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Abstract

Some Domain Decomposition and Multigrid
Preconditioners for Hybrid Mixed Finite
Elements

by

Lawrence Charles Cowsar

Discretizations of self-adjoint, linear, second-order, uniformly elliptic partial differ-
ential equations by hybrid mixed finite elements lead to large, ill-conditioned saddle-
point problems. By eliminating the flux variable, a reduced problem is formed that
is symmetric and positive definite but still large and ill-conditioned. Several domain
decomposition and multigrid preconditioners are applied to the reduced problem, and
bounds on their asymptotic rates of convergence are derived.

Two Schwarz domain decomposition methods are shown to converge at least as
fast asymptotically as the same methods applied to conforming linear finite element
discretizations. In particular, for both the standard additive overlapping Schwarz
method of Dryja and Widlund and one of the interfacial Schwarz methods of Smith,
it is proven that the rates of convergence of the methods are uniformly bounded
with respect to the mesh size in both two and three dimensions under standard
assumptions.

Several multigrid preconditioners are constructed for the reduced problem includ-
ing a generalization of a method due to Bramble, Pasciak and Xu and an adaptation
of methods of Wohlmuth and Hoppe. A common feature of these multigrid methods
is the use of conforming finite element spaces on the coarser grids. Uniform conver-
gence rates are proven for most of the methods and numerical results that verify the
bounds are reported.

A mixed finite element discretization of a simplified model of sediment transport
in a two dimensional periodic channel is also described. The results of two simulations
that employ one of the multigrid preconditioners are reported.
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Chapter 1

Mixed and Hybrid Mixed Finite Elements

1.1 Introduction

We consider the asymptotic convergence properties of several iterative methods for
the solution of the hybrid mixed finite element discretization of the following elliptic
problem for p on the connected polygonal domain 2 C R", n = 2,3, with boundary
o0

—-V-AVp=f inQ, (1.1)
p=0 on 0N. (1.2) -

The tensor A is assumed to be uniformly positive definite, bounded and symmet-
ric, and f € L?(Q). The choice of homogeneous Dirichlet boundary conditions and
a connected polygonal domain is merely for convenience. The extensions to other
boundary conditions, domains with multiple components and curved boundaries are
straightforward.

Though not initially viewed as such, mixed finite element methods have in fact
been used since the 1950’s in their earliest incarnation as cell-centered finite differences
as pointed out by Russell and Wheeler [72]. Because mixed discretizations possess
inherent mass conservation properties and yield high quality approximations to both
the scalar variable p and its flux -AVp, higher order mixed finite element methods,
as well as cell-centered finite differences, continue to be used to discretize elliptic
problems such as (1.1)-(1.2) arising in industry. One such example is the work of
Durlofsky and Chien [36] in which mixed finite element methods are applied to a
problem arising in reservoir simulation.

Like standard conforming Galerkin discretizations, the use of a mixed finite el-
ement method leads to a large ill-conditioned linear system. For most problems of
interest, direct methods, including sparse direct methods, are not applicable because
of the size of the problem. In such cases, preconditioned iterative methods are needed.



Unlike the standard conforming Galerkin discretization in which the linear prob-
lem is symmetric and positive definite, the linear problems arising from the mixed
and hybrid mixed discretizations are saddle point problems which are symmetric but
indefinite. In general, iterative methods seem to work best for symmetric positive
definite systems; therefore, in Section 1.3 the saddle point problem is reduced to one
that is symmetric and positive definite defined solely in terms of the approximations
to the scalar variable p.

The construction and analysis of effective preconditioners for this positive definite
problem is the focus of this thesis. We construct preconditioners suitable for use
with the conjugate gradient method [46, 70, 43]. Recall that the error (measured
in the energy norm) after m iterations of the conjugate gradient method is bounded
by 2((v/% — 1)/(v/& + 1))™ times the initial error where « is the condition number
of the preconditioned operator (see, e.g., [45]). We derive upper bounds on the
condition number of the preconditioned operator, and hence, bounds on the rate of
convergence of the conjugate gradient method. In particular, we construct domain
decomposition and multigrid preconditioners with rates of convergence that do not
deteriorate or deteriorate very slowly under refinement of the mesh on which the
mixed finite element method is defined.

The key tool in the analysis of the preconditioners is an isomorphism between the
hybrid mixed finite element space and a space of functions that are continuous and
piecewise linear. The isomorphism between the two function spaces was first used by
the author in the analysis of a substructuring domain decomposition method in joint
work with Mandel and Wheeler [25] and is recalled with proof in Section 1.4.

In Chapter 2, the isomorphism is used as a theoretical tool to analyze the asymp-
totic rate of convergence of the application to hybrid mixed finite elements of two
Schwarz domain decomposition methods: the overlapping additive method due to
Dryja and Widlund [33] and Nepomnyaschikh [61] and a substructuring Schwarz
method due to Smith [78]. Using the isomorphism, the analysis of these Schwarz
methods follows with only modest modification from the existing theory for the meth-
ods applied to conforming piecewise linear discretizations.

We use the isomorphism and a fictitious domain lemma of Nepomnyaschikh [62]
in Chapter 3 to show how existing implementations of preconditioners for conforming
piecewise linear elements can be used to precondition hybrid mixed finite element
discretizations with the same asymptotic effectiveness. A multigrid method based on
this idea is implemented and compared with other standard algebraic preconditioners



and a second multigrid method based on an extension of an algorithm proposed
by Bramble, Pasciak and Xu in [12]. To avoid possible confusion, we note that
the second multigrid algorithm is not the popular BPX multilevel preconditioner of
[13] defined by the same authors. Both multigrid methods use conforming piecewise
bilinear functions for the coarser spaces and are implemented using Dendy’s Black
Box Multigrid code [28, 29].

While the focus of this thesis is the construction of preconditioners for the hybrid
mixed finite element discretizations, the techniques used in Chapters 2 and 3 can be
used in a straightforward manner to construct and analyze preconditioners for several
other types of discretizations of second order elliptic problems. The extended range
of applicability is discussed in more detail in Chapter 4.

In Chapter 5, a highly simplified model for the evolution of erodible beds of
sediments in channels under the influence of bed-load transport is presented. A
numerical method is proposed, and the multigrid method used in Chapter 3 is applied
to the resulting linear systems. The results of two simulations are reported.

1.2 Hybrid Mixed Finite Element Discretizations

In order to set some notation, we recall from [25] the formulation of the mixed and
hybrid mixed finite element method. Readers who are familiar with hybrid mixed
finite elements may simply wish to skim this section to set some notation. We refer
the readers who are unfamiliar with mixed methods and their hybrid formulation to
the more complete expositions by Roberts and Thomas [71] and Brezzi and Fortin
[19] for more detail.

Let dz denote the standard Lebesgue n-dimensional measure and ds the (n — 1)-
dimensional surface measure. For a bounded open set & C IR", let |Q| denote the
measure of the set, { its closure and vgq its outward directed normal. Let L%(f),
(L2(Q))~, L2(8Q), H*(Q), (H*(Q))*, H*(00N) denote the standard Sobolev spaces of
real-valued functions defined on Q and 9N (see, e.g., [1, 50]). We denote the natural
semi-norms on H*(Q) and H*(Q) by |- |s,0 and | - |50, respectively. Let H($; div)
denote the subspace of functions in (L2(2))™ with divergences in L%(f).

Let 7, be a quasi-regular triangulation of the polygonal domain {2 with character-
istic mesh size h. The elements of 7}, are not limited to triangles (tetrahedra in 3-D),
but can, more generally, include rectangles, parallelograms, and rectangular solids.
Denote by 37 the set of edges if n = 2 or faces if n = 3 of 7.



The mixed and hybrid mixed finite elemenet spaces admit a standard element-
wise construction based on spaces defined on a reference element. Let 7 be a fixed

reference element, and let
Wi(F) x Vi(7) C L) x H(7;div)

be one of the mixed finite element spaces of fixed degree from one of the following
families of elements: the RTN spaces [69, 60], the BDM spaces [18, 16], and the
BDFM spaces [17]. Without loss of generality, we assume that the reference element
is chosen to be a regular polygon or polyhedron. By the assumed regularity of the
mesh (see, e.g., [22]), there exists a family of bijective affine maps from the reference

element to the elements in the triangulation 7}, of the form
{F,=b;+B,z:7— 1,71 € Th}
satisfying
|detB,| = |r|/|7l, 1Bl < Clr''™, IIB7H| < Clr|™" 7€ Th. (1.3)

Here, and throughout this paper, C will denote a generic positive constant, not nec-
essarily the same from line to line, but always independent of the mesh parameter

h.

For each element, let
Wi(r)={p|p=po F',p € Wi(F)},
Vi(r) = {v|v =|detB,|"'B,¥ o F/1,¥ € V4(7)};
and for w C Q, the union of elements of 7}, let
Wi(w) = {p € L*(Q) | support(p) C @ and p|, € Wi(r) V7 € T},

Vi(w) = {v € (L}(Q))" | support(v) C @ and v}, € V(1) V7 € Tp},

Ah(w) = {/.L e L? ( U e) I Hle € (Vh(w) . l/)|e Ve € 3771} .

e€dT;,, eCw
Let A%(2) denote the set of functions in A,(Q2) that vanish on the boundary of

Q, and let V() denote the subset of V() composed of functions such that the
normal component is continuous across the boundaries of elements. The continuity



of the normal component and the fact that V(7) C H(r;div) insure that V() C
H(; div). Note also that if v € Vh(ﬂ), then v € V() if, and only if,

> AR ds=0 VueA)R). (1.4)
TeTR VT

The analysis presented in subsequent sections will be applicable to all the elements
in the RTN, BDM and BDFM families of mixed finite elements. We will, however,
use the RT elements of lowest order defined on rectangles as an example to make

concrete some of our constructions. Recall that the lowest order RT space consists of

Wi(F) = span {1},

wormwe{(}) () () ()}

For this space, A,(Q) is the space a functions that are piecewise constant on each
edge in 07},.

A weak form conducive to approximation by mixed finite elements is arrived at
by first rewriting (1.1) as the first order system

Au4+Vp=0 inQ, (1.5)
Vou=f inQ. (1.6)

After multiplying by appropriate test functions, integrating the second term in (1.5)
by parts and using the boundary condition (1.2), we arrive at the problem of finding

{u,p} € H(Q;div) x L*(Q)
such that
/n A'u - vdz — /an-vda: =0 Vv e H(Q;div), (1.7)

/an-uda:=/qud:c Vg€ LY(Q). (1.8)

We now introduce two equivalent finite dimensional approximations of (1.7)-(1.8).

By the mired finite element approzimation to (1.7)-(1.8), we mean the pair

{ur, pr} € Vi(R) x Wi(Q)



satisfying
/QA'luh vz — /ﬂpthdx =0 Vve Vi), (1.9)
/nqv-uh dz = /ﬂ of dz Vg e Wi(Q). (1.10)
By the hybrid mized finite element approzimation to (1.1)—(1.2), we mean the triple
{uh, pr, A} € VA(Q) X Wi(Q) x AR(Q)
satisfying

Z (/T A‘luh-vda:—/rphv-vdx+/af /\hv-u,ds) =0 Vvevh(ﬂ), (1.11)

—Z/

T€Th "7

qV-updz = —/andw Vg e Wi(R), (1.12)

> / pup-v,ds =0 Yu e AJQ). (1.13)
re1, Jor

For issues related to the well-posedness and convergence properties of these approxi-
mations, we refer the reader to the expositions in [30, 71, 19] and [69, 60, 18, 16, 17]
in which the families of elements were first defined.

In the hybrid mixed finite element method, we have relaxed the continuity condi-
tion on the space of fluxes, replacing V() with V(R), and imposed it variationally
through (1.13). The equivalence of (1.11)—(1.13) with (1.9)~(1.10) is a simple conse-
quence of (1.4). The relaxation of the continuity requirement was proposed by Fraeijs
de Veubeke [39] and analyzed carefully in the context of mixed methods by Arnold
and Brezzi [4].

