v is the outward, unit, normal vector to 892, the boundary of Q.

3. THE NUMERICAL ALGORITHMS

Let @ ¢ IR d = 1,2, or 3. Let W = L%(Q) denote the set of square integrable
functions and H(Q;div) = {v € (L3(Q))? | V- v € L}(Q)}. Let V = H(Q;div) =
{v e H(Q;div) |v-v =0 on 0Q}.

For spatial discretization, we employ the lowest order Raviart-Thomas spaces [26]
defined over a rectangular grid of Q with maximal grid spacing A > 0. These finite
dimensional spaces consist of Wi C W equal to the set of discontinuous functions that
are constant in each cell, and V;, C H(Q; div) equal to the set of vectors v = (v1, v2, v3)
(if d = 3) such that v; is continuous, piecewise linear over the grid in the ith direction
and discontinuous, piecewise constant over the grid in the other two directions. We
also need the subspace V;, = 17;, nv.

We first describe the mixed finite element method for approximating (4). With (-, -)
denoting the L?(Q)-inner product, we write (4) in variational form as

(K 'u,v) = (p,V-v) =0, wvEYV,

(V-u,w):(f,w), weW

In the mixed finite element formulation, we seek the pair (Ux, Pr) € Vi x W}, satisfying

(K~'Un,vn) = (Pn, V-v3) =0, vh € Vh, (5a)
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(V-Un,wn) = (fywr),  wh € Wa. (5b)

In order to define the characteristics-mixed method for (1) and (2), we consider the
following abstract transport equation for some component concentration c:

0
¢a—:+u~Vc—V~DVc=g in, t>0, (6a)
DVec-v=0 ondQ, t>0, (60)
e(z,0) = c’(z) onQ, (6¢)

where u is assumed given and c° is the initial concentration.

A numerical method for (6a)—(6¢c) that has been used with success is the modified
method of characteristics (MMOC-Galerkin) [1,9,13-17,19,20,27,28,34-36]. In this
scheme, the time derivative and the advection term (i.e., the hyperbolic part of
the equation, ¢0c/8t + u - Vc) are combined as a directional derivative along the
characteristics, and then the equation is treated as in a Galerkin finite element method.
Although this method allows one to use large time-step increments and to treat large
Peclet numbers, the main drawback of the method is its nonconservative nature and
the cost of tracing the characteristics from many points.

The characteristics-mixed method introduced by the authors (3] retains all the
advantages of MMOC-Galerkin in addition to being theoretically conservative. As in
MMOC-Galerkin, a directional derivative is used to treat the hyperbolic part of (6a),
but then a mixed finite element method is applied to treat the diffusion/dispersion.

Before defining the characteristics-mixed method, we write (6a)—(6c) in a saddle
point weak formulation. Define V = (L3(Q))%, 7 = —Ve, and the dispersive flux as
z = —DVec. Then (6a) is expressed for (¢,z,z) E W x V x V as

(¢%+U-Vc,w)+(V-z,w)=(g,w), weW, (7a)
(2,v) =(c,V-v), veYV, (7b)
(z,v) = (Dz,v), veV. (7c)

To discretize this equation, we begin with the characteristic approximation. So let
At > 0 be the time-step increment and t® = nAt for n = 1,2, ... (At could vary with
the time-step in practice). The characteristic trace-back along the velocity field u of
a point z € Q at time " to time t"~! is approximately

")
¥z, " =z - u(x—’At. (8)
=7 e
As a consequence, the hyperbolic terms in (6a) at time t” are
dc™ n n e’ — En—l
¢a—t+u 'VC ~¢T, (9)

wherein we use the notation ¥" = (t") for functions of time and ¥(z) = ¥(&) for
functions of space.
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The characteristics-mixed algorithm can be stated as follows. First let C® €
W) approximate the initial concentration c®. Then for each time level n, find
(C",Z",Z") € Wy x Vi x V3 such that

g,n-l
(¢9—-‘Ktc——,w) HV 2= (), weWh,  (103)
(Z",v) = (C",V-v), vE€Va (10b)
(Zn’v)=(DZ~nav): 'UEV];, (100)
C"vn—l - 'P(Cn—l,Z"_l), (10d)

where in (10d) we require the definition (11a)-(11b) below of the post-processing
operator P. (This more general form of the mixed method is analyzed in greater
detail in [2].) It is well known that in a single time-step of the mixed method, C" is
convergent to ¢ only to the first order in k, and that we can improve this order through
various post-processing techniques. Therefore, we apply the post-processing (10d) to
the concentration at time t®~! before taking the next time-step. In fact, we should
view the post-processed quantity Cn = P(C™, Z") as our approximate concentration
at time t". As a consequence, the theorem below shows that we obtain a better overall
rate of convergence for the scheme.