Note that the hybrid formulation (1.11)—(1.13) is just the first order necessary
conditions from the constrained energy form

min / A7 lv.vdz,
ve V@), Q

s.t. Ve H(Q; div),

and V.V = Pwh(n)f

where Py, (q) is L*(Q)-projection onto W;(£2). Adopting some terminology from op-
timization, we refer to the functions in V;(Q) as the primal variables and functions

in Wi(Q) x A,(Q) as the dual variables. We see that pj is nothing more than the
Lagrange multiplier associated with the constraint V-u, = Pw,(q)f, and )\, is the



multiplier associated with the constraint that v € H(Q;div), i.e. the continuity of
fluxes across edges express in (1.4). Equation (1.11) is also a weak form of the con-
stitutive relationship (1.5) which, after multiplying by a test function and integrating
the second term by parts, yields

/A'1u~vdx-/pv-vd:v+/a pv-vyds = 0. (1.14)

Comparing with (1.11), we see that A, is naturally interpreted as an approximation
to the trace of p on the boundaries of the elements.

The RTN, BDM and BDFM mixed finite element families share several common
properties that we will use in our analysis. Primarily, we use the fact that the spaces
Wr(Q) and A,(Q) admit natural nodal bases defined by degrees of freedom in the
interior of elements for W;(2) and on the boundary of elements for A,(Q). For
example, one can take the nodes to be the center of the element for Wj(Q) and the
center of each edge for A,(Q) for the lowest order RT space defined above. Other
examples can be found in [44]. Because of (1.14), the values attained at these nodes
have the natural interpretation as values of the scalar variable at the nodes, in the
interior as well as on the edges (faces in 3D) of the elements. We will not differentiate
between functions in W, (R2) x A,(R2) and the values they attain at the nodal degrees
of freedom.

Additionally, the following two properties satisfied by the RTN, BDM and BDFM

families are used to prove Theorem 1.1 in Section 1.3:

e the approximating spaces for the scalar variable and its flux are related by the

inclusion
div(Vi(7)) € Wi(7),

and
e there exists a projection
I : H(r; div) N {v-v, € L*(07), T € To} = V(1)

that satisfies, among other properties, that for every 7 € 7, and edge (face in
3-D) e; of the boundary of 7 that

/ (Ilhu —u)-v,vev,ds =0 Vv € V() (1.15)

e

/V(Hhu —u)gdr =0 Vqe& Wy(r). (1.16)



1.3 The Dual Variable Problem

Henceforth, we are concerned only with the solution of the finite dimensional problem
(1.11)—(1.13) and drop the subscript h from uy, pr and As.

The hybrid mixed finite element problem (1.11)—(1.13) is symmetric, but indefi-
nite. In applying iterative methods, it is often advantageous to reduce to a symmetric
positive definite form if one can accomplish that at modest cost. To that end, we
eliminate the flux variable u in (1.11)-(1.13) by introducing a discretization of the

flux operator AV denoted
VA Wi(D) x A4(Q) = V4(Q),
and defined by

> /A'IVf[q,,u] vdz =Y (—/qV-vdm +/ pveveds) Vv e Vi(Q). (1.17)
€T, T en T or

Since V(1) is the direct sum of spaces defined on each element, we note that (1.17)
holds element by element. Hence, V#[q, u] is defined element-wise in terms of the
values of ¢ and p restricted to 7. By restriction we consider V4# as a map from
Wh(w) x Ap(w) into Vh(w) for any set w C Q which is the union of elements of 7j,.

Define bilinear forms

dy : [Wh(w) X Ap(w)] X [Wh(w) X Ap(w)] = R

dpAlg)= X [ A7V, N - Ve, pda. (118)

T €Th,
TCw

By the dual variable problem, we mean finding the pair
[p, A] € Wi(Q) x AR(Q)

satisfying
da(lp, Al la, ) = [ fada V¥ig,u] € Wa(Q) x AY(Q). (1.19)

The dual variable problem is nothing more than the variational equivalent of forming
the Schur complement of (1.11)-(1.13) with respect to the dual variables p and .
Hence, solving the dual variable problem is equivalent to solving (1.11)-(1.13), a
fact that is demonstrated in [4], and the flux can be recovered as u = —Vii[p, A].



Moreover, the bilinear form dq(-, -) is obviously symmetric and its positive definiteness
on Wi(Q) x A)() is a simple corollary of Theorem 1.1 below.

The evaluation of the bilinear form d,([p, A], [q, #]) might appear prohibitively
expensive, requiring the calculation of both V#[p, A] and V#[q, u]; however, by using
(1.18), we see that the bilinear form can be computed as

LNl = L (= [7(VAp A do + [ w(VAlp,N)-urds).

T € Th,
TCw

Moreover, since there are no continuity requirements across elements for functions in
V4(Q), VA[p, A] can be constructed element by element.

Recall that two quadratic forms, @, and Q,, with domain D are said to be equiv-
alent if there exist constants ¢;,c; > 0 such that

c1Q1(4,¢) < Q2(4,¢) < 2Qu1(4,¢) Vo €D.

We will denote this equivalence by Q; ~ Q,. The constants suppressed by this nota-
tion will always be independent of the mesh parameter h, but can, unless explicitly
stated to the contrary, depend on the minimum and maximum eigenvalues of the
coefficient A in (1.1), the choice of family and degree of the mixed finite elements,
and the regularity of the triangulation 7j.

The following theorem relates the quadratic form induced by d,(-,-) to an equiv-
alent quadratic form in terms of the nodal degrees of freedom. In stating the equiva-

lence more sharply, we decompose A as
A(z) = a(z)A(z)

where « is an arbitrary piecewise constant function on each element of the triangu-
lation. By the uniform positivity of A, there exist positive constants C; and C; such
that

Ciet < EA(x)E < Cotlt Vz e, £ € R™ (1.20)

An appropriate choice for a is the average eigenvalue of A over each cell; that is,

aj, = #I-[rtrace(/l(a:)) dz.

Theorem 1.1 (Theorem 4.1 of [25]) Let p = [p, ] € Wp(w) x Ap(w) for
w C Q composed of elements of the triangulation 7,. Then
d(p,p) = Y. aplrl"Ym 3 (B(ni) = B(nj))? (1.21)

TE€TH, TCw nodes :

Cni,m; €T
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with constants independent of h, @, A and |w|, but depending on the
eigenvalues of ﬁ, the choice of the mixed finite element space, and the

regularity of the triangulation 7.

The proof of Theorem 1.1 is a direct consequence of the following two lemmas

which we recall along with their proofs from [25] for completeness.

Lemma 1.1 (Lemma 4.2 of [25]) The kernel of d.(:,-) consists of the
constant functions on 7; that is,

d-([p, A, [g,#]) =0 Vg, u] € Wi(r) x Ax(7), (1.22)

if, and only if, [p, A] has the same value on all nodes of 7.

Proof We first check that if [p, \] = [K, K] for some constant K on 7, then it is in
the kernel of d,(-,-). Letting v = V{[q, ] € Vi(7), we see that

o\ (o)) = [AVEpA-vds (1.23)
= —/pV-vdx-l-/a AV,

= K[—LV.de+[3¢V.Vds] ,

which is zero by the Divergence Theorem.
To prove the converse, let [, ] € Wi(7) x Ax(T) be such that

d-(16, 7], (g, 1)) = 0 Vlg, 1] € Wa(7) x An(7). (1.24)
It is enough to show that [, A] is zero if it is orthogonal to constants, i.e.
/TKﬁda:-l-/f)TK:\ds:O VK € R. (1.25)
By (1.24),
/T ATIVAE, X] - VA5, ] dz = 0,
and hence,

V4B, Al = 0. (1.26)

Since (1.25) holds, there exists a solution ¢ (unique up to a constant) to the Neumann

problem

~Ad=p inrT, (1.27)
Vé-v =X on Or. (1.28)
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Setting v = I,V ¢ and using properties (1.15) and (1.16), we see that v € V(1)
with V-¥ = —p and ¥-» = X. Using ¥ in (1.17) with (1.26), we have

0= —/ﬁv-f'dx+/a AV-v, ds =/ﬁ2d:c+/a A2 ds; (1.29)
therefore, [p, )] is zero. a

The following lemma was suggested by Joseph Pasciak [67].

Lemma 1.2 (Lemma 4.3 of [25]) For any 7 € 7}, and for all p = [p, )] €
Wh('r) X Ah(T)

dr (B, P) = o772 37 (B(ma) — B(ny))?, (1.30)

nodes :
ni,n; €T
with constants independent of &, a, A and the particular choice of 7, but
depending on the eigenvalues of A, the choice the mixed finite element
space, and the regularity of 7.

Proof Let 7 denote the reference element, W, (7) and V,(7) the reference spaces,

and F,(Z) = b, + B,Z the affine mapping of ¥ onto 7 introduced in Section 1.2. For
(9, 4] € Wi(T) x Aw(7), define V}[q, ] € Vi(7) by

/jh[:j, 7 vde = -Lw-vdm + /8; GV -vids V¥ € VA() (1.31)
Using Lemma 1.1, one has
[VEA - VigEde > ¥ (@AEn) - Hn)? (1.32)

since both quadratic forms induce norms on W} (7) x Ap(7) modulo constant functions
with equivalence constants depending only on the reference element and choice of
mixed finite element space.

Letting J, = |detB,|, define the following functions on the reference element
p=poF, X=XoF, = (LB 'V{ipA)oF, A=AoF,.

Under this change of variables for the mixed finite element spaces (see, [82, 19]), we
have U € V,(7) satisfying (1.17) in the form

1 vt o o 3 fe e )
LJTB,A B,i-Vdr = /;ﬁVvdz+/a?/\v vids YV € Vi(7),  (1.33)

.
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and
d.(p,p) = / A'VAp, A - Vip, A\ dz = / JiTB:E-lB,ﬁ - dz. (1.34)
Comparing (1.31) and (1.33), we see that
LJLTB:Z-IB,a Fdr = /jh[ﬁ, N-Vdz V€ Vi(F).
Using Cauchy-Schwarz with v = i and v = V[, A], we deduce that

[ 71-3121“-13,& -idz < Caay,J,|| B2 / Vulp, X] - Val5, X] de, (1.35)

/ JLB:A“-IB,ﬁ de > Craq, LB 7 [l X - Vilp X de, (1.36)

where C; and C; are the positive constants in (1.20).
The proof of the lemma is completed by using (1.32), (1.34), (1.35), (1.36), and
(1.3). d

1.4 An Isomorphism with a Conforming Space

In this section, we recall the construction of an isomorphism between Wj(w) x Ax(w)
and a conforming space of piecewise linear functions. This isomorphism was first used
in joint work with Mandel and Wheeler [25] to analyze the application of Mandel’s
Balancing Domain Decomposition method to hybrid mixed finite element discretiza-
tions. This type of isomorphism was also used by the author in [23] to analyze three
domain decomposition methods for nonconforming elements of Lagrange type. A sim-
ilar isomorphism was used independently by Sarkis in [76] in the analysis of Schwarz
methods for piecewise linear nonconforming finite elements.

The isomorphism is constructed by first building a refined triangulation 7: of the
reference element 7. The vertices used in the refinement are the vertices of ¥ and
the nodal points in 7 pertaining to the degrees of freedom of W,(7) x An(7). Several
examples are given in Figures 1.1 and 1.2. A refinement using only these vertices
is always possible. For example in two dimensions, the refined triangulation can be
constructed by first partitioning 7 into triangles by adding edges connecting some of
the vertices of 7. If the reference element is a triangle, no additional edges are added
in this step. The nodal points can then be added one at a time by adding edges
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connecting the nodal point to the vertices of all triangles that contain the nodal point
in their interior or on their boundary in the current subtriangulation. Triangulations
of three-dimensional elements can be constructed in an analogous manner.

The mappings F, from the reference element to the elements of 7, induce a refined
triangulation T of Tj, by

7= F(%).
€T
Note that the regularity of the refined mesh T is a function only of the regularity of
the original mesh 7}, and the regularity of the refinement 7: of the reference element.

A vertex of 7 will be called primary if it was a nodal point corresponding to a
degree of freedom of W,(Q) x A,(Q); otherwise, we call the vertex secondary. We
say that two vertices of the triangulation T are adjacent if there exists an edge of 7
connecting the vertices.

Let Uy(Q) denote the space of functions that are continuous, piecewise linear with
respect to the refined triangulation 7, and vanish on 8Q. For w C , a union of
elements in 7y, let Up(w) C Ur(Q) denote those functions that vanish outside of w.
Since the functions in Ux(w) are naturally parameterized by the values they attain
at the vertices in w, we define a pseudo-interpolation mapping Z* into Up(w) for any

@ L 4 9
A ) d
LR ®  Primary Vertex
® - - - ‘_;_’ I § O  Secondary Vertex
RN —— Original Edge
e s - - New Edge
’ . .
Raviart-Thomas-Nedelec Brezzi- Douglas-Marini
Lowest Order Lowest Order

Figure 1.1 Examples of subtriangulations of two commonly used elements
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®  Primary Vertex
O  Secondary Vertex
—— Original Edge
- - - New Edge

Figure 1.2 Partial subtriangulation of the lowest
order Raviart-Thomas-Nedelec elements

function ¢ defined at the primary vertices contained in w by

Iw¢(m) = A

(0, if z € 89
#(z), if z is a primary vertex;

The average of all adjacent primary vertices, if = is a

secondary vertex in the interior of w;

(1.37)

The average of all adjacent primary vertices on Jw, if

T is a secondary vertex on Jw;

The continuous piecewise linear interpolant of the

above vertex values, if z is not a vertex of 7.

Since Z¥ is defined for any function defined at primary vertices, by an abuse of

notation, we can understand Z* as a linear map from W} (w) x Ap(w) into Up(w) and
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a map from Uy (w) into Uy(w). Let Ux(w) C Uy(w) denote the range of I%; that is,
Un(w) = {¢ € Up(w) | ¥ = T¥¢, ¢ € Un(w)}.

Let
a(®,9) = [ AV$-Vyda.

Since Z% is clearly a bijective map between Wi(Q) x A%(Q) and U,(Q) by construc-
tion, the following theorem with w = Q proves that Z% is in fact an isomorphism
between these two spaces that preserves the natural norms for the second order ellip-

tic problem.

Theorem 1.2 Let w C § be the union of elements in 7. Then for all
P € Wi(w) x (An(w) N AJ(Q)),

du(5,5) ~ a.(T*5, TP). (1.38)

Proof It is easy to show (see, e.g., [22]) that for ¢ € Uy(w),

(T Ip) = 3o el 3D (d(w) - #(v)))”. (1.39)
TeT, vertices :

TCw Vi, ¥; €ET

By virtue of Theorem 1.1 and (1.39), it is enough to show that

X Y (B(nd) — ()

7 €Ty, nodes :
TCw ni,n; €T
S ST (TR (w) - () ()™ (1.40)
TE 'i’, vertices :
TCw vi,V; ET

Since vertices of F,(’f}) contain the nodal points of 7 and p = Zp at, these points,
we have

2. (Bm)=pm))*<C 3 3 ((T°B) (v) - (T°P) (v))*,
nodes : ;e'i- vertices :
ni,n; €T ‘Uiy”je?
where the constant is controlled by the regularity of the subtriangulation. Hence, by
summing over the elements of 7}, in w, we conclude that the right hand side of (1.40)
dominates the left hand side.
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To prove that the left hand side dominates the right, we note that the differences
in the right hand side are of three types: the difference at two primary vertices, the
difference at two secondary vertices, and the difference at a primary and a secondary
vertex. Since p and Z“p agree at primary vertices of T, the difference at two primary
vertices occurs as a term in the left hand side. For two secondary vertices vy, v; in

an element 7 € 7 containing a primary vertex vs, we see that

((T9) () = (Z“) (»2))* < 2((T“P) (m1) = (Z°P) (v3))
+2((Z°) (va) — (Z°P) (v3))” -

Hence, it is enough to bound the difference at a secondary and primary vertex by
terms in the left hand side of (1.40).

Let v,41 be a secondary vertex with adjacent primary vertices vq,...,v,, and let
p; = p(v;). Noting that for y =1,...,n

n

@5 ) =5 (T o) = 2 S (D) ) = ~ 5

1=1 ij=1
we see that

2
e - 1 [, . N oo, .
(D) (vn1) = (T“B) ()" = — (Z(pj = Pi)) < =285 — B’
Jj=1 j=1
by the Cauchy-Schwarz inequality. The proof is completed by summing over all
triangles of 7. The number of such terms, and hence the constant in the bound, is
controlled since the regularity of the mesh implies that there is an a priori maximum

number of adjacent elements that can share a secondary point. O

We have constructed the isomorphism above using piecewise linear functions on
a refined mesh composed of triangles and tetrahedra. For the rectangular and right-
angled hexahedral elements, a more natural construction can be made using continu-
ous piecewise bilinear and trilinear functions defined on a refined mesh of rectangular
and right-angled hexahedral elements. Clearly, Theorem 1.2 holds in this case as well.
This variant is used in the multigrid methods of Chapter 3.

Using the techniques in the proof of Theorem 1.2, the following lemma is also easy

to prove.

Lemma 1.3 There exists a constant C' > 0 independent of &, A, and «,
but depending on A, the regularity of the triangulation 7, and the choice



of mixed finite element space such that
a,(I99,7°¢) < Cau(d, ) Vé € Un(Q). (1.41)
Additionally, there exists a constant C also independent of A such that

179¢lkw < Clolhw Vb € Un(Q), k=0,1. (1.42)

17
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Chapter 2

Schwarz Domain Decomposition Methods for
Hybrid Mixed Finite Elements

2.1 Other Domain Decomposition Methods for Mixed Finite
Elements

In this section, we summarize previous work on domain decomposition methods for
mixed finite elements. For a more comprehensive survey of domain decomposition
methods and their theory, we refer the interested reader to the recent review articles
of Chan and Mathew [20] and Le Tallec [48].

The first domain decomposition methods for the solution of the linear systems
arising from mixed finite element discretizations were two substructuring methods in-
troduced by Glowinski and Wheeler [42]. The first method of Glowinski and Wheeler
involves solving a reduced problem defined in terms of the primal variables on the
interface between subdomains; the second involves an interface problem defined solely
in terms of the dual variables. Since these two methods are in fact Schur complement
methods involving neither a coarse space nor further preconditioning, they result in
operators with condition numbers that depend strongly on the size of the mesh and
subdomains. In particular, if we set a length scale by choosing the diameter of § to
be 1, and let H and h denote the characteristic sizes of the subdomains and mesh
spacing, respectively, then the operators defined by Glowinski and Wheeler have con-
dition numbers that are O((hH)™!) under the standard assumptions regarding the
regularity of the mesh and the decomposition of Q2 into subdomains made explicit in
the next section.

Multigrid strategies were applied to the primal and dual substructuring operators
to accelerate convergence in [41] and [27]. While there currently exists no convergence
theory for the multigrid accelerated substructuring methods for the mixed finite el-
ements, a comparison with a parallel implementation of semi-coarsening multigrid
reported in [26] showed the multigrid accelerated substructuring method to yield a
competitive algorithm. The method has also been used in [7].
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In [73, 75], Rusten and Winther constructed two preconditioners for the saddle-
point problem (1.9)-(1.10) in two dimensions that use as key components an iteration
of the primal substructuring method and a modification of the dual substructuring
method of Glowinski and Wheeler for Laplace’s equation. Since the spectrum of the
saddle point problem includes both positive and negative eigenvalues, the rate of con-
vergence of the Krylov method they chose to use, the minimal residual algorithm,
with their preconditioner is not explicitly available (see [74]). Their theory and ex-
periments indicate that their primal variable preconditioner results in an algorithm
whose convergence rate depends strongly on the mesh spacing A, and their dual vari-
able preconditioner results in an algorithm whose rate of convergence is independent
of h. However, if used with many subdomains, both methods of Rusten and Winther
would depend strongly on H since neither has a coarse problem, cf. [90]. |

Overlapping Schwarz domain decomposition methods were first applied to mixed
finite element discretizations of (1.1)-(1.2) in two dimensions by Mathew [55]. The
saddle point problem (1.9)—(1.10) is first reduced to one that is symmetric and positive
definite defined in terms of a subset the primal unknowns, namely, those fluxes in
V.(Q) that are divergence free. A description of Mathew’s method is also given in
[56]. A uniform bound on the asymptotic convergence rate for the Schwarz method for
sufficiently large overlap was derived by Ewing and Wang [38] and Mathew [57]. The
key to their analysis was the ability to represent the subspace of divergence free vector
fields of mixed finite element spaces as the curl of continuous scalar polynomial stream
functions. Using this representation, the convergence properties for the algorithm
were reduced to those of a standard conforming discretization. The stream function
representation was valid only in two dimensions; and hence, the analysis presented
in [38] and [57] was limited to two dimensional problems. A bound that is O(1/H?)
for the natural extension of the algorithm in three dimensions can be deduced from
Lemma 2.4 of this chapter and the techniques in [55], but a uniform bound is at this
time apparently an open question.

In this chapter, we apply Schwarz methods to the dual variable problem (1.19)
involving only the mixed finite element approximations to the scalar variable p and
its trace on the boundary of elements. We consider the standard overlapping ad-
ditive Schwarz domain decomposition method due to Dryja and Widlund [33] and
Nepomnyaschikh [61] applied to this reduced problem in both two and three dimen-
sions. We also consider the Schwarz method applied to the dual variable substruc-
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turing method of Glowinski and Wheeler using the subspaces proposed by Smith
[78].

In both the standard and substructuring Schwarz methods, results are derived
in terms of a variable amount of overlap using the results of Dryja and Widlund
[34]. Let H denote the diameter of the subdomains and § the amount of the overlap
between subdomains. For the standard overlapping Schwarz method, it is shown that
the condition number of the dual-variable additive Schwarz method grows at worst
as O(1 + H/6) in both two and three dimensions, for all the standard mixed finite
element families, and for elements of any fixed order. For the substructuring Schwarz
method, it is shown that the condition number grows at worst like O(1 + log( H/§)?).
If the overlap is “generous”, i.e. § is some fixed fraction of H, the condition numbers
in both cases are bounded by a constant that is independent of both the subdomain
size and the mesh size. To the author’s knowledge, these are the first asymptotically
optimal domain decomposition results for mixed finite elements in three dimensions.

For both the standard and substructuring Schwarz methods, these are the same
bounds derived in [34] for the standard Galerkin approximation using conforming
linear finite elements. In fact, our central technique is to exploit the isomorphism be-
tween the mixed finite element space and a conforming piecewise linear finite element
space introduced in Section 1.4. Using this isomorphism, we can inherit the existing
conforming theory with only modest modification. As mentioned previously, this tool
was first used in [25] to analyze the rate of convergence of Mandel’s Balancing Domain
Decomposition method proposed in [52].

The remainder of the chapter is divided into three sections. The standard additive
Schwarz method is recalled in Section 2.2 along with its abstract convergence theory.
In Section 2.3, we formulate and analyze the standard Schwarz method applied to the
dual variable problem. The formulation and analysis of the substructuring Schwarz
method of Smith applied to the dual problem are the subjects of Section 2.4.

2.2 Abstract Schwarz Theory

Following the presentation in [34], we recall the additive Schwarz method of Dryja and
Widlund [33] and Nepomnyaschikh [61]. Let d(-,:) be a positive definite, symmetric
bilinear form on a finite dimensional Hilbert space V, and let f be an element in the
dual space of V. The additive Schwarz method (with exact solves) for the variational
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problem of finding p* € V satisfying

d(p*,q) = f(q) Vg€V, (2.1)

is completely determined by a subspace decomposition of V in the following way. Let
V; be subspaces of V such that V = Vp + ... 4 Vps. For each subspace V;, define an
energy orthogonal projection operator P; : V — V; by

d(Pip,q) = d(p,q) Vg€ Vi (2.2)

The additive Schwarz method for (2.1) involves the solution of

~

Pp* = f, (2.3)
where
M M
P=3P, f=X 1 (2.4)
1=0 1=0
and f; € V; is defined by
d(fiq) = flg) VYgeVi (2.5)
It is easy to see that the solutions to (2.1) and (2.3) are the same since
'P,'p* = f,

The operator P is symmetric and positive definite with respect to the d-inner
product, so conjugate gradients can be applied. Moreover, for well chosen subspaces
V;, the condition number of P is much smaller than the one corresponding to (2.1)
and so no further preconditioning is needed. Recall that the rate of convergence of
the conjugate gradient algorithm can be bounded in terms of the condition number
of P, the ratio of the largest and smallest eigenvalues of P; see, e.g., [45, 43].