We now define P. Let W, C W denote our post-processing space. This space
consists of discontinuous, piecewise linear functions defined over the grid. Define
P.WxV — W for (wv) € WxV by Plw,v) =& € Wi, where over the
grid cell R,

(¢(@ —w),w)r =0, wE€E Wy, (11a)

(V& +v,V)r =0, @€ Wh. (11b)

The notation (-, -) g means that the integration is restricted to R. Note that w = 1 gives
material balance; in fact, mass is conserved cell by cell over the grid. The following
convergence is attained by the scheme under reasonable hypotheses (see [3] for the
proof). The proof assumes the more usual form of the mixed method in which

(D~'2",v) - (C",V-v) =0, vEVW, (12)
¢r-t=p(C"t, 2", (13)

replaces (10b)-(10d), and also that P : W x V — Wi, with
(DVG + v, Vd)r =0, @€ Wy (14)

replacing (11b).

Theorem. If (12)-(13) replaces (10b)-(10d) and (14) replaces (11b), then for h and
At sufficiently small, _
m’?xHC" —c*|| < C{h%% + At}, (15a)
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N 1/2
{ZHD‘”(Z" —-z")H"’At} < C{h + At}, (15b)
n=1
where ||9|| = (4, ¥)'/? is the L2(Q)-norm.

Preliminary results by the authors indicate that the proof extends to the formulation
(10a)—(10d), (11b), with (15b) replaced by

N 1/2
{ZHDI/Z(Z" —Z")||2At} < C{h+At}. (16)

n=1

We remark that under special circumstances and if Wj is replaced by the
discontinuous, piecewise quadratic functions, then h3/2 can be replaced by h7/4 in
the theorem.

4. PARALLEL IMPLEMENTATION

In our numerical formulation for modeling (1)-(4), we first approximate u by U by
applying to (4) our mixed finite element procedure with the lowest order Raviart-
Thomas space (5) as described in the last section. In (5a) we employ the following
quadrature rule for the ith component: the trapezoidal rule in the ith direction and
midpoint rule in the other two directions. The resulting algorithm is equivalent to the
cell-centered finite difference method [28,33]. For a diagonal tensor K one obtains a
finite stencil for pressure, five points if the dimension d = 2 and seven if d = 3.

A nonoverlapping parallel domain decomposition algorithm has been applied to
solving the discrete system. The basic idea is to decompose the domain Q into a
number of subdomains 2;, one associated with each processor. We then have a series
of boundary value problems similar to (4) in each ;. We obtain a guess for the
boundary data on the internal interfaces 0Q;, and solve the local problems in the
subdomains. If the solutions and their normal derivatives match across subdomain
boundaries, then the problem in Q is solved. If not, then interface boundary data are
updated and we iterate. In other words, in domain decomposition the solution process
of the large global problem is decomposed into the repeated solution of numerous
smaller, independent problems.

In such a domain decomposition algorithm, we must describe how we choose the
guess for the internal interfaces boundary data. We use Method 2 of Glowinski and
Wheeler [21], which uses Dirichlet interface boundary data. From any convenient initial
guess, the succeeding guesses are given as the solution of a positive definite, symmetric
problem posed on the interfaces. There have been several interface problem solution
techniques proposed [10,11]; however, the one used for the calculations reported in
§5 is Balancing. This procedure was defined and analyzed by Cowsar, Mandel, and
one of the authors [10] and implemented by Cowsar. There are three components to
multi-domain balancing. The first involves the solution of the subdomain problems
with Dirichlet data provided on internal interfaces. The second involves the solution
of subdomain problems with Neumann data. The third involves a global coarse grid
problem with subdomains treated as “elements” to insure the well-posedness of the
Neumann solves and to provide a mechanism of global exchange of information.
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The number of iterations of the Balancing procedure is of the order 1+ log(H/h),
where the diameter of the global domain is O(1), the diameter of the subdomain is
O(H), and the diameter of the cell is O(h). Balancing scales almost linearly provided
that care is taken treating the coarse grid problem. For massively parallel machines the
coarse grid problem can be a costly bottleneck and a domain decomposition procedure
needs to be applied to the coarse grid.

Since the approximate velocity U is discontinuous, there are certain numerical
difficulties in obtaining good approximations to the characteristics (8). Therefore,
we postprocess it into a continuous velocity U in the space of piecewise discontinuous
trilinear functions. This velocity field is actually more accurate than U because it
exploits superconvergence [33].

Given the velocity approximation U, the advection-diffusion-reaction system
involving donor, acceptor and biological mass equations are approximated using a
time splitting scheme. One global time step involves the following three sequential
steps:

(i) Pure transport. For each electron donor or acceptor, characteristics are traced
backwards in time to locate their origin at the previous time level. This may
be done by taking small micro time steps. The trace-back points are joined to
form a “twisted” grid. The time-step size is controlled so that this twisting is
not excessive, and every grid cell is mapped to a distinct twisted grid cell. For
each given cell, we average the postprocessed concentration from the previous
time step over the corresponding “twisted” cell (i.e. we integrate and divide by
the volume). This average is the transported concentration in the absence of
reactions and diffusion/dispersion.

(ii) Reactions. The coupled system of reaction equations (i.e. (1)~(3) without the
two divergence terms and without the g; source terms) are approximated using
a fourth order Runge-Kutta procedure. Initial conditions are the “twisted”
cell averages from (i) for acceptors and donors, and the previous time step
concentrations for the microbes. Many small time steps may be taken to improve
the accuracy.

(iii) Diffusion/dispersion. The diffusion/dispersion step involves approximating a
parabolic system for each donor or acceptor using initial data from (ii) and
applying the mixed finite element method (10a)-(10d), with C = S; or C = N;.
In (10b) the same quadrature is used as described above for the flow. A tensor
product trapezoidal rule is used in (10c). As in the case of the flow, a finite stencil
is obtained for each component, nine points in two dimensions and nineteen in
three. As in previous MMOC-Galerkin calculations [19,34], the discrete system
is solved using a Jacobi preconditioned conjugate gradient algorithm. Respective
concentrations and their spatial gradients Z are thereby obtained. The latter are
used to construct a higher order approximation to the concentrations in each grid
cell as in (10d)—(11). Finally, a slope-limiting scheme is used to prevent overshoot
and undershoot.

Using the previous time step as initial data, the global time step is repeated to some
final time 7.

The implementation of this time splitting reactive transport scheme in parallel was
done by one of the authors, Ashokumar Chilakapati, and Doug Moore.



8 THE MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS VIII

5. SOME BIOREMEDIATION RESULTS

The Hanford Site in Washington State in the United States occupies approximately
560 square miles of semiarid terrain and was selected in 1943 for producing materials
(primarily plutonium) in support of the United States’ World War II efforts. Chemical
processes employed to recover and purify plutonium produced a waste stream
containing actinide compounds as well as the typical aqueous and organic liquid
industrial wastes. The primary organic contaminant carbon tetrachloride (CCly)
totaled 637 to 1200 tons discharged. Today, plutonium production has ceased, and the
primary mission has shifted to environmental restoration of the Hanford Site [22,25].

Rice University and Pacific Northwest Laboratory (PNL) began a collaborative
research effort in 1992 that involves laboratory, field, and simulation work directed
toward validating remediation strategies, and includes both natural and in situ
bioremediation. We discuss below some preliminary computational results based on
some recent microbial CCly destructive kinetics developed by Skeen and Chan of
PNL [30].

Fig. 1. Horizontal cross-section of permeability field K.