Abstract bounds on the condition number of P have been derived in terms of two
quantities that we now define. Let Cp > 0 be a constant such that for every ¢ € V

there exists a representation ¢ = M ¢; with ¢; € V; satisfying

M
Z d(qis qi) < Cod(q, q)' (26)

=0
Let p(€) denote the spectral radius of £ = {¢;;}, the matrix of strengthened Cauchy-

Schwarz constants; that is, €;; is the smallest constant for which

|d(gi, 45| < €i5d(gi> :)3d(q5, ;)% Vai € Vi, Vg3 €V, 5,5 = 1. (2.7)
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The following theorem, due to Dryja and Widlund [35], bounds the condition number
of the additive Schwarz methods in terms of the two quantities given above. It
represents the continued refinement of results given by Nepomnyaschikh [61] and
Lions [51].

Theorem 2.1 The eigenvalues of P lie in the interval [Cy?, p(€) + 1].
Hence, the condition number of P is bounded by Co(p(€) +1).

In this thesis, we restrict our attention to the additive algorithm with exact solves.
Analogous statements for the multiplicative Schwarz method and various hybrid
methods can easily be deduced from the results contained herein since their rates
of convergence can be bounded in terms of the same constants; cf. [11, 93, 32, 53].
Likewise, the use of inexact solves in (2.2), i.e. the replacement of the projections P;
by approximate projections, can be handled in the standard way; see, e.g. [35].

2.3 The Overlapping Schwarz Method for the Dual Problem

In this section, we first define the set of subspaces that we use in the Schwarz algorithm
applied to (1.19). We then derive a bound on the condition number of the induced
operator by estimating the constants in the abstract theory using the results for the
existing conforming finite element theory.

Without loss of generality, we assume that  has unit diameter. We introduce a
two-level decomposition of §, a coarse triangulation of { into nonoverlapping sub-
domains {€;}},, and a further refinement into elements 7,. We assume that the
triangulation into subdomains is quasi-regular with characteristic length H and that
T is quasi-regular with characteristic length k. For convenience, we consider subdo-
mains that are triangular, rectangular, tetrahedral or rectangular solids as appropriate
for the dimension of the problem and the mixed finite element family considered. We
extend each subdomain ; to a enclose a larger region 2} that is also the union of
elements of 7,. The extended domains {2}, form an overlapping covering of {2,
and we characterize the extent of the overlap of by

§= __minM dist(9%% \ 99,09 \ 9N).

Let npax denote the maximum number of subdomains for 1 < 7 < M for which
meas(Q; N Q) > 0, 1 < j < M. For § small enough (for instance § < CH),
Nmax 15 uniformly bounded by a constant that only depends on the regularity of the
triangulation of {2 into nonoverlapping subdomains.
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For:=1,...,M,let Wi(Q2)x A, () C Wi(Q)xA)(Q) denote the set of functions
that vanish at all nodes on the boundary and outside of Q. Let Uy () denote
the “coarse space” of continuous functions that are linear, bilinear, or trilinear as
appropriate on each {);. Let Vo denote the subspace of functions in Wj(Q2) x A%(Q2)
that have the same value as functions in Uy () at the primary vertices (i.e. the space
of nodal interpolants).

In the following lemma we recall the crux of the proof due to Dryja and Widlund
(Theorem 3 of [34]) that the Schwarz method applied to the conforming Galerkin
discretization has a condition number that is O(1 + H/4).

Lemma 2.1 There exists a constant C independent of h, H, and § such
that for every ¢ € U,(R), there exists a decomposition ¢ = ¥ ¢; with
$o € Un(R), ¢i € Un(Q) N H3 (%), 1 < ¢ < M satisfying
M 5 H
Slsla<C(1+5) 16ka (23)
1=0
We now show that the application of the Schwarz method to the dual variable
mixed finite element discretization converges at the same rate. Note that the isomor-

phism is used only as a tool in the analysis and does not enter the algorithm.

Theorem 2.2 The condition number x(Pq) of the additive Schwarz
operator Pq defined by (2.4) induced by the decomposition

Wi(Q) x AR(Q) = Vo + % (Wh(€2) x Ay(2))

i=1
of the hybrid mixed finite finite element space satisfies
H
£(Pa) < C(1 + mas) (1 + 7) .
The constant C is independent of k, §, and H.

Proof The verification that the largest eigenvalue of Pg is bounded by (14 nmax) is
standard. Since da(p;, ;) = 0 for p; € Wi () x A, (%), B; € Wi(D) x A, () with
;N Q% = 0, there are at most nmax nonzero entries, each no larger than 1, in the i-th

row of the matrix of strengthened Cauchy-Schwarz inequalities. By the Gershgorin
Circle Theorem (see [43]), p(€) is bounded by npay.
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Let Nq denote the nodal interpolation map at the primary vertices into W;(Q) x
A%(Q). For p € Wi(Q) x A(Q), let (Z9p); denote the decomposition of Z%p € U, (2
arising in Lemma 2.1, and set p; = No((Z%5);). Since

Vo=Na(Un(Q)),  Wa(f) x Ay(Q%) = Na(Un(Q) N Hy (%)),
it is easy to check that fo € Vo, p; € Wi() x A,(Q%) and p = =M p;. Using the

equivalence

aq(4, 4) =~ |¢|%,n,
with Theorem 1.2 and Lemma 1.3, we see that for : =0,..., M,

da(pi, ;) < CIZ((Z%):) ] 0 < CITB)il} -

Summing and applying Lemma 2.1 and Theorem 1.2, we conclude that

M M Q- Q- H .
S da(ip) < O N0 < 0 (14 5) 90 < 0 (14 5) da(5.9)

1=0 1=0
Hence, Co in (2.6) is bounded by C (1 + H/§). An application of Theorem 2.1 com-
pletes the proof. O

In [68], Pavarino and Ramé give results for a parallel implementation of a very

closely related method that verify the bound given above.

2.4 Smith’s Substructuring Schwarz Method
2.4.1 The Dual-Variable Substructuring Problem

Following the presentation in [25], we recall the reduction of (1.19) to a problem

involving only the interface unknowns first given by Glowinski and Wheeler [42].
Let  be partitioned into a quasi-uniform triangulation of nonoverlapping sub-

domains {§;}¥, with diameters that are O(H). Denote by T' the set of internal

interfaces

r= J am\an

i=1,...M
Let Ax(T') denote the subspace of functions in AJ(f2) with support contained on T,
and let An(99;) C An(T') denote those functions with support on 9%; \ 9.
Define the bilinear form s : Ax(T') x Ax(T') — R by
M

S(/\’ /‘) = z S,'(A, lu)’

=1
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where
si(As ) = day(pi(A), Bi(1)),
and p;(A) € Wi(fh) x A, () satisfies

do,(Bi(A), @) =0 Vg € Wi () x Aj(), (2.9)
ﬁ,(A) = on BQ, (210)

In practice, the bilinear form can be more easily evaluated as
s == [ pui(3)-vn, s,
where [u;(A), pi(A)] € VA(%) x Wi(£%) solves
/Q Vui(M)gdz =0 Vg € Wi(),

-1, . — . ., —_— . . R
[ ATu() - vde /Q PNVvdr == [ avegds Wy e Vi)

Let 7; € Wi(Q;) x A, () satisfy
do; (B;, (9, 1)) = /n fadz Vg, p] € Wa(h) x AR(), (2.11)
ﬁi =0 on BQ;. (2.12)
Then, as shown in [42], (1.19) is equivalent to finding A € Ax(T’) such that
M
s(A ) =D day (i, Bi(w)) Vi € Au(T). (2.13)
i=1
The solution to (1.19) is recovered subdomain by subdomain as

Pi + Di(A) € Wi() x Ap($).

The process described above is nothing more than the standard reduction of (1.19),
or equivalently (1.11)-(1.13), to a “Schur complement” system involving only the
unknowns Ax(T") on the interfaces of subdomains.

2.4.2 A Substructuring Isomorphism

Analogous to U,(Q) defined in Section 1.4, we construct a space of continuous, piece-
wise linear functions that are isomorphic to Ax(T') with respect to the natural norms

e ———
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induced by the interface problem. Let U,(T") denote the space of restrictions of the

piecewise linear functions in U,(Q) to UM, 89;. For each subdomain ; define a map

IBQ,' : Ah(aﬂ,) — Uh(F)
by
(0, if z € 8N

A(z), if z is a primary vertex on 0);

%% \(z) = { The average of all adjacent primary vertices on 9, (2.14)

if z is a secondary vertex on 0f;

The continuous piecewise linear interpolant of the

above vertex values, if z is not a vertex of 7.

We denote its range by Ux(9%;). Equivalently,
(T%Px)(2), =€ 0;

2.15
0, otherwise; (2.15)

T9% \(z) = {

where Z% is defined by (1.37) and py is any element in Wx(Q) x A(2) such that
(P)jaa; = A. Since the value of Z%p) on 9€); depends only on the value of A at the
primary vertices (the nodal degrees of freedom) on 8, Z9% ) is well defined. Again
since %% is defined for any function defined at the primary vertices, by an abuse of
notation, we will also consider Z?% as a map from U, (9%%) into U, (0).
Following [10] and [31], define the following scaled Sobolev norms:
lullf o, = e, + zlulas 10l20n, = [laon, + Flulan.  (216)

In [54], the following lemma is proven.

Lemma 2.2 Let B be the linear operator on H %(OQ;) defined by
B(¢) = d
@)= [ sds
if the (n — 1)-dimensional measure of 9§; N 0 is zero, and

B(¢) = dlan.nan
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otherwise. Then for all ¢ € Ker(B)

8ll1/2,00: = |#l1/2,00: ll10: = |10
with equivalence constants independent of A and H.

The following theorem is a result of the standard Trace Theorem (see, e.g. [59]),
Widlund’s Discrete Extension Theorem [89] for continuous piecewise linear finite el-
ements, and Lemma 2.2.

Theorem 2.3 The following equivalence holds uniformly for ¢ € Un(0%%)
with equivalence constants independent of h and H:

1Bli/200: >  inf |l (2.17)
¢ € Un(%)

dlen; = ¢

The next three lemmas provide the analogue to Theorem 1.2 and Lemma 1.3 for
the substructuring forms and are recalled from [25] with proof for completeness.

Lemma 2.3 (Lemma 6.2 of [25]) The following equivalence holds uni-
formly for ¢ € 17,,(69,-) with constants independent of A and H:

1Blij200; ~  inf  |dlua; (2.18)
¢ € Up(S%)

dlen; = é

Consequently, for A € Ax(95;)

IZ%% A |1/2,00, =~ inf |Z% B |1, (2.19)
Px € Wa(S) x A, ()
(Pa)jon; = A

Proof As a consequence of Lemma 1.3 and the inclusion Uy (Q;) C Uy (), we have

inf |gha,~ inf  |dha Vé € Tn(00).
¢ € Un(%) ¢ € Un(S)
blon; = ¢ bloq; = ¢

Equation (2.18) follows by an application of Theorem 2.3. Equation (2.19) follows
from the fact that

TP (An(0%)) = Un(0%),  TH(Wa(%) x (A4 (Q:) NAAR))) = Tn ().
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Lemma 2.4 (Theorem 6.5 of [25]) For all X € Ax(0%%),
si(AA) = |Ian‘)‘|¥/2,an;- (2.20)

Proof By a direct computation using (2.9)-(2.10),

S,'(/\,', /\,) = . inf dn.- (ﬁ,ﬁ) (221)
P € Wa(f:) x A, ()
plan; = Ai

The lemma follows by taking the infimum of (1.38) over pjsq; = )i and using Lemma 2.3

since

3,'(/\,', /\,') = N inf dg‘. (ﬁ, ﬁ) (2.22)
P € Wh(Q:) x A, (D)
Plon; = Ai
inf %502 0,
P € Wa(Qi) x A, () ’
;’]am =X\

= |Iaﬂi ’\iﬁ/a,an-

R

Lemma 2.5 (Lemma 6.3 of [25]) There exists a constant C independent
of h and H such that

1Z2% 12,00 < ClBlijza Vé € Un(0). (2.23)

Proof Let ¢ € Up(%) such that djog, = @. Since (Z%¢)jaq, = I°%$, we have by
Lemma 2.3 and Lemma 1.3

IT2% 3|1 /2,00 < C|T%Bl1,0 < Cldl10-

The lemma follows by taking the infimum over all ¢ € Ux(€) such that djsq, = &,
and using Theorem 2.3. d

Note that Z2% ) does not in general equal Z?% A on 9Q; N 9§ because they can
take different values at the secondary vertices. In the next section, we need a pseudo-
interpolant of A € A4(T) in Ux(T) that is defined on all of I'. Hence, we define a
pseudo-interpolant ZT : Ax(T') — Ux(T) by (2.14) with 0%; replaced by the set of

interfaces I'. Equivalently,
I = (N B,
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where p) is any element in W,(Q) x A%(Q) such that (p))r = A, and T : W, (Q) x
A(Q) — Uin(Q) is defined by (1.37) noting that the boundary of Q \ T is Q UT.
The next lemma relates the pseudo-interpolant defined on all of I' to the sum of
pseudo-interpolants defined subdomain by subdomain.

Lemma 2.6 There exists a constant C' > 0 independent of A, H and §
such that
M M
TR 200, S C X ITP% A1 00, YA € A(D). (2.24)
i=1 i=1
Proof By using the techniques in the proof of Theorem 1.2, it is easy to show that
there exists a constant C' > 0 depending only on the regularity of the mesh and the

choice of mixed finite element space such that

M M
2TV Bl g, < C LT Pla, VP E Wa(®) x A4(Q). (2:25)

i=1 i=1

By Lemma 2.3, there exists a constant C' independent of A, H such that for each
A € Ax(T) there exists an extension E()\) € Wi(Q2) x A)(Q) that agrees with A on T’
and satisfies uniformly

IZ%EN)a, < CIZP% M 00, i=1,..., M.

Since I'\ € Ux(0%%) and I?\TE(\) € Un(Q) agree on 9%, by Theorem 2.3 we see
that
IZ"Al1/2,50; < CITE(N) 0, VA € Ax(D).

Combining these results, we conclude that

M M M M
Z !IF’\I%/ZGQ.‘ S CZ IIQ\FE(/\)‘%,Q. S CZ IIQ"E(A)I%Q; S C Z |IaQiAI%/2,3Q.'7

i=1 =1 i=1 i=1

which proves the lemma. O

2.4.3 Smith’s Vertex Space Substructuring Method

In this section, we analyze the application of the Schwarz method applied to (2.13)
using a subspace decomposition of the interface unknowns A,(I') analogous to the one
suggested by Smith [78] for conforming elements. Following the presentation given
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in [34], we construct the decomposition of A(T) slightly differently in two and three
dimensions. In both cases, we first partition I' into overlapping subsets based on its
decomposition as the boundary of subdomains. In two dimensions, for each vertex V;
of T, let F};/’ denote the set of points on I' that are less than a distance é from V;. For
each edge F; of T, let l"f‘ denote the interior of the edge E;. In three dimensions, for
each vertex V;, each edge E;, and each face Fj of I', define I’;/’ as above, let l"f" denote
the interior of the face Fj, and let I’f‘ denote the set of all points in strips of width
6 on all faces which share the common edge E;. As in the standard overlapping case,
let Timax bound the maximum number of subsets 'Y, G € {E;, V;, Fi} intersecting any
given subset I'{", G* € {E;,V;, Fi}. Again, for § sufficiently small, npay is uniformly
bounded.

Understanding the set of faces to be empty in two dimensions, the decomposition
of I into subsets induces a decomposition of A4(I') by considering

M) = Y A(TD),
Ge{H,E;,V;,Fi}

where for G € {E;,V;, Fi}, Au(T§) C An(T) are those functions that vanish at all
nodal points on I' outside the set I'{, and Ax(T'¥) C An(T') are the nodal interpolants
of the restriction to I' of continuous functions that are linear on each subdomain
Q: and vanish on 8Q. Examples of Ax(TF), Ah(F;/j), and Ax(TF*) for the lowest
order Raviart-Thomas space on rectangles and cubes are depicted in Figure 2.1 and
Figure 2.2.

‘The following lemma is the crux of the analysis of Smith’s method in [78] for con-
forming elements. We recall the small overlap refinement from the proof of Theorem 4
in [34].

Lemma 2.7 For every ¢ € U,(T'), there exists a decomposition

¢ = > dc

GE{Hinr‘,j 1Fk}

with ¢y € Uy(T), g € Un(T§) = Ux(T) N HY(TS) for G € {E;,V;, Fi}

such that
M J M
> > 1dcl3 /2,50, < C (1 +log (H/S)) > o163 200,  (2:26)
6€{H,E;,V;,Fi} i=1 i=1

The constant C is independent of the choice of ¢, and the mesh parameters
h, H, and é.
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Let Pr : Ap(T') — Ax(T) denote the additive Schwarz operator defined by (2.4)
with the bilinear form d(-,-) replaced by the interface form s(:,-) and the decompo-
sition of V replaced by the decomposition of A,(T") described above. We now prove
that the condition number of Pr has the same bound given in [34] for the similar
operator for the conforming finite element space.

Theorem 2.4 The condition number of the additive Schwarz operator
Pr induced by Smith’s decomposition for the hybrid mixed finite element
discretization satisfies

£(Pr) < C(1+ nmax) (1 + log (H/6))* . (2.27)
The constant C' is independent of the mesh parameters h, H, and §é.

Proof As in the proof of Theorem 2.2, the number of nonzero entries per row in
the matrix of strengthen Cauchy-Schwarz inequalities can be bounded by n,.x; hence,
the largest eigenvalue of Pr is bounded by 1 + nmax-

To bound the smallest eigenvalue, we also proceed as in the proof of Theorem 2.2.
Let ANt : Un(T') — Ax(T) denote the nodal interpolation into Ax(T') for functions de-
fined at primary vertices. For A € A,(T), set A\g = Nr((ZF)\)¢), G € {H, E;,V;, Fi.},
where (ZF))¢ is the decomposition of ZT A € Uy(T') arising in Lemma 2.7. Since Z'\
and A agree at the nodal degrees of freedom of Ax(T"), and

A(TE) = Mp(Un(D),  AW(TS) = Ne(Un(TS)) VG € {E;,V;, Fe},

it is easy to check that

A= Z Ag.

Ge{H,E;,V;,Fi}

Working one subdomain at a time and using Lemma 2.4 and Lemma 2.5, we see that
for G = H and for G € {E;,V;, F;} such that I'§ N 8%Q; # @ we have

sihe; Ag) < CIT?%xglijp.80, = CIZ?H((T"N)6)13 2,50, (2:28)
< CIT" Vel 2,00,

By summing (2.28) over subdomains and subspaces, noting that s;(Ag,Ag) = 0 if
I'¢ N 8%y = 0, and applying Lemma 2.7, Lemma 2.6, and Lemma 2.4, we see that

M

s(Ag,Ag) = > Do si(AesAe)
Ge{H.E:V;,Fi} Ge{H.E:V;,Fe} i=1



IN

< C(1+log(H/$))

IN

C (1 + log (H/6))

< C(1+log(H/8))

An application of Theorem 2.1 completes the proof.

< C(1+log(H/8))

C Z Z| I ’\)Gll/z a0,

Ge{Hin:‘/th} =1

il T
Z II AI%/Z,@Q.‘

Z lIan'/\ll/z a0

1—1

2350 )

i=1

s(A,A).
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Chapter 3

Preconditioners for Hybrid Mixed Finite
Elements using Conforming Discretizations

3.1 Wohlmuth-Hoppe Type Preconditioners

In this chapter, we construct preconditioners for the dual variable problem (1.19) from
preconditioners for conforming discretizations of (1.1)—(1.2). We first follow ideas
of Wohlmuth and Hoppe [92] and construct preconditioners for the dual variable
problem from preconditioners for (1.1)-(1.2) discretized in U,(f2), the continuous
piecewise linear functions on T defined in Section 1.4. In the next section, two V-
cycle multigrid preconditioners for the dual variable problem are formulated. The
techniques used in this chapter are also similar to ones employed by Oswald [66]. The
results of some numerical experiments that compare the preconditioners constructed
in this chapter are reported in Section 3.3.

Motivated by an isomorphism between nonconforming finite elements and a con-
forming space of functions presented by the author in [23] and analogous to the
one given in Section 1.4, Wohlmuth and Hoppe [92] construct a preconditioner for a
piecewise linear nonconforming discretization of (1.1)-(1.2) from a hierarchical basis
preconditioner for a continuous piecewise linear discretization on a finer grid. Their
numerical experiments suggest that the condition number of the resulting precondi-
tioned operator is serendipitously bounded by a constant, a result not explained by
current theory (cf., [64]). In this section, we apply their ideas to hybrid mixed finite

elements.

3.1.1 A Preconditioner Using a Discretization on 7

We introduce some operator notation to simplify our presentation. Define an L2-
innerproduct on Wj(Q) x A%(Q) by

([p, AL, [g, 1)) = Z/pqu+ /Auds |

T€T, e€dT;,
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Let Dy, : Wi(Q) x A%(Q) — Wir(Q) x A}(2) be the operator defined by

(Dwlp, A, [g, 1) = d(lp, Al lg, £]) Vg, 6] € Wa(Q) x A(Q).

In this notation, the dual variable problem (1.19) becomes

Dh[p, /\] = [PW;.(Q)fa 0], (31)

where Py, (q) is L?(Q)-projection onto W ((2).
Let (-,-)s be an innerproduct on U, () uniformly equivalent with respect to h to
the natural L?()-innerproduct, and define the operator Ay : Upn(Q2) — Ux(2) by

(Andyb)n = /n AV$-Vipdz Ve, € Un(Q).

A natural choice for the (-, -)s-innerproduct is

(V)= Irl D d(vi)p(vi).

reT vertices :
“wET
Let NV : Up(Q) — Wi(Q) x A%(Q) denote the nodal interpolation map into W, (£2) x
A%(Q) at the primary vertices, and let N'* : W,(Q) x A} () — Un(2) denote its L?-
adjoint satisfying
(N*(g, 1], ) = (g, 11, N$))-

No computation is involved in applying N since it is an identification of nodal degrees
of freedom. Likewise, applying A/* is trivial since the “mass matrix” corresponding to
the (-,-)s-innerproduct is diagonal. The “mass matrix” corresponding to the ((-,-))-
innerproduct is also diagonal (or at least edge-wise and element-wise block diagonal
depending on the choice of nodal degrees of freedom for the mixed finite element
spaces).

The operator NA;;'N* is clearly symmetric and positive definite on W,(Q2)xA}(?)
in the ((-,-))-innerproduct and can be used as an effective preconditioner for Dy. We
show that the condition number of the operator resulting from preconditioning Dy by
NA;'N* is bounded by a constant independent of %, a consequence of the following
lemma due to Nepomnyaschikh [62].

Lemma 3.1 (Lemma 2.2 of [62]) Let H and H be Hilbert spaces with
the scalar products ((-,-)) and (-,-), respectively. Let A:H — H and
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A : H — H be self-adjoint, positive definite and continuous operators.
Let R: H — H be a linear operator such that

(AR#, R¢) < Cr(A4,4) Vé¢€ H.
If there exists an operator T : H — H such that
RTg’b\ = $ V(Z € ﬁ,
and
then
Cr(A™'4,9) < (RAT'R'$,4) < Cr(A™'4,9) VéeH,
where R* : H — H is the adjoint of R satisfying

(R*$,¢) = (4, R$) Véec H, e H.