We assume that the domain is a 20m x 20m x 5m aquifer and that the grid is
20 x 20 x 5. The permeability is taken to be a scalar; a horizontal cross-section is
shown in Figure 1. (In all the figures, horizontal cross-sections are taken at z = 2.5m,
and white is the highest value, black the lowest.) The model has six components:
electron acceptors nitrate NO3, nitrite NO3, and acetate CH3COO™, donor CCly,
microbes CsHgO3N, and a nonreactive tracer. We also assume that the retardation
factor R for acetate is 1.8. The chemical reactions for this system are:

8NO3 + 2CH3COO~ + 2Ht — 4CO, + 8NO; + 4H,O0,
8NO; + 3CH3COO~ + 11H* — 6CO2 + 4N, + 10H-0,

7CH3COO~ + 2NO3 + 9H* — 4CO; + 6H30 + 2CsH9O3N,
13CH3COO~ + 4NO; + 17H* — 6CO2 + 10H20 + 4CsHoO3N,
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and bioremediation is described by

d(CCly) _ —p(CCly) (microbes)
dt 1+ k((NO3)+(NO3))

The problem is a linear flow from the left to the right face of the aquifer with
pressure specified on the left and right faces and no flow or zero Neumann conditions
specified on the remaining faces. The nutrient electron acceptors nitrate and acetate
are introduced into the system on the left face for 20 days, with the goal of increasing
the microbial population. We assume that the substrate CCly is flowing through the
system (i.e. it is continuously injected at its original concentration on the left face)
so that any concentration reduction observed is due not to CCly flowing out of the
system, but rather to microbial degradation.

In Figure 2, horizontal cross-sections of a nonreactive tracer are shown at 2.5 days
and at 5 days, respectively, and in Figure 3 a contour of the .5 concentration of the
nonreactive tracer at 5 days. From Figures 1 and 2, we clearly observe the effect of the
permeability; that is, the tracer moves into the high permeability zones. Figures 4-
7 are horizontal cross-sections of carbon tetrachloride, microbial mass, acetate, and
nitrate at 2.5 and 5 days respectively. One can observe the growth of the microbial

mass when nitrate and acetate are both available, and the successful degradation of
CCls.

Fig. 2. Horizontal cross-section of nonreactive tracer at 2.5 and 5 days.

The effects of retardation on acetate are clear from the figures by noting that acetate
has not moved as fast as the nitrate or the tracer. Since all the assumed chemical
reactions require acetate, this example illustrates the danger of a poor application of
the technology: Some nitrate outruns the acetate and pollutes the aquifer (though
nitrate is preferable to CCly!). A series of simulation studies could be used to identify
the proper rates of nutrient injection.
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Fig. 3. Contour of nonreactive tracer concentration .5 at 5 days.

Fig. 4. Horizontal cross-section of CClg at 2.5 and 5 days.

Finally in Figure 8, we observe the performance of the Rice 3D Parallel Groundwater
Reactive Flow and Transport Code (RPGW). Here, speed-up is plotted as a function
of the number of processors, normalized to the time taken on two processors. The
dotted line indicates the theoretical linear speed-up. Since the INTEL iPSC/860 and
the INTEL DELTA have roughly the same speed, some of the experiments were run
on only one machine; in particular the longer runs using two and four processors on
the 1860 were not repeated on the DELTA.

The reader should note that the subdomain grids are only 4 x 4 x 5 when run
on 25 processors, so then the surface to volume ratio is 80:80 (since the z-direction
is not subdivided). This ratio is quite high, and it is proportional to the amount of
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Fig. 5. Horizontal cross-section of microbial mass at 2.5 and 5 days.

Fig. 6. Horizontal cross-section of acetate at 2.5 and 5 days.

interprocessor communication needed to solve the problem. The observed speedup is
almost linear even up to this high level of surface to volume ratio.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Rice 3D Parallel Groundwater Reactive Flow and Transport is a parallel code under
development entirely at Rice University. Its purpose is to simulate the flow and
transport of reacting chemical species in the groundwater. This code is based on
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Fig. 7. Horizontal cross-section of nitrate at 2.5 and 5 days.

25 . ; . :
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0
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0 = L 1 - !

0 5 10 15 20 25
Number of Processors

Fig. 8. Speed-up for RPGW.

combining locally conservative schemes: a mixed finite element method for flow with a
characteristics-mixed finite element method for transport. Computational experiments
indicate that this approach is useful in solving grand challenge problems such as
bioremediation and that the code scales almost linearly even on small problems.

We are presently adding general wells and boundary conditions to the transport
code as well as coupling this code to a three phase (gas, non-aqueous phase liquid,
and aqueous) flow code. Future plans include the incorporation of meshes defined by
fairly general geometry. In addition we plan to add more chemistry and microbiology
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as well as the capability of simulating fractured media. Since most environmental
companies do not have access to large parallel machines, we plan to replace the present
communications package PICL with PVM so that a collection of workstations can also
be used.
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