Theorem 3.1 If NA;'N™ is used as a preconditioner for Dy, then the

condition number of the preconditioned operator satisfies
K:(NA,IIN*D/L) <C
where C is a constant independent of A and «; equivalently,

(VAR N™(q, 1), (g, 1)) = (D5 Mg, 1l [g, 1)) Vg, 1] € Wi(Q) x AR(Q).

Proof Since we have previously understood Z% both as a map from W, (Q) x A3(2)
into Ux(Q) and a map from U(f) into itself, to avoid possible confusion we denote
the two maps by

Iln : Wh(ﬂ) X A?L(Q) - Uh(Q),
I Un(Q) — Un(Q),

and note that
I§ = IPN : Un(Q) — Un(Q).

By Theorem 1.2 and Lemma 1.3, we have for ¢ € U,(Q) that
(DwNo,N3)) da(N¢,N9)

Can(IfN$, IPNG) = Caq(I94, I8 ¢)

Caq(s, ¢) = C(Ard, )n-

INIA
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Also by Theorem 1.2, we see that for [g, u] € Wi(Q) x A%()

(AnZPlg, ), Mg, ) = a(ZPg, . Ia, 1))
< Cd(lg, u, [g, 1)) = C(Dhlg, 1l [g, £1)-

An application of Lemma 3.1 with H = Wir(9) x AY(Q), H = Un(Q), A= D,
A=A, R=N, and T = I} completes the proof. O

3.1.2 Using Preconditioners for A,

The use of NA;'N™* as a preconditioner may be prohibitively expensive since it
requires the solution of a conforming discretization of the elliptic problem at every
iteration. We can replace A;' with any operator B approximating A7l If By

satisfies

a1 (A1 6, B)n < (Brd, d)n < c2( A7, d)r Vo € Un(Q), (3.2)
then

(Dxg, 1l [g, #)) < C1(AR'N™[g, #], Mg, u))n < f—:(BhN*[q,#],N*[q,u])h,

(Di'g, 1), lg, 1])) = Ca( AR N*[g, ], N™[g, ) 2 f—;(BhN*[q, ], N (g, 4)n,

and the following corollary to Theorem 3.1 is immediate.

Corollary 3.1 If By, is a symmetric positive definite operator on Ux((2)
satisfying (3.2), then
K(NBRN*Dy) < -Z%n(NA;‘N*D) < c‘c"—j.

Many preconditioners for the hybrid mixed formulation can be constructed in this
manner by using existing preconditioners for the conforming case. One may then
take advantage of the growing supply of efficient, well-crafted implementations of
preconditioners for conforming finite elements. A likely candidate for B}, is a multigrid
or multilevel preconditioner for A,. We recall the construction of one possible V-cycle
preconditioner for Ay below.

Assume that the triangulation 7 is the result of J — 1 successive refinements
73,7s,...,73 = T; of a coarse triangulation 7;. We set 754, = 'j', the refined
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triangulation of 7, constructed in Section 1.4. For i = 1,...,J + 1, denote by U;
the space of continuous functions that are piecewise linear (or bilinear, or trilinear,

as appropriate) with respect to 7; and vanish on 8. Note that
UpCU;C...CU; CUsp1 = Un(D).
For : = 1,...,J + 1, define operators A; : U; — U; by
(Aig, ) = a(,¥) V4,4 €U,
and L%(Q)-projections Q; : Us4, — U; by
(Qig, ¥) = (6,¥) V4,9 € U

For: =2,...,J 41, let R; : U; — U; denote one sweep of the point Gauss-Seidel
iterative method for the operator A;, and let RT denote its adjoint (a sweep using
the reverse ordering).

Algorithm 3.1 Define the multiplicative V-cycle operator

B™ : U; — U;
for r € U; by
B'r = A{'r (3.3)
if ¢ = 1; otherwise, let
¢ = RIr (3.4)
$ = ¢+BrQia(r— Aig), (3.5)
Bl'r = ¢+ Ri(r— Aid). (3.6)

An optimal rate of convergence for the V-cycle has been proven under increasingly
less restrictive conditions (see, e.g., [8, 6, 91]). We recall one such result due to
Bramble and Pasciak [9].

Theorem 3.2 (Theorem 4.2 of [9]) If the entries in the coefficient of
A are in the Sobolev space W)() for v € (0,1/2) and ¢ > n/, and if
the solution p to Laplace’s equation ((1.1)—(1.2) with A = I) satisfies for
some § € (0, 1]

Iplli+sa < C|lfll-1+s.0,
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then there exists a positive constant ¢; independent of A and the number
of levels J such that

c1(A7'$,8) < (BF419,9) < (A" ¢, 9)-

A uniform rate of convergence for the resulting preconditioner for Dj follows di-
rectly from Corollary 3.1, Theorem 3.2 and the assumption that the (-, -)s-innerproduct
is equivalent to the L?(Q2)-innerproduct.

Corollary 3.2 There exists a constant C > 0 independent of h and J
such that
k(NB}, N*D;) < C.

3.2 Two V-Cycle Preconditioners for Dy

In this section, we construct of two V-cycle preconditioners for the dual variable
problem. The first is obtained by adding a pre-smoothing and post-smoothing step to
NB7, N*. The second method is a natural extension to hybrid mixed finite elements
of a method due to Bramble, Pasciak and Xu [12] for the dual variable problem arising
from the mixed finite element discretization without hybridization. To avoid possible
confusion, we note that this is not the popular BPX-multilevel method [13] also due

to the same authors.

3.2.1 A V-cycle Preconditioner using NB7\,N*

With respect to the mixed finite element space Wi(Q) x AR(€), we can consider Un($2)
as a “coarse space” even though U,(f) is defined on T, a finer grid than 7;. The
operators NA;*N* and N BT, N* can likewise be thought of as coarse grid correction
operators. Let R,, denote one sweep of point Gauss-Seidel on the hybrid mixed space
Wi(9) x A%(2) dual problem D, and let RT denote its adjoint. By adding a pre-
smoothing and a post-smoothing step to NA;'A* and NBJ, N*, we arrive at a

two-level and a multiple level V-cycle preconditioner for Dy.

Algorithm 3.2 Define a two-level preconditioner

AT Wi (Q) x AYQ) = Wi(Q) x AY(D)
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for [r, p] € Wi(Q) x AR(Q) by

l9,u] = RLIr 0l (3.7)
[9,8] = [g,u]+ NAT'N*([r, p] — Dalq, 4]), (3.8)
ADlr,pl = (3,4 + Ra([r, ) — Dalg, ). (3.9)

Define a multiple level V-cycle preconditioner
B, Wi(Q) x AY(Q) — Wh(Q) x A%(Q)

by replacing A;! in (3.8) by BY.,.

Extensions to multilevel (additive) formulations, other cycles and multiple smooth-
ings are straightforward. The resulting multigrid and multilevel preconditioners con-
structed for mixed finite elements in this manner are significantly different from the
multigrid and multilevel preconditioners previously constructed for mixed finite ele-
ments in [87, 88, 37, 14, 86, 2]. This construction is closely related to the construction
of a hierarchical basis preconditioner in [92] for piecewise linear nonconforming finite
elements. To the extent that A;" and B}"H use conforming finite elements for the
coarser spaces, they bear some resemblance to a multigrid method proposed for mixed

finite elements in [12] and to some nonconforming finite element preconditioners in

[64, 66].

3.2.2 A Second V-cycle Preconditioner

In [12], Bramble, Pasciak and Xu proposed a multigrid algorithm for the dual variable
problem arising from the mixed finite element method without hybridization that use
conforming finite elements for the coarser spaces. We extend their algorithm in a
natural way to the dual problem for hybrid mixed finite element spaces. Because
of the close relationship between hybrid mixed finite elements and nonconforming
elements (see [4, 2]), the spaces used in our extension are also closely related to the
spaces used in the multilevel methods due to Bramble and Oswald [64, 66].

Using notation from the previous section, recall that U; is the space of contin-
uous functions that vanish on 9Q and are piecewise linear, bilinear, or trilinear as
appropriate for the dimension and shape of the element with respect to 7. Define a

prolongation map
I;n : UJ — Wh(Q) X AZ(Q)



42

by
I7'¢ = [Pw, @)%, Pro(@)9],

where Py, (q) and Py (q) are L?(§2)-projection onto Wi(Q) and AR(R), respectively.
Note that for all but the lowest order mixed finite element spaces, the conditions
above are natural injection since Uy C Wi, () and (Us)jaz, C A%(R). We use (I™)T,

the adjoint of prolongation for the restriction operator.
Algorithm 3.3 Define a V-cycle preconditioner
C™ : Wi(Q) x AY(Q) — Wi(Q) x AL(Q)

for [r, p] € Wi(Q) x A%(Q) by

[g,4] = RL[r 0, (3.10)
4,8 = [o,8+IPBR(IM) ([r, 0] — Dalg,u),  (3.11)
C.T[rvp] = [@ﬁ]"'Rvn([r?p]_Dh[avﬁ]) (312)

Extensions to multilevel (additive) formulations, other cycles and multiple smoothings

are straightforward.

3.3 Numerical Experiments

In this section we report on numerical experiments using several preconditioners for

D;. The preconditioners used in the numerical experiments are:
o NA;'N*: defined in Section 3.1.1,
e NBT, ,N*: defined in Section 3.1.2,

. ﬁ;": defined in Section 3.2.1,

B}"_H: defined in Section 3.2.1,

C7T: defined in Section 3.2.2,

line-E’j‘H: B}"_H with line Gauss-Seidel smoothings on the conforming spaces,

line-CT: C7T with line Gauss-Seidel smoothings on the conforming spaces,

diag(D4): Jacobi preconditioning,
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¢ IC(0): Incomplete Cholesky preconditioner with zero additional fill-in,
e IC(1): Incomplete Cholesky preconditioner with one level of fill-in.

The implementation of the Incomplete Cholesky and Jacobi preconditioners are from
the NSPCG package [63]. The multigrid method for the conforming spaces was
implemented using Dendy’s Black Box Multigrid [28, 29] which uses operator based
prolongation and restriction operators instead of the projections introduced in the
Algorithm 3.1 to yield a more robust algorithm in the case of highly varying coeffi-
cients.

The dual variable problems solved used the lowest order hybridized Raviart-
Thomas space on rectangles. The elliptic problems considered were defined on rect-
angular domains

Q% = (0,a) x (0,1),

and were of the form

—V-AVp=0 in Q,,
p=0 on {y=0}Nn0Q,,
p—0.1(AVp)-vq, =g on {y=1}N09N,.

Periodic boundary conditions in the first coordinate direction were imposed. The
problems were discretized on a rectangular grid consisting of nl1 x n2 cells uniformly

spaced in each coordinate direction. The following instances were considered:

o Test Problem I: a = 1, A = I, g = sin(27z), and the mesh spacing h was refined
to observe the relationship with the condition number;

e Test Problem II: a = 2, nl = 160, n2 = 80, ¢ = —1, and the coefficient A was
taken from an elliptic problem arising in one step of a miscible displacement
simulation (see [72]) and varies from 1.87 to 335370 as depicted in Figure 3.1;

e Test Problem III: n1 = 128, n2 = 128, A = I, ¢ = —1, and the aspect ratio a

was varied.

For the multigrid methods, refinement was carried out by subdividing each rectan-
gular element into four elements by connecting the center with the midpoint of the
sides. Continuous bilinear elements were used on the coarser grids.

All experiments were carried out on an otherwise unloaded IBM RS6000 Model
550 with 192 MB of memory in double precision arithmetic. The initial guess for
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the solution was zero, and preconditioned conjugate gradient iteration was continued
until the error in the energy norm was reduced by a factor of (10~¢/4/k) where & is an
estimate of the condition number of the preconditioned operator. The estimate of the
condition number was dynamically calculated by exploiting the similarity between
conjugate gradients and Lanczos’ method for finding eigenvalues using the code of
Ashby, Manteuffel and Joubert [5]. The run times reported reflect the composite time
to construct the preconditioner and to perform preconditioned conjugate gradient
iterations until convergence. The formation of D}, is not included since it is the same
for each preconditioner.

We see in Table 3.1 that the condition numbers for NA;'N* and NBJ,,N* are
uniformly bounded as predicted by Theorem 3.1 and Corollary 3.2. For the larger
problems, the two most competitive methods are the two V-cycle preconditioners
§T+1 and C7. In both Test Problem I and II, the use of é}"_,_l leads to a lower
conditioner number, but as implemented C7T is slightly faster as we see in Table 3.2
and Table 3.3.

Since the constants in Theorem 1.1 depend on the aspect ratio of the elements, the
bounds on the condition numbers in Theorem 3.1 and Corollary 3.2 also depend on
the aspect ratio. In Table 3.4, we see that the dependence on aspect ratio is strong.
If line Gauss-Seidel smoothing is used instead of point Gauss-Seidel smoothing on the

coarser grids, then the effect is mitigated.

Method of Mesh Spacing
Preconditioning 1/8| 1/16 1/32 1/64 1/128 1/256
diag(Dp) 185.81 | 748.04 | 2997.09 | 11993.20 | 47962.30 | 182344.00
1C(0) 47.41 | 189.40 | 757.38 | 3029.31 | 12115.30 | 48437.70
IC(1) 3.58 9.71 29.13 101.64 394.22 1576.96
NAGIN™ 2.93 | 2.96 2.97 2.98 2.98 2.98
NBZ‘HN* 2.97 2.99 3.00 2.99 2.99 2.99
:4;” 1.33 1.33 1.33 1.33 1.33 1.33
BT, 1.36 | 1.50 | 1.54 1.54 1.54 1.53
CT 2.07 2.09 2.19 2.21 2.22 2.22

Table 3.1 Condition Numbers for Test Problem I



Method of Mesh Spacing
Preconditioning | 1/8 | 1/16 | 1/32 | 1/64 | 1/128 | 1/256
diag(Dy) 0.02| 0.09 | 0.61 | 5.38| 59.46 | DNC*
IC(0) 0.02 | 0.13 | 1.52 | 15.49 | 205.50 | 1636.36
IC(1) 0.02 | 0.08 | 0.95 | 7.22 |109.65 | 781.94
NAFIN* 0.81 | 1.28 | 3.16 | 10.34 | 39.03 | 152.12
NB7 L N* 0.80 | 1.28 | 2.84 | 5.36 | 16.25| 61.83
Am 0.52 | 0.85 | 2.11 | 7.09| 27.23 | 113.63
3’,"“ 0.46 | 0.67 | 1.29 | 3.77 | 14.10 | 56.32
Ct 0.55 | 0.76 | 1.31 | 3.66 | 13.58 | 52.87

* Did not converge in 1000 iterations

Table 3.2 Run Time in CPU Seconds for Test Problem I

Figure 3.1 Coeflicient in Test Problem II
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Method of Condition | Itera- | Run Time
Preconditioning | Number | tions (secs)

diag(Ds) 117073.00 | 834 40.34
IC(0) 33565.60 | 425 80.42
IC(1) 3912.56 | 137 29.84
NAIN® 4.99 13 55.47
AT 1.62 7 318.60

B7., 3.23 11 10.19

Cy 3.89 13 7.86

Table 3.3 Results for Test Problem II

Method of Aspect Ratio
Preconditioning 1:1 2:1 4:1 8:1
diag(Dy) 47962.31 | 21170.49 | 10053.22 | 8466.91
IC(0) 12115.34 | 5021.93 | 1503.36 | 396.01
Am 1.33 1.13 1.65 2.57
By, 1.54 1.47 13.75 | 24.75
cy 2.22 2.44 17.69 | 32.71
Line-B7,, 1.77 1.76 2.10 3.16
Line-C7 2.44 2.58 2.49 2.56

Table 3.4 Condition Numbers for Test Problem III
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Chapter 4

Applications to Other Discretizations

The analysis of the domain decomposition and multigrid preconditioners presented in
the previous two chapters followed almost directly from the isomorphism between the
hybrid mixed finite element space and the conforming space of functions constructed
in Section 1.4. Consequently, the properties of the hybrid mixed finite element dis-
cretization that were required for the analysis were limited to the existence of a nodal
basis that permitted the construction of a refined triangulation 7 and the equivalence
of the of the bilinear form expressed in Theorem 1.2 which followed immediately from
the representation in Theorem 1.1. For the domain decomposition methods, the fact
that the support of the discrete flux operator was contained in the support of its
arguments was also used.

Many other discretizations of second order elliptic problems possess these prop-
erties. For instance, nonconforming finite element discretizations of (1.1)-(1.2) give
rise to the quadratic form

d(¢,¢) = > [ AV¢-Védz.
€T
If the finite element space admits a nodal basis (i.e., it is of Lagrange-type), then it
satisfies the equivalence in Theorem 1.1, a fact proven in [23]. The proof consists of
identifying the local kernel as the constant functions and proving Lemma. 1.2 for non-
conforming elements by mapping back to a reference element. It is straightforward
to check that other discretizations of (1.1)—(1.2) that possess these properties include
most point-centered finite difference methods, the hybridized form of the expanded
mixed finite element scheme in [47, 3], mixed finite element schemes in which quadra-
ture is used to derive finite difference schemes (see Section 7 of [24]), collocation
methods, and nonconforming finite element spaces of Lagrange-type (see, e.g., [44]
in which many such spaces are constructed). Cell-centered finite difference methods
including the “box method” [85] are added to the list by considering them as point
centered methods on the dual mesh. Consequently, the constructions and analysis
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presented in the previous chapters can be applied to these methods with only minor
modifications.

In the case of nonconforming spaces of Lagrange-type, the analysis of three domain
decomposition methods, including the two Schwarz methods considered in Chapter 2,
has been carried out in detail by the author in [23]. The results in [23] for the standard
Schwarz method applied to the discretization by piecewise linear nonconforming finite
elements were subsequently recovered by Brenner in [15] using a more general frame
work. The framework of Brenner allows for the use of an arguably more natural
coarse space that is also nonconforming. Brenner’s theory also extends in a natural
way to fourth order problems.

The isomorphism between piecewise linear nonconforming finite elements and a
space of piecewise linear conforming elements used in [23] has also been used by
Wohlmuth and Hoppe in [92]. They constructed a hierarchical basis preconditioner
for piecewise linear nonconforming finite elements from one for conforming finite ele-
ments. In Chapter 3, we constructed preconditioners for the dual problem (1.19) from
conforming spaces in an analogous manner. It should be noted that Wohlmuth and
Hoppe observed an independence of the condition number for this new hierarchical
basis preconditioner. Existing theory would have predicted a growth in the condition
number proportional to the number of levels which was observed for the hierarchical

basis preconditioner due to Oswald [65].
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Chapter 5

An Application to Sediment Transport

5.1 Model Formulation

In this section, we make a formal derivation of a model for the erosion of sediment
under quasi-steady potential flow in a closed channel. The derivation is formal because
even under the simplifying assumptions made herein, it is not known whether solutions
to the equations exist and are sufficiently regular. The model is a highly simplified
version of a model used in [79, 80].

We consider a two dimensional, z-periodic, time-dependent channel Q(¢) which

we assume can be written as

Q) = {(z,2) | m(t,2) < 2z < na(2), 2 € L},

where I, is the periodic unit interval. Denote the nonperiodic boundary of Q(t) by
[y UT(t) where
Ta={(z,2) | z=1a(z),2 € L},

Ty(t) = {(2,2) | z =m(¢,2), = € p}.

We assume that the channel is full of an incompressible, inviscid fluid. The top of the
channel T, is fixed and independent of time, while the bottom of the channel T is
composed of an erodible sediment. We are interested in the evolution of the bedform
ny that determines I'y.

The motion of sediment particles is usually divided into three regimes (see, e.g.,

83, 84, 77, 81]):

e suspended particle motion in which sediment is entrained into the fluid proper

and buoyed by turbulent forces;
e rolling or sliding along the sediment bed;

e saltation in which particles bounce along the bed loosing contact with the bed
by only a few grain diameters.
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The latter two types of motion are typically lumped together under the name bed-load
transport. We assume that no particles are suspended in the flow so that bed-load
transport is the only mechanism of sediment motion. Moreover, we assume that all
particles are of a single size and composition. Since bed-load transport takes place
on or very near the sediment bed, we consider all bed-load transport to be tangential
to I's.
Let
v(t) = {1 (), (1)}

denote the outward pointing unit normal to Q(t), and

7(t) = {-v:(8), vs(t)}

the unit tangent. We make the nonstandard choice of sign for the unit tangent so that
7(t) on T4(t) will point in the streamwise direction for our simulations. Let Q(2,z, 2)
for (z,z) € T4(t) denote the tangential volumetric sediment flux per unit channel
width measured in bed volumes. By bed volumes we mean the sediment volume
divided by one minus the porosity of sediment bed. By conservation of sediment
mass, we have

8(2’:") V= % ‘U, = —%g on Iy, (5.1)

since no sediment in entrained into the fluid.

We make the following assumptions regarding the fluid flow field in Q(2):

(A1) the flow is divergence free;
(A2) the flow is irrotational;

(A3) the flow is essentially time independent on the time scale of the bed evolution.

Assumption (A2) is a very strong assumption and will lead to a simple model for
the flow. Assumption (A3) is also somewhat restrictive in that it implies that. the
flow reaches a steady state in a time much smaller than the relevant time scale for
the evolution of T'y. The fact that the flow achieves a steady state at all can be an
inappropriate assumption for turbulent flows.

Since the flow is two dimensional and divergence free, we can write the fluid

velocity u as the curl of a scalar stream function ¢; that is,

T
u(t) = Vxa(t) = G%}l%) = ( ‘1) '01 ) V(). (5.2)
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Since the flow is irrotational, we have that

_Oug(t) 3 Ou,(t)
T 9z oz

To obtain a well-posed problem, we cannot impose all of the physically relevant

0 = Vxu(t) = —Vx(Vxe(t) = —Ad(t) in Q). (53)

boundary conditions. The two we specify are that there is no fluid flux across the top
and bottom of the channel; that is,

uv=0 onl,, (5.4)
_Op 0Q
u-v = 5 'llz——E on T. (5.5)

The last equality follows from (5.1). Since d¢/07 = —u-v, we find by integrating
(5.4) and (5.5) over I', and T, respectively, that

#(t) = 9a(t) on T, (5.6)

¢(t) = Q(t) + g5(¢) on T}, (5.7)

for some functions g,(t), gs(t) that are spatially constant for every time ¢. Since the
stream function ¢ is defined only up to a constant, we choose to normalize it by
setting g,(t) = 0.

The constant g,(2) is closely related to the flux of fluid through €Q(t) in the following
way. Let V(t,z) be the total discharge of fluid in the horizontal direction at time t;
that is,

a(z)
V(t&x) = '/71 (t )u(t) : (1a0) dz = ¢(t,:l:, nb(t7x)) - ¢(t7x7770(t’z)) = ¢(t,$,ﬂb(t,$))-
(LT
(5.8)
Integrating V(t,z) over I,, we see that the average horizontal discharge of fluid is
given by
V(t) = /zp V(t,z)dz = /1 8¢, z, m(t, z)) dz.

p
Integrating (5.7), we have

[ #ltzm(t2)) = Q(t, 7, mi(t,2)) do = gu(0);

p

hence,

#6)= QW)+ [ Q(t,zm(t,2))de = V(1) on T, (5.9)
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Since the fluid is incompressible, a change in horizontal fluid flux must represent a
vertical fluid flux and, hence, a change in elevation of the bed. By conservation of
the fluid mass, we see that
ons(z, ) _ oV (z,t) _ dd(z,m(z),1)
ot Oz Oz
The only component of the model left unspecified is the relationship between
sediment flux Q and the fluid flow u. In the numerical experiments presented in

on Ip. (5.10)

the next section, the simplest possible model is used, a linear relationship between

sediment flux and the tangential fluid velocity
Q=ou-7 onTly (5.11)

Many other relationships have been proposed; see, for instance, Table 6.1 of [77].

To summarize, the following quantities are specified as input to the model:
e the initial channel geometry 7, and 7;(0),
o the average horizontal discharge of fluid V(t), and

e the proportionality constant o between fluid velocity u and tangential sediment

flux Q.
The evolution of the channel is determined by

e A Fluid Flow Model:

u(t) — Vxé(t) =0 in Q(t), (5.12)

—Ad(t) =0 inQ(t), (5.13)

$(t)=0 onT,, (5.14)

8(t) — Q(t) + /1,, Q(t,,ns(z)) dz = V(¢) on Ty; (5.15)

e An Erosion Model:
37)6(3’75) _ a‘ﬁ(‘”,ﬂb(z),t)

5 £ =0 on [; (5.16)
e A Sediment Flux Model:
Q) = ou(t) -7 = 22 o1, (5.17)

Jv



33

5.2 Discretization

In this and subsequent sections, we describe an algorithm for calculating a mixed
finite element approximation to (5.12)-(5.17). We refrain from introducing additional
notation to differentiate between the functions in (5.12)-(5.17) and their finite element
approximations since all functions in the subsequent sections will be from appropriate
finite element spaces.

Let

with

0=§0<§1<...<5N_1<§N=1
denote a partition of the unit periodic interval I,. For each t, let n;(¢) : [, = IR be a
continuous function that is piecewise linear with respect to &;.

A three step time-splitting technique is used to advance the approximation of the
bedform 7, through a sequence of discrete time levels {¢"}.

Algorithm 5.1 Given a current time ¢* and a current bedform n;(t"),
compute an advance time t"*! and bedform n,(t"*!) as follows.

1. Compute a mixed finite element approximation to the flow equations

(5.12)—(5.15) and (5.17) in Q(t").

2. Compute an acceptable advanced time ¢"*! subject to a “CFL-like”

constraint.

3. Update n;(¢"*!) using the Erosion Model (5.16).

A detailed description of these three steps follows.

5.2.1 Discretization of the Flow Equations in Q(%)

Let I denote the (non-periodic) unit interval. Denote the unit square, periodic in the
first coordinate direction by { = I, x I, and its outward normal by 7. Let

6?= {20,21,. .o ,EM}

with
0=20<21<...<2M_1<2M=1
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denote a partition of I. Let 7 denote the tensor product partitioning 6 ® 6; of Q
into rectangles, and 9T the union of the boundaries of cells in 7. For convenience,
we use the same partitioning of I, for the discretization of 7, above and Q here.

If na(z) > m(t, ) for = € I, then

F(t,%,2) = (2,m(t, 2) + 2(na(Z) — m(2, 7)))

is a bijection between () and Q(t). Let DF denote its Jacobian matrix, and set

13,3 = |4(DF G, )| (5.5) €8,
J5(%,2) = J(3,3)|DF~'(3,5)p| (%,%) € 8Q.
Here and throughout the rest of this section, we suppress the time variable when it
causes no confusion, noting that the flow variables depend on time only through the
domain Q(t) (equivalently, F) and the boundary condition involving V(2).
Denote by V() x W, (Q) x A, (Q) the lowest order Raviart-Thomas hybrid mixed

finite elements on 7; (see Section 1.2) with periodicity imposed in first coordinate
direction. Define the hybrid mixed finite element spaces V() x W,() x A,(R) on

T,= U F(r),
7eTh
the “triangulation” of { induced by 7; and F, as follows (see [82]). For ¥ € V,(Q),
@ € Wi(Q), define v € V,(Q) and w € Wi(Q) at (z,2) = F(Z,2) by

v(z,2) = —— DF(3,3)%(3, 3),

J(Z,2)
w(z, z) = 0(Z, 2).
For i € A,(Q), define u € A, (Q) at (z,z) = F(E,2) for (Z,2) € 8T, by
p(z, z) = (%, 2).

Let A9(Q) C A,(©) and A(Q) C A,(Q) denote those functions that vanish on
{(#,2) € 0 | 2 = 1} and Ty, respectively. By the hybrid mixed finite element
approximation to the flow equations (5.12)-(5.15), we mean the triple

P 3o
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where
(@, 4,2} € VA(Q) x Wa(Q) x A2(Q)

satisfies

Z (/I;mu-vdm—/F(,T)¢V-vdx+/F(aa/\v-yds) =0 VveV,Q),(518)

~

- /m wV-iidz =0 Ywe Wa(Q),(5.19)
2 /. e, VA8 =0 Vi € A(0),(5.20)

0
AZA /F(a%r,, ( T V+Il) ds = E /(aﬁnr,, V(t)ds Vu € Ay(Q),(5.21)

where

=—/ (Z,m(¢,T))-v dZ.

Equations (5.18)-(5.20) are discussed in Section 1.2, and (5.21) is a weak form of
(5.15) with (5.17). The rotation applied to U above is to correct for the fact that —
is an approximation to the gradient of ¢, but u is an approximation to the curl.

We will do most of our calculations on the reference domain ). Additionally, we
can avoid the difficulties introduced by the nonlocal, nonsymmetric term I; in (5.21)
by taking advantage of the linearity of the sediment flux function in the following
way. Let

{G, 4,2} € V() x Wi(Q) x AYQ)
satisfy
S ([Aa-vde- [dvods+ [ Jv9ds) =0 weVi@), (5:22)
et T T T
- /wV Gdz =0 Ve Wi(@), (5.23)

-
TeT,

Ai-7ds=0 VieAQ), (5.24
= JAN. 7en@), (5.2

1~ .
P> PUA ) 5 = / aJ-ds Vie A(Q), (5.25
'? /TnF—l(Fb) ( + u v S ?Z'? a?np—l(r\b) 'UJV S 'u e h( ) ( a)

-~

where A = L(DF)T(DF). Let

L= -/Ip i(%,0) - (0, 1) d,
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and set -
=801,

Scaling @, ¢ and A by 3 leaves equations to (5.22)—(5.24) unchanged. By adding
LjiJ; to both integrands of (5.25) and multiplying by 3, we see that

~(B= o~ - - ~

=\~ . LJ~| d — / 1 L)J~d

> /za?nF-l(r,,)#(a B BOTABLE) & = X [ W0 )
T h T h

S [ BV,
A~ JoraF-1(Ty) | «
T€TH

an appropriate weak form of (5.21). Hence, we can calculate the hybrid mixed finite
element approximation to (5.12)-(5.15) by taking

0 =1\ /1. .\ .
u=—ﬂ(1 . )(-jDFu)oFl,
$=PBpoF,
/\=,3X0F"1.

Again, the rotation applied to i corrects for the fact that u approximates the curl of

¢, but —i approximates the gradient of $

5.2.2 Time Step Calculation

Recognizing that the Erosion Model (5.16) is formally hyperbolic, we expect the
explicit time stepping in Algorithm 5.1 to be only conditionally stable (see, e.g.,
[49]). The quantity

Umax = sup |u(tn, z,m(z)) - 7|
:BEIp

represents a measure of the speed at which information is propagated along the bound-
ary [',. We enforce a “CFL-type” condition by taking

" =1" + (1 — €)(umax) ™ 1.___1{1iDN(5i - 1), (5.26)

where ¢ is some quantity strictly between 0 and 1. In the numerical experiments under
steady flow, we take ¢ = 0.01. A similar condition was imposed by Chan Hong, et
al. [21] for modeling the interface between fresh and salt water in a saturated porous
media. '

If the forcing function V(t) is unsteady, the time step can be further reduced to
capture the dynamics of the boundary condition.

— 1
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5.2.3 Discretization of the Erosion Model

We discretize (5.16) using techniques appropriate for hyperbolic equations. Since
A(t,z,m(t,z)) is an approximation to the trace of ¢(t) on T, we treat it as the
evaluation of the flux function at 7,(t). We note that A(t,z,n(t,z)) depends in a
highly nonlinear and nonlocal manner on 7,(t) through the domain Q(t) in (5.12)-
(5.15); hence, our use of standard methods for hyperbolic conservation laws is formal
at best. .

Since A(t,z,75(t,z)) is discontinuous at the nodes in the partition 63 of I, we
define a point centered value by averaging. For : =0,...,N —1, let z;, 41 = 3@ +
z;), and set

/\;’-l_'_% = )\(t",x,~+%,nb(t", :BH_%)) = A(t", Titds 0).
For:=0,...,N, set .
AY = 5()\'-‘ 1 + /\?+%),

-3
where we take A}, = AT and A", = A}, by periodicity.
2 2 2 2
Assuming that the flow is from left to right, i.e. u-(1,0) > 0, we update the
bedform by the upwind formula (see, e.g., [49])

(tn-i-l _ tn)

tn+l ) = tn i
) = e, + =)

(A = AL) (5.27)

for:=0,...,N with A, = A} _,.

5.3 Two Numerical Simulations

Not surprisingly, the most computationally taxing portion of Algorithm 5.1 is the
solution of (5.22)-(5.25) arising the in flow calculations in Step 1. At each time step,
a new linear system must be formed since the domain Q(t) and A have changed
from the previous time step. As in Section 1.3, we reduce (5.22)—(5.25) to a dual
variable problem involving only the unknowns A and ¢. Preconditioned conjugate
gradients is then applied to the dual problem using one of the preconditioners con-
structed in Chapter 3. Because the dual problems at consecutive time steps may have
only changed by a small amount, considerable savings in computational time may be
achieved by using the same preconditioner for multiple time steps. In this way, the
cost of forming the preconditioner can be amortized over multiple time steps. For
the simulations presented here, the multigrid V-cycle preconditioner E}”H described



58

in Section 3.2.1 was the optimal choice of the preconditioners studied in Chapter 3
since the time to apply the preconditioner was approximately the same as C7T, but
the number of iterations needed was smaller since the resulting condition number is
better.

In the first experiment, we consider the erosion of a sinusoidal bed-form under
steady flow. The input parameters for the model are

na(z) = %, m(0,z) = 516 sin(27z),
V(it)=1/2, a=0.1.
The periodic interval I, was divided into 128 intervals of uniform length. The flow
equations were discretized using a uniformly spaced 128x64 grid for Q. The precon-
ditioner was only reinitialized when the CPU time required to do so was less than the
time spent taking “extra iterations” in subsequent time steps due to using the old
preconditioner. The number of “extra iterations” per time step was assumed to be
the number of iterations take at the current time step less the number of iterations
taken at the time step when the preconditioner was last reinitialized.

Since the bedforms tend to be advected down stream, to further forestall the need
to reinitialize the preconditioner, a correlation length was computed between the cur-
rent bedform and the bedform when the preconditioner was first computed. Because
the solution to the fluid flow equations are periodic in the streamwise direction, the
preconditioner for the current bedform was evaluated by first rotating the residual
by the correlation length, applying the old preconditioner and shifting the precondi-
tioned residual back. Using this procedure, the preconditioner was only initialized six
times in the 1250 time steps of the simulation.

Figure 5.1 displays the bedforms at several early times in the simulation. Note that
the bedform elevation is exaggerated in Figure 5.1 and in some subsequent figures.
We see that the bedform is both advected in the streamwise direction and eroded.
This phenomenon is also shown clearly in Figure 5.3 where contours corresponding to
extreme elevations are pinched out. Furthermore, as the bedform decays it continues
to be advected at approximately the same speed. The decay in the extremal elevations
of the bedform is shown in Figure 5.2 and is not initially monotone.

In the second experiment, the top of the channel has a semi-circular constriction.
The fluid moves at a higher velocity through the constriction and scours a hole in an
initially flat bed. In this simulation, the model parameters are

T[b(O,.’E) = 07 v(t) = 1/8, a= 01,
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Figure 5.3 Elevation Contours of the Initially Sinusoidal Bedform

and the top of the channel is at a constant height of 1/8 except for a semi-circular
indentation centered at x=0.53125 of radius 1/32, i.e.

0.125 if0<z<05
na(z) = { 0.125 — 1/(0.03125)2 — (z — 0.53125)* if 0.5 < z < 0.5625
0.125 if 0.5625 <z < 1

The periodic interval I, was divided into 512 uniform intervals. The flow equations
were discretized on a uniformly spaced 512x64 grid on Q.

As shown in Figure 5.4, a scoured region develops slightly before the constriction
in the channel and the plug of scoured sediment is advected down stream. Since the
channel is periodic, the sediment plug is eventually advected through the scoured

region and the dynamics become more complex. The dynamics can also be seen in
Figures 5.5-5.7.
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